Algorithms: Assignment 3
Due date: September 21 (Thursday)

Problem 1 (5 points)
Determine asymptotic upper and lower bounds for each of the following recurrences. Make
your bounds as tight as possible.

(a) T(n) =T(n/6)+T(n/3)+T(n/2) +n.

Problem 2 (5 points)

The standard complexity analysis of MERGE-SORT(A, p, q) is based on the assumption that,
when making a recursive call, we pass the array A[l..n] by a pointer, which means that
parameter passing takes constant time. If a programming language does not allow passing
an array by a pointer, we may have two other options:

(a) Pass the array A[l..n] by copying all its elements, which takes ©(n) time.

(b) Pass the array by copying only the elements used in the called function; then, the
procedure has to copy the Alp..q] segment of the array, which takes ©(¢ —p+ 1) time.

For each of these two options, write a recurrence for the running time of MERGE-SORT and
give an asymptotic upper and lower bound for the recurrence.

Problem 3 (bonus)
This problem is optional; if you solve it, you will get 2 bonus points toward your final grade
for the course. You cannot submit this bonus problem after the deadline.

Suppose that A[1..n] and B[1..m| are sorted arrays, and the size of A is no greater than the
size of B, that is, n < m. Write an algorithm that finds the smallest common element of
these arrays; for example, if A = (1,4,5,7) and B = (2, 3,4, 7,8), then the smallest common
element is 4. If the arrays have no common elements, the algorithm should return 0.

Your solution should be efficient both when A is almost as large as B and when A is

much smaller than B. In particular, if A is much smaller, the complexity should be better
than ©(m).



