
Algorithms: Solutions 2

Problem 1
Let A[1..n] be an array of n distinct numbers. If i < j and A[i] > A[j], then the pair (i, j) is
called an inversion. Write an algorithm that determines the number of inversions in A[1..n].

Inversions(A, n)
counter ← 0
for i← 1 to n− 1

do for j ← i + 1 to n
do if A[i] > A[j]

then counter ← counter +1
return counter

The time complexity of the Inversions algorithm is Θ(n2).

Problem 2
Let A[1..n] be a sorted array of n distinct numbers. Write an algorithm that finds a given
value k in the array A[1..n] and returns its index. If the array does not include k, the
algorithm returns 0.

Binary-Search(A, n, k)
p← 1
r ← n
while p < r

do q = b(p + r)/2c
if k ≤ A[q]

then r ← q
else p← q + 1

if k = A[p]
then return p
else return 0

The time complexity of this binary search is Θ(lg n).

1


