Algorithms: Solutions 2

The histogram shows the distribution of grades, from 0 to 10.

Problem 1

Give an example of functions f(n) and g(n) that satisfy all of the following conditions:

$$f(n) = O(g(n))$$

$$f(n) \neq \Theta(g(n))$$

$$f(n) \neq o(g(n))$$

Consider the following two functions:

$$f(n) = 1$$

$$g(n) = \begin{cases} 1 & \text{if } n \text{ is even;} \\ n & \text{if } n \text{ is odd.} \end{cases}$$

Since $f(n) \leq g(n)$, we immediately conclude that f(n) = O(g(n)). For even n, the function f(n) is of the same order as g(n), which means that $f(n) \neq o(g(n))$. On the other hand, for odd n, f(n) grows asymptotically slower than g(n), which implies that $f(n) \neq \Theta(g(n))$.

Problem 2

Give a precise mathematical proof of the following asymptotic bounds:

(a)
$$\sqrt{n} = o(n)$$

We need to show that, for every c > 0, there is some n_0 such that, for all $n \ge n_0$, we have $\sqrt{n} < c \cdot n$. We define n_0 as follows:

$$n_0 = \left\lceil \frac{1}{c^2} + 1 \right\rceil.$$

Then, for every $n \ge n_0$, we have $n > 1/c^2$, which implies that $\sqrt{n} \cdot c > 1$ and readily leads to the desired inequality:

$$\sqrt{n} < \sqrt{n} \cdot (\sqrt{n} \cdot c) = n \cdot c.$$

(b)
$$(n+1)^a = \Theta(n^a)$$

If $n \geq 1$, then

$$(n+1)^a \le (2n)^a = 2^a \cdot n^a$$
.

Thus, we get the following bounds for $(n+1)^a$:

$$n^a \le (n+1)^a \le 2^a \cdot n^a,$$

which implies that $(n+1)^a = \Theta(n^a)$.

Problem 3

Prove the following transitivity property of asymptotic bounds:

if
$$f(n) = \Theta(g(n))$$
 and $g(n) = \Theta(h(n))$, then $f(n) = \Theta(h(n))$.

Since $f(n) = \Theta(g(n))$, we conclude that there are some positive constants c_1 , c_2 , and n_1 such that, for all $n \ge n_1$, we have:

$$c_1g(n) \le f(n) \le c_2g(n).$$

Similarly, since $g(n) = \Theta(h(n))$, there exist some positive constants c_3 , c_4 , and n_2 such that, for all $n \ge n_2$:

$$c_3h(n) \leq g(n) \leq c_4h(n).$$

We may combine these two inequalities as follows:

$$c_1c_3h(n) \le c_1g(n) \le f(n) \le c_2g(n) \le c_2c_4h(n).$$

We now define three new constants, c_5 , c_6 , and n_3 :

$$c_5 = c_1 c_3,$$

$$c_6 = c_2 c_4,$$

$$n_3 = \max(n_1, n_2).$$

Then, the last inequality implies that, for every $n \geq n_3$, we have:

$$c_5h(n) \le f(n) \le c_6h(n).$$

This inequality means that, by definition, $f(n) = \Theta(h(n))$.

Problem 4

Suppose that we have four algorithms, called A_0 , A_1 , A_2 , and A_3 , whose respective running times are n, n^2 , $\lg n$, and 2^n . If we use a certain old computer, then the maximal sizes of problems solvable in an hour by these algorithms are s_0 , s_1 , s_2 , and s_3 .

Suppose that we have replaced the old computer with a new one, which is k times faster. Now the maximal size of problems solvable in an hour by A_0 is $k \cdot s_0$. What are the maximal problem sizes for the other three algorithms, if we run them on the new computer?

For A_1 : On the old machine, the A_1 algorithm solves a problem of size s_1 in one hour. The running time of this algorithm on a problem of size s_1 is s_1^2 ; hence, $s_1^2 = 1$ hour.

The new machine is k times faster, which means that the running time of A_1 is n^2/k . We denote the size of the largest problem solvable in one hour by v_1 ; then, $v_1^2/k = 1$ hour.

We conclude that $v_1^2/k = s_1^2$ and, hence, $v_1 = s_1\sqrt{k}$. Thus, the maximal size of a problem solvable in one hour on the new machine is $s_1\sqrt{k}$.

For A_2 : On the old machine, the A_2 algorithm solves a problem of size s_2 in one hour, which means that $\lg s_2 = 1$ hour. If we denote the maximal problem solvable in an hour on a new machine by v_2 , then $\lg v_2/k = 1$ hour. We conclude that $\lg v_2/k = \lg s_2$, which implies that $v_2 = s_2^k$. Thus, the maximal problem solvable in one hour on the new machine is of size s_2^k .

For A_3 : We denote the maximal problem solvable by A_3 on the new machine by v_3 , and use a similar reasoning to obtain the equation $2^{v_3}/k = 2^{s_3}$, which implies that $v_3 = s_3 + \lg k$.