Algorithms: Assignment 7

Due date: October 9 (Wednesday)
Problem 1 (5 points)
Consider the problem of finding the k th smallest element of an array $A[1 . . n]$, that is, the element that would occupy the k th position after sorting the array. For example, if the array is $\langle 6,4,8,2,10,0\rangle$ and $k=3$, then the k th smallest element is 4 , since it is the third element in the sorted array $\langle 0,2,4,6,8,10\rangle$. Write an algorithm for finding the k th smallest element of a given array. Its average-case complexity should be better than the complexity of sorting. Thus, sorting the array and then returning the k th element is not an appropriate solution.
Problem 2 (5 points)
Suppose that $A[1 . . n]$ is an array of integer numbers, and some value k occurs at least $\lfloor n / 2\rfloor+1$ times in this array. Write an efficient algorithm for finding this value and give the running time of your algorithm.

