
Prodigy Bidirectional Planning

Eugene Fink
Computer Science and Engineering

University of South Florida
4202 East Fowler Avenue, ENB-118

Tampa, Florida 33620
eugene@csee.usf.edu

www.csee.usf.edu/∼eugene

Jim Blythe
Information Sciences Institute

University of Southern California
4676 Admiralty Way, Suite 1001

Marina del Rey, California 90292
blythe@isi.edu

www.isi.edu/∼blythe

Abstract

The prodigy system is based on bidirectional planning, which is a combination of
goal-directed reasoning with simulated execution. Researchers have implemented a se-
ries of planners that utilize this search strategy, and demonstrated that it is an efficient
technique, a fair match to other successful planners; however, they have provided few
formal results on the common principles underlying the developed algorithms.

We formalize bidirectional planning, elucidate some techniques for improving its
efficiency, and show how different strategies for controlling search complexity give rise
to different versions of prodigy. In particular, we demonstrate that prodigy is not
complete and discuss advantages and drawbacks of its incompleteness. We then develop
a complete bidirectional planner and compare it experimentally with prodigy. We
show that the complete planner is almost as fast as prodigy and solves a wider range
of problems.

1 Introduction

Newell and Simon [1961; 1972] invented means-ends analysis during their work on the General
Problem Solver (gps), back in the early days of artificial intelligence. Their technique
combined goal-directed reasoning with forward chaining from the initial state. The authors
of later planning systems [Fikes and Nilsson, 1971; Warren, 1974; Tate, 1977] gradually
abandoned forward search and began to rely exclusively on backward chaining.

Researchers studied several types of backward chainers [Minton et al., 1994] and discov-
ered that least commitment improves the efficiency of goal-directed reasoning, which gave
rise to tweak [Chapman, 1987], abtweak [Yang et al., 1996], snlp [McAllester and Rosen-
blitt, 1991], ucpop [Penberthy and Weld, 1992; Weld, 1994], and other least-commitment
planners.

Meanwhile, prodigy researchers extended means-ends analysis and developed a family
of planners based on the combination of goal-directed backward chaining with simulation of

1

version year authors
prodigy1 1986 Minton and Carbonell
prodigy2 1989 Carbonell, Minton, Knoblock, and Kuokka
nolimit 1990 Veloso and Borrajo
prodigy4 1992 Blythe, Wang, Veloso, Kahn, Pérez, and Gil
flecs 1994 Veloso and Stone

Table 1: Main versions of the prodigy architecture. The work on this planning architecture
continued for over ten years and gave rise to a series of novel search strategies.

plan execution [Veloso et al., 1995]. The underlying strategy is a special case of bidirectional
search [Pohl, 1971]. It has given rise to several versions of the prodigy system, including
prodigy1, prodigy2, nolimit, prodigy4, and flecs.

The developed planners keep track of the world state, which results from executing parts
of the constructed plan, and use the state to guide the goal-directed reasoning. Least com-
mitment proved ineffective for bidirectional search, and Veloso developed an alternative
strategy, called casual commitment based on instantiating all variables as early as possible
[Veloso, 1994].

Experiments have shown that bidirectional planning is an efficient technique, a fair match
to least-commitment systems and other successful planners. Moreover, the prodigy archi-
tecture has proved a valuable tool for the development of speed-up learning techniques.

Although researchers have applied bidirectional planners to a variety of domains, and
conducted empirical studies of their performance, they provided few formal results on the
common principles underlying these planners. To date, all bidirectional planners have been
incomplete, and researchers have not studied reasons for their incompleteness.

The purpose of the described work is to formalize the principles of bidirectional plan-
ning. We analyze the bidirectional technique, describe general heuristics for improving its
efficiency, and elucidate differences among main versions of prodigy. We then identify
the two specific reasons for the incompleteness of means-ends analysis and develop the first
complete bidirectional planner, by extending prodigy search. The planner supports a rich
domain language, which allows the use of conditional effects and complex precondition ex-
pressions [Carbonell et al., 1992].

We review the past work on prodigy (Section 1.1) and describe the foundations of the
developed techniques (Section 2), as well as the main extensions to the basic search engine
(Sections 3 and 4). We then present a complete bidirectional planner and show that the new
planner is almost as efficient as prodigy and that it solves more problems (Section 5).

1.1 prodigy history

The prodigy system went through several stages of development and gradually evolved
into an advanced architecture that supports a variety of search and learning techniques. Its
history (see Table 1) began circa 1986, when Steven Minton and Jaime Carbonell imple-
mented prodigy1, which became a testbed for their work on control rules [Minton, 1988;
Minton et al., 1989a].

2

Steven Minton, Jaime Carbonell, Craig Knoblock, and Dan Kuokka used prodigy1
as a prototype in their work on prodigy2 [Carbonell et al., 1990], which supported an
advanced language for describing domains [Minton et al., 1989b]. They demonstrated the
system’s effectiveness in scheduling machine-shop operations [Gil, 1991; Gil and Pérez, 1994],
planning a robot’s actions in an extended strips world [Minton, 1988], and solving a variety
of smaller problems.

