Algorithms: Assignment 3
 Due date: September 11 (Wednesday)

Problem 1 (5 points)
Write an algorithm that combines Insertion-Sort and Merge-Sort. It should use Insertion-Sort for small segments of the array, and recursively merge sorted segments. A segment $A[p . . r]$ is "small" if its length is no larger than some fixed value k, that is, $r-p<k$.

Problem 2 (5 points)
Argue that the following algorithm correctly sorts the array $A[p . . r]$:
Stooge-Sort (A, p, r)
if $A[p]>A[r]$
then exchange $A[p] \leftrightarrow A[r]$
if $p+1 \geq r$
then return
$q \leftarrow\lfloor(r-p+1) / 3\rfloor$
$\operatorname{Stooge-Sort}(A, p, r-q) \quad \triangleright$ first two-thirds
$\operatorname{Stooge-Sort}(A, p+q, r) \quad \triangleright$ last two-thirds
$\operatorname{Stooge-Sort}(A, p, r-q) \quad \triangleright$ first two-thirds again

