Algorithms: Solutions 3

The histogram shows the distribution of grades.

Problem 1

Determine asymptotic upper and lower bounds for each of the following recurrences.

(a)
$$T(n) = T(n/6) + T(n/3) + T(n/2) + n$$
.

We use the iteration method, which leads to the following tree:

The summation gives an upper and lower bound for T(n):

$$n \cdot \log_6 n \le T(n) \le n \cdot \log_2 n$$
,

which implies that

$$T(n) = \Theta(n \cdot \lg n).$$

(b)
$$T(n) = T(n-1) + n$$
.

$$T(n) = T(n-1) + n$$

$$= T(n-2) + (n-1) + n$$

$$\dots$$

$$= 1 + 2 + 3 + \dots + (n-1) + n$$

$$= \frac{n(n+1)}{2}$$

$$= \Theta(n^2)$$

(c)
$$T(n) = T(n-1) + 1/n$$
.

$$T(n) = T(n-1) + \frac{1}{n}$$

$$= T(n-2) + \frac{1}{n-1} + \frac{1}{n}$$
...
$$= 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n-1} + \frac{1}{n}$$

$$= \ln n + O(1) \implies \text{using Equality 3.5 from the textbook}$$

$$= \Theta(\lg n)$$

(d)
$$T(n) = T(\sqrt{n}) + 1$$
.

We "unwind" the recurrence until reaching some constant value of n, e.g. until $n \leq 2$:

$$T(n) = \begin{cases} \Theta(1) & \text{if } n \le 2\\ T(\sqrt{n}) + 1 & \text{if } n > 2 \end{cases}$$

For convenience, assume that $n = 2^{2^k}$, for some natural value k:

$$T(n) = 1 + T(\sqrt{2^{2^k}})$$

$$= 1 + T(2^{2^{k-1}})$$

$$= 1 + 1 + T(\sqrt{2^{2^{k-1}}})$$

$$= 1 + 1 + T(2^{2^{k-2}})$$

$$= 1 + 1 + 1 + T(\sqrt{2^{2^{k-2}}})$$

$$= 1 + 1 + 1 + T(2^{2^{k-3}})$$

$$\dots$$

$$= 1 + 1 + 1 + \dots + 1 + T(2) be the sum is of length k

$$= k + \Theta(1)$$

$$= \Theta(k)$$$$

Finally, note that $k = \lg \lg n$ and, hence,

$$T(n) = \Theta(\lg \lg n).$$

(e)
$$T(n) = \sqrt{n} \cdot T(\sqrt{n}) + n$$
.

We assume for convenience that $n = 2^{2^k}$ and T(4) = 4, and use induction to prove the following equality:

$$T(2^{2^k}) = 2^{2^k} \cdot k.$$

This equality holds for k = 1:

$$T(2^{2^1}) = T(4) = 4 = 2^{2^1} \cdot 1,$$

and the induction step is as follows:

$$T(2^{2^{k+1}}) = \sqrt{2^{2^{k+1}}} \cdot T(\sqrt{2^{2^{k+1}}}) + 2^{2^{k+1}}$$

$$= 2^{2^k} \cdot T(2^{2^k}) + 2^{2^{k+1}}$$

$$= 2^{2^k} \cdot (2^{2^k} \cdot k) + 2^{2^{k+1}}$$

$$= (2^{2^k})^2 \cdot k + 2^{2^{k+1}}$$

$$= 2^{2^{k+1}} \cdot k + 2^{2^{k+1}}$$

$$= 2^{2^{k+1}} \cdot (k+1)$$

We now note that $k = \lg \lg n$, which implies that

$$T(n) = n \cdot \lg \lg n$$
.

Problem 2

The standard analysis of Merge-Sort(A, p, q) is based on the assumption that we pass A[1..n] by a pointer. If a language does not allow passing an array by a pointer, we may have two other options; for each option, determine the running time of Merge-Sort.

(a) Copy all elements of the array A[1..n], which takes $\Theta(n)$ time.

Let n be the size of the array A[1..n], and m be the size of the segment A[p..q], sorted by the recursive call Merge-Sort(A, p, q). The time of copying the array is $\Theta(n)$, and the time of the Merge operation is $\Theta(m)$, which leads to the following recurrence:

$$T(m) = 2 \cdot T(m/2) + \Theta(n) + \Theta(m).$$

Since $m \leq n$, we conclude that

$$T(m) = 2 \cdot T(m/2) + \Theta(n) = 2 \cdot T(m/2) + c \cdot n,$$

and unwind this recurrence as follows:

$$T(m) = 2 \cdot T(m/2) + c \cdot n$$

$$= 4 \cdot T(m/4) + 2 \cdot c \cdot n + c \cdot n$$

$$= 8 \cdot T(m/8) + 2^2 \cdot c \cdot n + 2 \cdot c \cdot n + c \cdot n$$

$$\vdots$$

$$= 2^{\lg m} \cdot c \cdot n + 2^{\lg m - 1} \cdot c \cdot n + \dots + 2^2 \cdot c \cdot n + 2 \cdot c \cdot n + c \cdot n$$

$$= (2^{\lg m + 1} - 1) \cdot c \cdot n$$

$$= (2 \cdot m - 1) \cdot c \cdot n$$

$$= \Theta(m \cdot n)$$

Thus, the running time of Merge-Sort(A, p, q) is $\Theta(m \cdot n)$, where m is the size of the segment A[p..q]. The top-level call to the sorting algorithm is Merge-Sort(A, 1, n); for this call, we have m = n, which means that the time complexity is

$$T(n) = \Theta(n^2).$$

(b) Copy the elements of the segment A[p..q], which takes $\Theta(q-p+1)$ time.

The complexity of copying the segment is $\Theta(m)$, which is the same as the time of the MERGE procedure; hence, copying does not affect the complexity of the algorithm. The recurrence is the same as the standard recurrence for MERGE-SORT, and the overall time is $\Theta(n \cdot \lg n)$.

Problem 3

Suppose that A[1..n] and B[1..m] are sorted arrays, and $n \leq m$. Write an algorithm that finds their smallest common element; if they have no common elements, it should return 0.

The intuitive idea is to divide B[1..m] into segments, each of size k = m/n, and perform binary search in each segment. We need to use a version of binary search, BIN-SEARCH(B, p, r, k), which searches for an element k in a segment B[p..r]. If this version finds k, it returns the corresponding index of B; if not, it returns the index of the next larger element. For example, if k = 6 and $B[p..r] = \langle 3, 5, 7, 9 \rangle$, the search returns the index of 7. The following algorithm calls BIN-SEARCH on k-element segments of B.

```
\begin{split} &\operatorname{Common-Element}(A,B,n,m) \\ &k \leftarrow \lfloor m/n \rfloor \\ &i \leftarrow 1 \\ &j \leftarrow 1 \\ &\text{while } i \leq n \text{ and } j \leq m \\ &\text{do if } A[i] = B[j] \\ &\text{then return } A[i] \\ &\text{if } A[i] < B[j] \\ &\text{then } i = i+1 \\ &\text{else repeat } j = j+k \\ &\text{until } j > m \text{ or } A[i] \leq B[j] \\ &j \leftarrow \operatorname{Bin-Search}(B,j-k+1,\min(j,m),A[i]) \end{split}
```

return 0

The running time of COMMON-ELEMENT is $O(n \cdot (1 + \lg \frac{m}{n}))$. In particular, if A and B are of about the same size, then the time is O(m). On the other hand, if A is much smaller than B, the running time is significantly better than O(m).