Manuela Veloso [1989] and Daniel Borrajo developed the next bidirectional planner, called
nolimit, which significantly differed from its predecessors. In particular, they added new
decision points and introduced object types for specifying possible values of variables. Veloso
demonstrated the effectiveness of nolimit on the previously designed prodigy domains, as
well as on transportation problems.

Jim Blythe, Mei Wang, Manuela Veloso, Dan Kahn, Alicia Pérez, and Yolanda Gil de-
veloped a collection of techniques for enhancing bidirectional planners and built prodigy4
[Carbonell et al., 1992]. They provided an efficient technique for instantiating operators
[Wang, 1992], extended the use of inference rules, and designed advanced data structures for
the low-level implementation. They also designed a user interface and tools for adding new
learning mechanisms.

Manuela Veloso and Peter Stone [1995] implemented the flecs planner, an extension to
prodigy4 that included an additional decision point and new search strategies, and showed
that their strategies often improved the efficiency.

The prodigy architecture provided ample opportunities for speed-up learning, and re-
searchers used it to develop a variety of techniques for automated efficiency improvement.
Minton [1988] designed the first learning module for prodigy, which automatically gen-
erated control rules. He demonstrated effectiveness of integrating prodigy search with
learning, which stimulated work on other speed-up techniques.

In particular, researchers designed modules for explanation-based learning [Etzioni, 1990;
Etzioni, 1993; Pérez and Etzioni, 1992], inductive generation of control rules [Veloso and
Borrajo, 1994; Borrajo and Veloso, 1996], abstraction search [Knoblock, 1993], and ana-
logical reuse of planning episodes [Carbonell, 1983; Veloso and Carbonell, 1990; Veloso
and Carbonell, 1993a; Veloso and Carbonell, 1993b; Veloso, 1994]. They also investigated
techniques for improving the quality of plans [Pérez and Carbonell, 1993; Pérez, 1995],
learning unknown properties of a domain [Gil, 1992; Carbonell and Gil, 1990; Wang, 1994;
Wang, 1996], and collaborating with the human user [Joseph, 1992; Stone and Veloso, 1996;
Cox and Veloso, 1997a; Cox and Veloso, 1997b; Veloso et al., 1997]. The reader may find
a summary of prodigy learning techniques in the review papers by Carbonell et al. [1990]
and Veloso et al. [1995].

1.2 Advantages and drawbacks

The prodigy architecture is based on two major design decisions. First, it combines back-
ward chaining with simulated plan execution. Second, it fully instantiates operators in early
stages of search, whereas most classical planners delay the instantiation.

The backward-chaining procedure selects operators relevant to the goal, instantiates
them, and arranges them into a partial-order plan. The forward chainer simulates the exe-

3

cution of these operators and gradually constructs a total-order sequence of operators. The
system keeps track of the simulated world state that would result from executing this se-
quence. It utilizes the simulated state in selecting operators and their instantiations, which
improves the effectiveness of goal-directed reasoning. In addition, learning modules use the
state to identify reasons for successes and failures.

Since prodigy uses fully instantiated operators, it efficiently handles a powerful domain
language. In particular, it supports disjunctive and quantified preconditions, conditional
effects, and arbitrary constraints on the values of operator variables [Carbonell et al., 1992].
The planner utilizes the world state in choosing appropriate instantiations.

On the flip side, full instantiation leads to a large branching factor, which results in
gross inefficiency of a breadth-first search. The planner uses depth-first search and relies
on heuristics for selecting appropriate branches of the search space, which usually leads
to suboptimal plans. If the heuristics turn out misleading, the planner may fail to find a
solution.

A formal comparison of prodigy and other planners is still an open problem; however,
multiple empirical studies confirmed that prodigy search is an efficient strategy [Stone et
al., 1994]. Experiments also revealed that prodigy and backward chainers perform well in
different domains. Some tasks are more suitable for execution simulation, whereas others
require backward chaining. Veloso and Blythe [1994] identified some domain properties that
determine which of the two strategies is more effective.

Kambhampati and Srivastava [1996a; 1996b] investigated common principles underlying
prodigy and least-commitment search. They developed a framework that generalizes these
two types of goal-directed reasoning and combined them with direct forward search. They
implemented the Universal Classical Planner, which can use all these strategies; however,
the resulting algorithm has many decision points, which give rise to an impractically large
search space. The main open problem is the development of heuristics that would effectively
use the flexibility of the Universal Classical Planner.

Blum and Furst [1997] constructed graphplan, which uses the world state in a different
way. It utilizes propagation of constraints from the initial state to identify operators whose
preconditions cannot be satisfied. The planner discards these operators and uses backward
chaining with the remaining operators. graphplan performs forward constraint propaga-
tion prior to its search for a solution. Unlike prodigy, it does not use forward search from
the initial state.

The relative performance of prodigy and graphplan varies across domains. The
graphplan algorithm has to generate all possible instantiations of all operators before
searching for a solution, which often causes a combinatorial explosion in large-scale domains.
On the other hand, graphplan is faster in small-scale domains that require extensive search.

Researchers applied prodigy to robot navigation and discovered that its execution
simulation is useful for interleaving search with real execution. In particular, Blythe and
Reilly [1993a; 1993b] explored techniques for planning the routes of a household robot in a
simulated environment. Stone and Veloso [1996] constructed a mechanism for user-guided
interleaving of planning and execution.

