Algorithms: Solutions 10

X
X
X
X X
X X
X X
X X
X X
number of X X
homeworks X X X
X X X X
X X X X
X X X X
X X X X
X X X X
X X X X X X
X X X X X X X X

Problem 1

Assume that all characters in a pattern P[1..m] are distinct, and you need to find all occur-
rences of P in a text T[1..n]. Write an “accelerated” version of NAIVE-STRING-MATCHER,
which solves this problem in O(n) time.

FAST-NAIVE-MATCHER(T, P, n, m)
initialize empty list Shifts

141
while s <n —m
doifi>m
then add s to Shifts
S Ss+m
141
else if P[i| = T[s + i]
then i+ :+1
else s+ s+1
11

return Shifts

Problem 2
Write an algorithm that looks for a given m X m pattern in an n X n array of characters,
based on the Rabin-Karp method.

We compute a separate Rabin-Karp numerical value for each row of the m x m pattern, and
then compute numerical values for each row of the n x n array. For each possible position of
the pattern in the array, we need to compare m numerical values, which correspond to the
rows of the pattern. When all values match, we perform a character-by-character comparison
of the pattern with the array.



Problem 3
Design an efficient algorithm for finding the longest common substring of two strings.

We denote the input strings by X[1..m] and Y[1..n], and define [[7, j| as the length of the
longest common suffix of X[1..7] and Y[1..j]. We compute ([, j] for every i < m and every
J < n; the maximal [[4, j] value is the length of the longest common substring.

The following algorithm finds the maximal [[7, j] value, uses it to identify the longest
common substring, and prints out this substring. The algorithm runs in ©(m - n) time and
requires ©(m - n) memory.

COMMON-SUBSTRING(X, Y, m, n)
tmaz < 0
lma:t <0
for i+ 0 tom
do [[;,0] < 0
for j<— 1ton
do 1[0,7] < 0
for i< 1tom
do for j < 1ton
do if X[i] # Y[j]
then [[i, j] < 0
else l[i,j] + l[i—1,j — 1] +1
if l[i, 7] > lnas
then 7,,,, < 1
lmaz < U], J]
print X |[(imaz — lmaz + 1)--(imaz)]

We can modify this algorithm to reduce its memory usage, without affecting the running
time; the modified version uses an auxiliary array [[1..n], which takes only ©(n) memory.

Low-MEMORY-SUBSTRING (X, Y, m, n)
7:ma:v +0
lmaa: +0
for j«<— 1ton
do l[j] + O
fori+1tom
do old < 0
for j < 1ton
do temp < l[j]
if X[i] # V[j]
then [[j] < 0
else I[j] «+ old+ 1
if I[7] > las
then 7,,,, <+ 7
lmaz — l[]]
old < temp
print X |[(imaz — lmaz + 1)--(imaz)]

Note that this algorithm for finding the longest common substring is not optimal. We can
solve this problem in O(m + n) time, using the concept of a suffiz tree.



