Algorithms: Solutions 2

Be e DE B B bd bd Bd DE B B4 B4 bd bd bd b4

P4 P4 P4 P4 P4 Pd o Pd < O e

The histogram shows the distribution of grades, from 0 to 10.

Problem 1
Give an example of functions f(n) and g(n) that satisfy all of the following conditions:

f(n) = O(g(n))
f(n) # ©(g(n))
f(n) # o(g(n))

Consider the following two functions:

fln) =1
1 if n is even;
n if n is odd.

Since f(n) < g(n), we immediately conclude that f(n) = O(g(n)). For even n, the func-
tion f(n) is of the same order as g(n), which means that f(n) # o(g(n)). On the other hand,
for odd n, f(n) grows asymptotically slower than g(n), which implies that f(n) # ©(g(n)).



Problem 2
Give a precise mathematical proof of the following asymptotic bounds:

(a) vn=o(n)

We need to show that, for every ¢ > 0, there is some ng such that, for all n > ng, we have
v/n < c-n. We define ng as follows:

1
Then, for every n > ng, we have n > 1/c?, which implies that \/n - ¢ > 1 and readily leads
to the desired inequality:
vVn<yn-(vn-c)=n-c

(b) (n+1)*=06(n?)

If n > 1, then
(n+1)* < (2n)* =2%-n"

Thus, we get the following bounds for (n + 1) :
n® < (n+1)* <2%-n°

which implies that (n + 1)* = ©(n%).

Problem 3
Prove the following transitivity property of asymptotic bounds:

if f(n) = ©(g(n)) and g(n) = O(h(n)), then f(n) = O(h(n)).

Since f(n) = O(g(n)), we conclude that there are some positive constants ¢, co, and n; such
that, for all n > n,, we have:

cig(n) < f(n) < cag(n).

Similarly, since g(n) = ©(h(n)), there exist some positive constants c3, ¢4, and ny such that,
for all n > ng:
csh(n) < g(n) < cgh(n).

We may combine these two inequalities as follows:
cicsh(n) < cig(n) < f(n) < cag(n) < cocah(n).
We now define three new constants, cs, cg, and ngs:

C5 = C1C3,
Ce = CoC4,
ns = max(n, ng).



Then, the last inequality implies that, for every n > n3, we have:
csh(n) < f(n) < cgh(n).

This inequality means that, by definition, f(n) = ©(h(n)).

Problem 4
Suppose that we have four algorithms, called Ay, A;, As, and Az, whose respective running
times are n, n?, lgn, and 2". If we use a certain old computer, then the maximal sizes of
problems solvable in an hour by these algorithms are sg, s1, S9, and s3.

Suppose that we have replaced the old computer with a new one, which is £ times faster.
Now the maximal size of problems solvable in an hour by Aq is k- sg. What are the maximal
problem sizes for the other three algorithms, if we run them on the new computer?

For A;: On the old machine, the A; algorithm solves a problem of size s; in one hour. The
running time of this algorithm on a problem of size s; is s?; hence, s? = 1 hour.
The new machine is k times faster, which means that the running time of A; is n?/k.
We denote the size of the largest problem solvable in one hour by vy; then, v?/k = 1 hour.
We conclude that v?/k = s? and, hence, v; = s;v/k. Thus, the maximal size of a problem
solvable in one hour on the new machine is s;Vk.

For Aj: On the old machine, the A, algorithm solves a problem of size s, in one hour,
which means that 1lg s, = 1 hour. If we denote the maximal problem solvable in an hour on
a new machine by vy, then lgwvy/k = 1 hour. We conclude that lg vy /k = lg so, which implies
that v, = s§. Thus, the maximal problem solvable in one hour on the new machine is of
size sk.

For A;: We denote the maximal problem solvable by A3 on the new machine by vz, and use
a similar reasoning to obtain the equation 2”3 /k = 2%, which implies that v3 = s3 + lgk.