Haigh and Veloso [1996; 1997; 1998a; 1998b] built a system for navigating xavier, a real
robot at Carnegie Mellon University. Haigh [1998] integrated this system with xavier’s low-

4

level control and demonstrated its effectiveness in guiding the robot’s actions. It begins the
real-world execution before completing the search for a solution, which involves the risk of
guiding the robot into an inescapable trap. To avoid such traps, Haigh and Veloso restricted
their system to domains with reversible actions.

2 Search engine

We now describe the basics of bidirectional planning, including the results of joint work
with Veloso on the principles underlying prodigy [Fink and Veloso, 1996]. We present
the prodigy domain language (Section 2.1), the encoding of intermediate incomplete plans
(Section 2.2), and the algorithm that combines backward chaining with execution simulation
(Sections 2.3 and 2.4). Then, we discuss differences among the main versions of prodigy
(Section 2.5).

2.1 Encoding of problems

We define a planning domain by a set of object types and a library of operators that act on
such objects. The prodigy language for describing operators is based on the strips do-
main language [Fikes and Nilsson, 1971], extended to express conditional effects, disjunctive
preconditions, and quantifications.

An operator is defined by its preconditions and effects. The preconditions of an operator
are the conditions that must be satisfied before the execution. They are represented by
a logical expression with negations, conjunctions, disjunctions, universal quantifiers, and
existential quantifiers. The effects are encoded as a list of predicates added to the current
state or deleted from the state upon the execution.

We may specify conditional effects, also called if-effects, whose outcome depends on the
state. An if-effect is defined by its conditions and actions. If the conditions hold, the effect
changes the state according to its actions. Otherwise, it does not affect the state.

The effect conditions are represented by a logical expression in the same way as operator
preconditions; however, their meaning is somewhat different. If the preconditions of an
operator do not hold in the state, the operator cannot be executed. On the other hand, if
the conditions of an if-effect do not hold, we can execute the operator, but the if-effect does
not change the state. The actions of an if-effect are predicates, to be added to the state or
deleted from the state; that is, their encoding is identical to unconditional effects.

In Figure 1, we give an example of a simple domain; its syntax differs slightly from the
prodigy language [Carbonell et al., 1992] for the purpose of better readability. The domain
includes two types of objects, Package and Place, and the Place type has two subtypes, Town

and Village. We use types to limit the allowed values of variables in the operator description.
A truck carries packages between towns and villages. The truck’s fuel tank is sufficient

for only one ride. Towns have gas stations, so the truck can refuel before leaving a town.
On the other hand, villages do not have gas stations; if the truck comes to a village without
a supply of extra fuel, it cannot leave. To avoid this problem, the truck can get extra fuel
in any town. If a package is fragile, it always gets broken during loading. We can cushion a
package with soft material, which removes the fragility and prevents breakage.

5

<pack>: type Package
<place>: type Place

unload(<pack>, <place>)

Eff:

Pre: (in-truck <pack>)
(truck-at <place>)

Place

Type Hierarchy

VillageTown

Package

<pack>: type Package
<place>: type Place

(truck-at <place>)

load(<pack>, <place>)

Eff:

Pre: (at <pack> <place>)

<to>: type Place
(truck-at <from>)

leave-town(<from>, <to>)

Pre:

Eff:

<from>: type Town
<to>: type Place

leave-village(<from>, <to>)

Pre:

Eff:

<from>: type Village

(extra-fuel)
(truck-at <from>)

(truck-at <place>)
Eff:

fuel(<place>)
<place>: type Town
Pre:

cushion(<pack>)

Eff:

<pack>: type Package

add (extra-fuel)

del (in-truck <pack>)
add (at <pack> <place>)

add (truck-at <to>)
del (truck-at <from>)add (truck-at <to>)

del (truck-at <from>)

(if (fragile <pack>)
add (broken <pack>))

del (at <pack> <place>)
add (in-truck <pack>)

del (fragile <pack>)

Figure 1: Encoding of a simple trucking world in the prodigy domain language. The Trucking
Domain is defined by a hierarchy of object types and a library of six operators.

A planning problem is defined by a list of objects, an initial state, and a goal statement.
The initial state is a set of literals, whereas the goal statement is a condition that must
hold after executing a plan. A solution is a sequence of instantiated operators that can
be executed from the initial state to achieve the goal. We give an example of a problem in
Figure 2; the task is to deliver two packages from town-1 to ville-1. We may solve it as follows:
“load(pack-1,town-1), load(pack-2,town-1), leave-town(town-1,ville-1), unload(pack-1,ville-1),
unload(pack-2,ville-1).”

2.2 Incomplete plans

Given a problem, most planners begin with the empty plan and modify it until a solution is
found. Examples of modifications include adding an operator, instantiating or constraining
a variable in an operator, and imposing an ordering constraint. The intermediate sets of
operators are called incomplete plans, and we view them as nodes in the search space. Each
modification of a current incomplete plan gives rise to a new node, and the number of possible
modifications determines the branching factor of search.

