
Algorithms: Solutions 10

Problem 1
Write algorithms for converting (a) an adjacency-list representation of a graph into an
adjacency matrix and (b) an adjacency matrix into adjacency lists.

We denote the adjacency list of a vertex u by Adj-List[u], and the adjacency-matrix element
for vertices u and v by Adj-Matrix[u, v]. The time complexity of both algorithms is Θ(V 2).

(a) Converting adjacency lists into a matrix.

Lists-to-Matrix(G) � G is represented by adjacency lists
for each u ∈ V [G]

do for each v ∈ V [G]
do Adj-Matrix[u, v]← 0

for each v ∈ Adj-List[u]
do Adj-Matrix[u, v]← 1

(b) Converting an adjacency matrix into lists.

Matrix-to-Lists(G) � G is represented by an adjacency matrix
for each u ∈ V [G]

do initialize an empty list Adj-List[u]
for each v ∈ V [G]

do if Adj-Matrix[u, v] = 1
then add v to Adj-List[u]

Problem 2
Consider a directed graph with n vertices, represented by an adjacency matrix M [1..n, 1..n].
A vertex is called a sink if it has (n − 1) incoming edges and no outgoing edges. Give an
algorithm that finds the sink and returns its number; if the graph has no sink, return 0.

Find-Sink(M, n)
i← 1
j ← 1
while i < n and j ≤ n � find a sink candidate i

do if M [i, j] = 0
then j ← j + 1
else i← i + 1

for k ← 1 to n � check whether i is a sink
do if M [i, k] = 1

then return 0
if k 6= i and M [k, i] = 0

then return 0
return i

1



Problem 3
Describe a data structure for representing a graph that supports the following operations:

• Check the presence of an edge between two given vertices, in O(lg V ) time.
• Add an edge between two given vertices, in O(lg V ) time.
• Perform the breadth-first search, in O(V + E) time.

We use the “adjacency-list” representation with red-black trees instead of linked lists; that
is, for each vertex in the graph, we keep a red-black tree with adjacent vertices.

2


