Algorithms: Assignment 2
 Due date: September 4 (Wednesday)

Problem 1 (5 points)
Let $A[1 . . n]$ be an array of n distinct numbers. If $i<j$ and $A[i]>A[j]$, then the pair (i, j) is called an inversion. For example, the array $\langle 2,3,8,6,1\rangle$ contains five inversions. Write an algorithm $\operatorname{Inversions}(A, n)$ that determines the number of inversions in $A[1 . . n]$.

Problem 2 (5 points)
Let $A[1 . . n]$ be a sorted array of n distinct numbers. Write an efficient algorithm Binary$\operatorname{SeArch}(A, n, k)$ that finds a given value k in the array $A[1 . . n]$. The algorithm should return the index of the found element; for example, if $A=\langle 1,3,4,6,9\rangle$ and $k=6$, then the returned index is 4 , which means that $k=A[4]$. If the array does not include the value k, the algorithm should return 0 .