Researchers have explored a variety of structures for representing an incomplete plan.
For example, it may be a sequence of operators [Fikes and Nilsson, 1971] or a partially
ordered set [Tate, 1977]. Some planners fully instantiate the operators, whereas others
use the unification of operator effects with goals [Chapman, 1987]. Some systems mark
relations among operators by causal links [McAllester and Rosenblitt, 1991], and others do
not explicitly maintain these relations.

6

pack-1, pack-2: type Package

ville-1: type Village
town-1: type Town

Set of Objects

Goal Statement

(at pack-2 ville-1)
(at pack-1 ville-1)

ville-1

town-1

(at pack-2 town-1)
(truck-at town-1)

(at pack-1 town-1)

Initial State

ville-1

Figure 2: Encoding of a problem in the Trucking Domain, which includes a set of objects, an initial
world state, and a goal statement. The task is to deliver two packages from town-1 to ville-1.

gap

I C G

State State
Current

Statement
GoalInitial

head-plan tail-plan

Figure 3: Representation of an incomplete plan. It consists of a total-order head-plan, which
can be executed from the initial state, and a tree-structured tail-plan constructed by a backward
chainer. The current state C is the result of applying the head-plan operators to the initial state I.

The prodigy system also solves a problem by adding operators and constraints to the
initially empty plan. In prodigy, a plan consists of two parts: a total-order head-plan
and tree-structured tail-plan (see Figure 3). The root of the tail-plan’s tree is the goal
statement G, the other nodes are fully instantiated operators, and the edges are ordering
constraints.

The tail-plan is built by a backward chainer, which starts from the goal statement and
adds operators, one by one, to achieve goal literals and preconditions of previously added
operators. When the algorithm adds an operator to the tail-plan, it instantiates the op-
erator, that is, it replaces all the variables with specific objects. The preconditions of a
fully instantiated operator are a conjunction of literals; every literal in this conjunction is
an instantiated predicate.

The head-plan is a sequence of instantiated operators that can be executed from the initial
state. It is generated by an execution-simulating algorithm, described in Section 2.3. The
simulated execution of the head-plan transforms the initial state I into a new state C, called
the current state. In Figure 4, we illustrate an incomplete plan for the example problem.

Since the head-plan is a total-order sequence of operators that do not contain variables,
the current state C is uniquely defined. If the tail-plain operators cannot be executed from
the current state C, then there is a “gap” between the head-plan and tail-plan, and the
purpose of planning is to bridge this gap. For example, we can bridge the gap in Figure 3
by a sequence of two operators: “load(pack-2,town-1), leave-town(town-1,ville-1).”

7

gap

(pack-2,
unload

ville-1)

unload

ville-1)
(pack-1,

(at pack-1

(at pack-2
ville-1)

ville-1)

Current StateInitial State

town-1)

town-1)
(at pack-2

(truck-at

(in-truck
pack-1)

(pack-1,
load

town-1)

town-1)

town-1)

(at pack-1
town-1)

(at pack-2

(truck-at

Goal Statement

Figure 4: Example of an incomplete plan in the Trucking Domain. The head-plan consists of a
single operator, load; the tail-plan comprises two unload operators, linked to the goal literals.

I C G
x

y
zs

I Cs G
x

y
z

t
I s GzC’x y

Adding an operator to the tail-plan Applying an operator (moving it to the head-plan)

Figure 5: Modifying an incomplete plan. prodigy either adds a new operator to the tail-plan tree
(left), or moves one of the previously added operators to the head-plan (right).

2.3 Simulating execution

Given an initial state I and a goal statement G, prodigy begins with the empty plan and
modifies it until it finds a solution. The initial incomplete plan has no operators, and its
current state is the same as the initial state, C = I.

At each step, prodigy can modify the current plan in one of two ways (see Figure 5).
First, it can add an operator to the tail-plan (operator t in Figure 5) to achieve a goal literal
or a precondition of another operator. This tail-plan modification is a job of the backward-
chaining algorithm, described in Section 2.4. Second, prodigy can move some operator
from the tail-plan to the head-plan (operator x in Figure 5), if its preconditions are satisfied
in the current state C. This operator becomes the last in the head-plan, and the current
state is updated to account for its effects.

Intuitively, we may imagine that the system executes the head-plan operators in the
real world, and it has already changed the world from the initial state I to the current
state C. If the tail-plan contains an operator whose preconditions are satisfied in C, then
prodigy applies this operator and further changes the state. Because of this analogy with
real-world changes, moving an operator to the head-plan is called the application of the
operator; however, this term refers to simulating the application. Even if the execution of
the head-plan is disastrous, the world does not suffer: the planner backtracks and tries an
alternative execution sequence.

When the system applies an operator to the current state, it begins with the deletion
effects and removes the corresponding literals from the state. Then, it performs the addition

8

Goal Statement

(at pack-1
ville-1)ville-1)

(truck-at

pack-2)
(in-truck

pack-1)
(in-truck

ville-1)
(truck-at

unload

ville-1)
(pack-1,

(pack-2,
unload

ville-1)

(at pack-2
ville-1)

Current State

town-1)
(at pack-2

town-1)
(truck-at

pack-1)
(in-truck

town-1)
(at pack-2

town-1)
(truck-at

load

town-1)
(pack-2,

Figure 6: Example of a tail-plan for a trucking problem. First, the backward chainer adds the two
unload operators to achieve the goal literals. Then, it inserts load to achieve the precondition
(in-truck pack-2) of unload(pack-2,ville-1).

of new literals. Thus, if the operator adds and deletes the same literal, the net result is
adding it to the state. For example, suppose that the current state includes the literal (truck-

at town-1), and prodigy applies leave-town(town-1,town-1), whose effects are “del (truck-at

town-1)” and “add (truck-at town-1).” The planner first removes this literal from the state
description, and then adds it back. If prodigy processed the effects in the opposite order,
it would permanently remove the truck’s location, thus getting an inconsistent state.

