Algorithms: Assignment 5
Due date: October 5 (Thursday)

Problem 1 (3 points)
Consider the problem of finding the kth smallest element of an array A[l..n], that is, the
element that would occupy the kth position after sorting the array. For example, if the array
is 6,4, 8,2,10,0> and k£ = 3, then the kth smallest element is 4, since it is the third element
in the sorted array <0,2,4,6,8,10>.

Write an algorithm for finding the £th smallest element of a given array. Its average-case
complexity should be significantly better than the complexity of sorting. Thus, sorting the
whole array and then returning the kth element is not an appropriate solution.

Problem 2 (3 points)

Consider a computer environment where the control flow of a program can split three ways
after a single comparison a; : a;, according to whether a; < a;, a; = a;, or a; > a;. Argue that
the number of these three-way comparisons required to sort an n-element array is Q(nlgn).

Problem 3 (4 points)
Suppose that A[1..n] is an array of integer numbers, and some value k occurs at least [n/2|+1
times in this array. Write an efficient algorithm for finding this value and give the running
time of your algorithm.

Problem 4 (bonus)
This problem is optional, and it allows you to get 2 bonus points toward your final grade for
the course. You cannot submit this bonus problem after the deadline.

We consider an array A[l..n] and define a segment sum from p to r, where 1 < p < r < n,
as follows:

sum(p, 1) = ¥pcicy Alil.

In other words, it is the sum of all array elements in the segment A[p..r]. Note that the total
number of distinct segments is w Write a linear-time (that is, ©(n)) algorithm that
determines the maximum over all segment sums.



