Algorithms: Solutions 3

X

X X

X X

X X

X X X

X X X X

X X X X

X X X X X

X X X X X X
X X X X X X X
X X X X X X X X
X X X X X X X X X

The histogram shows the distribution of grades.

Problem 1
Determine asymptotic upper and lower bounds for each of the following recurrences.

(a) T(n) =T(n/6) +T(n/3)+T(n/2) +n.

We use the iteration method, which leads to the following tree:

n/6 n/3 n/2 n

Io%(n)
n/36 n/18 n/12 n/18 n/9 n/6 n/l2 n/6 n/d n

! \ ;| logfn)
/ :
1 n

The summation gives an upper and lower bound for T'(n):
n-loggn < T(n) < n-logyn,

which implies that
T(n) =0(n-lgn).

1

= 142+4+3+..4(n=1)+n
n(n+1)

= O(n?
(c)T(n)=T(n—-1)+1/n.

T(n) = T(n-1) —i—%

1 +1
n—1 n

S I T NI
N 2 3 7 n—-1 n
= Inn+0O(1) © using Equality 3.5 from the textbook

= O(lgn)
(d) T(n) =T(y/n)+ 1.
We “unwind” the recurrence until reaching some constant value of n, e.g. until n < 2:

O(1) ifn<2
T(”):{ T(yn)+1 ifn>2

= T(n—-2)+

. k
For convenience, assume that n = 22", for some natural value k:

T(n) = 1+T(/2%)
= 1+7(2")

= 1+1+T(y22")

= 1+1+7T(2*7)

= 1+1+14+T(V2%7?)

= 1+14+1+702%7

1+1+1+..4+41+7T(2) © the sum is of length &
k+06(1)
O(k)

Finally, note that £ = lglgn and, hence,
T(n) =0(glgn).

2

(e) T(n) =+/n-T(H/n)+n.
We assume for convenience that n = 22° and T(4) = 4, and use induction to prove the
following equality:

k

T(2*") =22 - k.
This equality holds for k£ = 1:
T(2*)=T(4)=4=2% .1,

VR T2 4 2
22" . 7 (2%) + 22"
92" . (92 .) 4 22
= (2¥)% k422"
= 22" 4 92"
22 (k + 1)
We now note that k£ = lglgn, which implies that

and the induction step is as follows:

T2

T(n) =n-lglgn.

Problem 2

The standard analysis of MERGE-SORT(A, p, q) is based on the assumption that we pass
Al[l..n] by a pointer. If a language does not allow passing an array by a pointer, we may
have two other options; for each option, determine the running time of MERGE-SORT.

(a) Copy all elements of the array A[l..n], which takes ©(n) time.

Let n be the size of the array A[1..n|, and m be the size of the segment A[p..¢g|, sorted by the
recursive call MERGE-SORT(A, p, ¢). The time of copying the array is ©(n), and the time of
the MERGE operation is ©(m), which leads to the following recurrence:

T(m)=2-T(m/2) + ©(n) + ©O(m).
Since m < n, we conclude that
T(m)=2-T(m/2)+0O(n)=2-T(m/2)+c-n,
and unwind this recurrence as follows:
T(m) = 2-T(m/2)+c-n
= 4-T(m/4)+2-c-n+c-n
= 8. T(m/8)+2°-c-n+2-c-n+c-n

= 28m.c.opy2emlcn 4 +22.con+2-c-nte-n
= (2™ —1).c-n

= (2-m—1)-c-n

= O(m-n)

Thus, the running time of MERGE-SORT(A, p,q) is ©(m - n), where m is the size of the
segment A[p..q]. The top-level call to the sorting algorithm is MERGE-SORT(A, 1, n); for
this call, we have m = n, which means that the time complexity is

(b) Copy the elements of the segment A[p..q], which takes ©(¢ — p + 1) time.

The complexity of copying the segment is ©(m), which is the same as the time of the MERGE
procedure; hence, copying does not affect the complexity of the algorithm. The recurrence
is the same as the standard recurrence for MERGE-SORT, and the overall time is ©(n -1gn).

Problem 3
Suppose that A[l..n] and B[l..m] are sorted arrays, and n < m. Write an algorithm that
finds their smallest common element; if they have no common elements, it should return 0.

The intuitive idea is to divide B[l..m| into segments, each of size k = m/n, and per-
form binary search in each segment. We need to use a version of binary search, BIN-
SEARCH(B, p,r, k), which searches for an element k£ in a segment B[p..r|. If this version
finds k, it returns the corresponding index of B; if not, it returns the index of the next larger
element. For example, if £ = 6 and B[p..r] = (3,5,7,9), the search returns the index of 7.
The following algorithm calls BIN-SEARCH on k-element segments of B.

CoMMON-ELEMENT(A, B, n,m)
k< |m/n|
11
j+1
while s <n and j <m
do if A[i] = B[j]
then return A[i]
if Ali] < B[]
theni=1:+1
else repeat j =j+ £
until j > m or A[i] < BJ[j]
j < BIN-SEARCH(B, j — k + 1, min(j, m), A[i])
return 0

The running time of COMMON-ELEMENT is O(n - (141g™)). In particular, if A and B are
of about the same size, then the time is O(m). On the other hand, if A is much smaller than
B, the running time is significantly better than O(m).