An operator application is the only way of updating the head-plan. The planner never
inserts a new operator directly into the head-plan, which means that it uses only goal-relevant
operators in the forward chaining. The search terminates when the head-plan achieves the
goals, that is, the goal statement G is satisfied in C. If the tail-plan is not empty at that
point, it is dropped.

2.4 Backward chaining

We next describe the backward-chaining procedure that constructs the tree-structured tail-
plan. When the planner invokes this procedure, it adds a new operator to the tail-plan for
achieving either a goal literal or a precondition of another tail-plan operator. Then, it estab-
lishes a link from the newly added operator to the achieved literal and adds the corresponding
ordering constraint. For example, if the plan is as shown in Figure 4, the procedure may add
load(pack-2,town-1) to achieve the precondition (in-truck pack-2) of unload(pack-2,ville-1) (see
Figure 6). If the planner uses an if-effect to achieve a literal, then the effect’s conditions are
added to the preconditions of the instantiated operator.

prodigy tries to achieve a literal only if it is not true in the current state C and has not
been linked to any tail-plan operator. Unsatisfied goal literals and preconditions are called
subgoals. For example, the tail-plan in Figure 6 has two identical subgoals, marked by italics.

Before inserting an operator into the tail-plan, prodigy fully instantiates it, that is,
substitutes all variables with specific objects. Since prodigy allows disjunctive and quanti-
fied preconditions, instantiating an operator may be a difficult problem. The system uses a
constraint-based matching procedure that generates all possible instantiations [Wang, 1992].

For example, suppose that the backward chainer uses an operator load(<pack>,<place>)

to achieve the subgoal (in-truck pack-2) (see Figure 7). prodigy instantiates the variable
<pack> with the object pack-2 from the subgoal literal, and then it has to instantiate the

9

load

ville-1)
(pack-2, pack-2)

(in-truckload

town-1)
(pack-2, pack-2)

(in-truck

load

<place>)
(<pack>, pack-2)

(in-truck

Figure 7: Instantiating a newly added operator. If the set of objects is as shown in Figure 2,
prodigy can generate two alternative versions of load for achieving the subgoal (in-truck pack-2).

other variable, <place>. Since the domain has two places, town-1 and ville-1, the variable
has two possible instantiations, which give rise to different branches in the search space
(Figure 7).

In Figure 8, we summarize the search algorithm that explores the space of possible plans.
The Operator-Application procedure builds the head-plan and maintains the current state,
whereas Backward-Chainer constructs the tail-plan.

The algorithm includes five decision points, which give rise to different branches of the
search space. It can backtrack over the decision to apply an operator (Line 2a) and over the
choice of an “applicable” tail-plan operator (Line 1b). It also backtracks over the choice of
a subgoal (Line 1c), an operator that achieves it (Line 2c), and the operator’s instantiation
(Line 4c). We summarize the decision points in Figure 9.

The first two choices (Lines 2a and 1b) enable the planner to consider different orderings of
operators in the head-plan. These choices are essential for planning with interacting subgoals;
they are analogous to the choice of ordering constraints in least-commitment planners.

2.5 Main versions

The algorithm in Figure 8 has five decision points, which allow flexible selection of operators,
their instantiations, and the order of their execution; however, these decisions give rise to
a large branching factor. The use of built-in heuristics, which eliminate some choices, may
reduce the search space and improve the efficiency. On the negative side, such heuristics
prune some solutions, and they may direct the search to a suboptimal solution or even
prevent finding any solution. Setting appropriate restrictions on the planner’s choices is a
major research problem.

Although the described algorithm underlies all prodigy versions, from prodigy1 to
flecs, the versions differ in their use of decision points and heuristics. Researchers inves-
tigated different trade-offs between flexibility and reduction of branching. They gradually
increased the number of available decision points from two in prodigy1 to all five in flecs.

The versions also differ in some features of the domain language, in the use of learning
modules, and in the low-level implementation of search mechanisms. We do not discuss these
differences; the reader may learn about them from the review article by Veloso et al. [1995].

10

Base-prodigy

1a. If the goal statement G is satisfied in the current state C, then return the head-plan.
2a. Either

(i) Backward-Chainer adds an operator to the tail-plan, or
(ii) Operator-Application moves an operator from the tail-plan to the head-plan.

Decision point: Choose between (i) and (ii).
3a. Recursively call Base-prodigy on the resulting plan.

Operator-Application
1b. Pick an operator op in the tail-plan, such that

(i) there is no operator in the tail-plan ordered before op, and
(ii) the preconditions of op are satisfied in the current state C.

Decision point: Choose one of such operators.
2b. Move op to the end of the head-plan and update the current state C.

Backward-Chainer
1c. Pick a literal l among the current subgoals.

Decision point: Choose one of the subgoal literals.
2c. Pick an operator op that achieves l.

Decision point: Choose one of such operators.
3c. Add op to the tail-plan and establish a link from op to l.
4c. Instantiate the free variables of op.

Decision point: Choose an instantiation.
5c. If the effect that achieves l has conditions,

then add them to the operator preconditions.

Figure 8: Foundations of the prodigy planner. The Operator-Application procedure simulates
execution of operators, whereas Backward-Chainer selects operators relevant to the goal.

2a. Decide whether to apply an operator

Base-PRODIGY

operator
apply add new

operator

1c. Choose an unachieved literal1b. Choose an operator to apply

4c. Choose an instantiation for
the variables of the operator

that achieves this literal
2c. Choose an operator

Backward-ChainerOperator-Application

or add a new operator to the tail-plan

Figure 9: Decision points of the prodigy algorithm, given in Figure 8. Every decision point allows
backtracking, thus giving rise to multiple branches of the search space.

11

2.5.1 prodigy1 and prodigy2

The early versions of prodigy had only two backtracking points: the choice of an operator
(Line 2c in Figure 8) and the instantiation of the selected operator (Line 4c). The other three
decisions were based on fixed heuristics, which did not give rise to multiple search branches.
The algorithm preferred operator application to adding new operators (Line 2a), applied
the tail-plan operator that had been added last (Line 1b), and achieved the first unsatisfied
precondition of the last added operator (Line 1c). This algorithm generated suboptimal
solutions and sometimes failed to find any solution.

For example, consider the prodigy2 search for the problem in Figure 2. The planner
adds unload(pack-1,ville-1) to achieve (at pack-1 ville-1), and load(pack-1,town-1) to achieve
the precondition (in-truck pack-1) of unload (see Figure 10a). Then, it applies load and
adds leave-town(town-1,ville-1) to achieve the precondition (truck-at ville-1) of unload (Fig-
ure 10b). Finally, prodigy applies leave-town and unload (Figure 10c), thus bringing
only one package to the village.

Since the algorithm uses only two backtracking points, it does not consider loading two
packages before the ride or getting extra fuel before leaving the town; thus, it fails to solve
the problem. This example demonstrates that prodigy2 system incomplete; that is, it may
fail on a problem that has a solution. The user may improve the situation by providing
domain-specific control rules that enforce different choices of subgoals in Line 1c. Note that
prodigy2 does not backtrack over these choices, and an inappropriate control rule may
cause a failure. This approach often improves the performance; however, it requires the user
to assume the responsibility for completeness and plan quality.

2.5.2 nolimit and prodigy4

During the work on nolimit, Veloso added two more backtracking points, delaying the
application of tail-plan operators (Line 2a) and choosing a subgoal (Line 1c); later, prodigy4
inherited these points. On the other hand, prodigy4 makes no decision in Line 1b; it always
applies the last added operator. The absence of this decision point does not rule out any
solutions, but it may negatively affect the search time.

For instance, if we use prodigy4 to solve the problem in Figure 2, it may generate the
tail-plan in Figure 11, where the numbers show the order of adding operators. We could now
solve the problem by applying the two load operators, the leave-town operator, and then
both unload operators; however, the planner cannot use this order. It applies leave-town
before one of the load operators, which leads to a deadend. It then has to backtrack and
construct a new tail-plan that allows the right order of applying the operators.

2.5.3 flecs

The flecs planner has all five decision points, but it does not backtrack over the choice of
a subgoal (Line 1c), which means that only four points give rise to multiple search branches.
Since backtracking over these points may produce an impractically large space, Veloso and
Stone [1995] implemented general heuristics that further limit the space.

12

town-1)
(pack-1,
loadtown-1)

(at pack-1

(a)

town-1)
(pack-1,
load

town-1)

(truck-at
ville-1)

(at pack-1

(at pack-2

ville-1)

Current State

(pack-1,
unload

ville-1)
(town-1,

leave-
town

ville-1)
(c)

FAILURE

town-1)
(at pack-2

Current State

town-1)
(pack-1,
load

(b) (town-1,

leave-
town

ville-1)
(truck-at
town-1)

(in-truck
pack-1)

(truck-at
town-1) (pack-1,

unload

ville-1)

(at pack-1
ville-1)

(at pack-2
ville-1)

Goal
Statement

(truck-at
ville-1)

(in-truck
pack-1)

(pack-1,
unload

ville-1)

(at pack-1
ville-1)

(at pack-2
ville-1)

Goal
Statement

(truck-at
ville-1)

(in-truck
pack-1)

(truck-at
town-1)

Initial State

(at pack-1
town-1)

town-1)

(truck-at
town-1)

(at pack-2

Figure 10: Incompleteness of prodigy2. The planner fails to solve the trucking problem in
Figure 2. Since prodigy2 always prefers the operator application to adding new operators, it
cannot load both packages before driving the truck to its destination.

They experimented with two versions of the flecs planner, savta and saba, which
differ in their choice between adding an operator to the tail-plan and applying an operator
(Line 2a). savta prefers to apply tail-plan operators before adding new ones, whereas saba
tries to delay their application.

Experiments have shown that the greater flexibility of prodigy4 and flecs usually has
an advantage over prodigy2, despite the larger branching factor. The relative effectiveness
of prodigy4, savta, and saba depends on a specific domain, and the choice among them
is often essential for performance [Stone et al., 1994].

3 Extended domain language

The prodigy domain language is an extension of the strips language [Fikes and Nilsson,
1971]. The strips planner used a limited description of operators, and prodigy researchers
added several advanced features, including complex preconditions and goal expressions (Sec-

13

town-1)
(pack-2,
loadtown-1)

(pack-2,
unload

ville-1)(truck-at
ville-1)

pack-2)
(truck-at
town-1)

(at pack-2

(pack-1,
unload

ville-1)(truck-at
ville-1)

(in-truck
pack-1)town-1)

(pack-1,
loadtown-1)

(at pack-1

town-1)

(town-1,

leave-
town

ville-1)

(truck-at
town-1)

(truck-at

4

1

(at pack-1
ville-1)

(at pack-2
ville-1)

Goal
Statement

2

3

5 (in-truck
applied
first

applied
second

Initial State

(at pack-1
town-1)

town-1)

(truck-at
town-1)

(at pack-2

Figure 11: Example of inefficiency in prodigy4. The boldface numbers, in the upper right corners
of operators, mark the order of adding operators to the tail-plan. Since prodigy4 always applies
the last added operator, it tries to apply leave-town before one of the load operators, which leads
to a deadend and requires backtracking.

Goal Statement

(b) Existential quantification.

(exists <pack> of type Package
(at <pack> ville-1))

(forall <pack> of type Package
(at <pack> ville-1))

Goal Statement

(a) Disjunction. (c) Universal quantification.

<pack>: type Package
<place>: type Place

cushion(<pack>, <place>)

Pre:

Eff:

(in-truck <pack>))
(or (at <pack> <place>)
(truck-at <place>)

del (fragile <pack>)

Figure 12: Examples of disjunction and quantification in prodigy. The user may utilize them in
precondition expressions and goal statements.

tion 3.1), inference rules, (Section 3.2), and flexible use of object types (Section 3.3).

3.1 Extended operators

The prodigy language allows complex logical expressions in operator preconditions, if-effect
conditions, and goal statements. They may include not only negations and conjunctions, but
also disjunctions and quantifications. The language also enables the user to specify the costs
of operators, which serve as a measure of plan quality.

3.1.1 Disjunctive preconditions

To illustrate disjunction, we consider a variation of the cushion operator, given in Fig-
ure 12(a). In this example, we can cushion a package when it is inside or near the truck.

When prodigy instantiates an operator that has disjunctive preconditions, it generates
an instantiation for one element of the disjunction and discards all other elements. For

14

example, if the planner has to cushion pack-1, it may choose the instantiation (at pack-1

town-1), which matches (at <pack> <place>), and discard the other element, (in-truck <pack>).
If the initial choice does not lead to a solution, the planner backtracks and considers the

instantiation of another element. For instance, if the selected version of cushion has proved
inadequate, prodigy may discard the first element of the disjunction, (at <pack> <place>),
and choose the instantiation (in-truck pack-1) of the other element.

3.1.2 Quantified preconditions

We illustrate the use of quantifiers in Figures 12(b) and 12(c). In the first example, the
planner has to transport any package to ville-1. In the second example, it has to deliver all
packages.

When the planner instantiates an existential quantifier, it selects one object of the spec-
ified type. For example, it may decide to deliver pack-1 to ville-1, thus replacing the goal in
Figure 12(b) by (at pack-1 ville-1). If it does not lead to a solution, prodigy backtracks and
tries another object. When instantiating a universally quantified expression, the planner
treats it as a conjunction over all matching objects.

3.1.3 Instantiated operators

The prodigy language allows arbitrary logical expressions, which may contain multiple lev-
els of negations, conjunctions, disjunctions, and quantifications. When adding an operator to
the tail-plan, prodigy generates all possible instantiations of its preconditions and chooses
one of them. If the planner backtracks, it chooses an alternative instantiation. Every in-
stantiation is a conjunction of literals, some of which may be negated; it has no disjunctions,
quantifications, or negated conjunctions.

Wang [1992] designed an advanced algorithm for generating possible instantiations of
operators and goal statements. In particular, she developed a mechanism for pruning incon-
sistent choices of objects and provided heuristics for selecting the most promising instantia-
tions.

3.1.4 Costs

The use of costs allows measuring the plan quality. We assign nonnegative numerical costs
to operators and define a plan cost as the sum of its operator costs. The lower the cost, the
better the plan.

The authors of the original prodigy architecture did not provide support for costs, and
they usually measured the plan quality by the number of operators. Pérez [1995] implemented
costs during her exploration of control knowledge for improving the plan quality; however,
she did not incorporate costs into the main version. Fink [1999] re-implemented the cost
mechanism during his work on automatic representation changes.

In Figure 13, we give an example of cost encoding. For every operator, the user specifies
a Lisp function, whose arguments are operator variables. Given specific objects, the function
returns the corresponding cost, which must be a nonnegative real number. If the cost is the

15

leave-town(<from>, <to>)
<from>: type Town
<to>: type Place

. . .

Cost: leave-cost(<from>,<to>)

4 3))

(defun leave-cost (<from> <to>)
(+ (* 0.2 (miles <from> <to>)) 5))

(defun load-cost (<place>)
(if (eq (type-name (object-type <place>)) ’Village)

(c) Actual Lisp functions.

<pack>: type Package
<place>: type Place

load(<pack>, <place>)

. . .

Cost: load-cost(<place>)

cushion(<pack>)

. . .
<pack>: type Package

5Cost:

(a) Use of cost functions and constant costs.

leave-cost(<from>,<to>)
+ 5..0.2

(<place>)
If <place> is of type Village,

then return 4; else, return 3.

Return

load-cost

miles(<from>,<to>)

(b) Pseudocode for the cost functions.

Figure 13: Encoding of operator costs. The user may specify a constant cost or, alternatively,
a Lisp function that inputs operator variables and returns a nonnegative costs. If an operator
description does not include a cost, prodigy assumes that it is 1.

same for all instantiations of an operator, it may be specified by a number rather than a
function. If the user does not encode a cost, then by default it is 1.

The example in Figure 13(a) includes two cost functions, called leave-cost and load-cost.
We give pseudocode for these functions (Figure 13b) and their real encoding in prodigy
(Figure 13c). The cost of driving between two locations is linear in the distance, determined
by the miles function. The user may specify distances by a matrix or by a list of initial-state
literals, and she should provide the appropriate look-up procedure. The loading cost depends
on the location type; it is larger in villages. Finally, the cost of the cushion operator is
constant.

When the planner instantiates an operator, it calls the corresponding function to deter-
mine the cost of the resulting instantiation. If the returned value is negative, the system
signals an error. Since plans consist of fully instantiated operators, the planner can determine
the cost of every intermediate plan.

3.2 Inference rules

The prodigy language supports two mechanisms for changing the current state: operators
and inference rules. They have identical syntax but differ in semantics. Operators encode
actions that change the world, whereas rules point out implicit properties of the world.

3.2.1 Example

In Figure 14, we show three inference rules for the Trucking Domain. In this example, we
have made two modifications to the original domain (see Figure 1). First, the cushion

16

PlacePackage County

VillageTown

Eff: add (truck-in <county>)

<place>: type Place
<county>: type County

(within <place> <county>)
Pre: (truck-at <place>)

Inf-Rule add-truck-in(<place>, <county>)
<pack>: type Package

(within <place> <county>)
Eff:

Pre: (at <pack> <place>)

add (in <pack> <county>)

<place>: type Place
<county>: type County

Inf-Rule add-in(<pack>, <place>, <county>)

Type Hierarchy

cushion(<pack>)

Eff:

<pack>: type Package
add (cushioned <pack>)

not (cushioned <pack>)
Eff:

<pack>: type Package
Pre:

add (fragile <pack>)

Inf-Rule add-fragile(<pack>)

Figure 14: Encoding of inference rules in prodigy. These rules point out indirect results of
changing the world state; their syntax is identical to that of operators.

(within
town-1
county-1)

town-2
county-2)

(within

Initial State

town-1)
(truck-at

(town-1,
leave-town

town-2)
town-1)

(truck-at (town-2,
add-truck-in

county-2)

(truck-at
town-2)

county-2)
town-2

(within
(truck-in

county-2)

Goal Statement

Figure 15: Use of an inference rule in backward chaining. prodigy links the add-truck-in rule
to the goal literal and then adds leave-town to achieve the rule’s precondition (truck-at town-2).

operator adds (cushioned <pack>) instead of deleting (fragile <pack>), and the add-fragile rule
indicates that uncushioned packages are fragile.

Second, the domain includes the type County and the predicate (within <place> <county>).
We use the add-truck-in rule to infer the county of the truck’s current location. For
example, if the truck is at town-1, and town-1 is within county-1, then the rule adds (truck-in

county-1). Similarly, we use add-in to infer the current county of each package.

3.2.2 Use of inferences

The encoding of inference rules is the same as that of operators, which may include disjunc-
tions, quantifiers, and if-effects; however, the rules have no costs, and they do not affect the
overall plan cost.

The use of inference rules is also similar to that of operators: the planner adds an
instantiated rule to the tail-plan, for achieving the selected subgoal, and applies the rule
when its preconditions hold in the current state. We illustrate it in Figure 15, where the
planner uses the add-truck-in rule to achieve the goal, and then adds leave-town to achieve

17

(town-2,
add-truck-in

county-2)
(town-2,
leave-town

town-3)
(town-1,
leave-town

town-2)

town-3)
(truck-at

(within . . .)
(within . . .)
(within . . .)

Current State

(within
town-1
county-1)

town-3
county-3)

(within

town-2
county-2)

(within

town-1)
(truck-at

Initial State

(town-2,
add-truck-in

county-2)
(town-1,
leave-town

town-2)

(truck-in
county-2)

town-2)
(truck-at

(within . . .)
(within . . .)
(within . . .)

Current State

(b)

(a)

Figure 16: Cancelling the effects of an inference rule upon the negation of its preconditions. When
prodigy applies leave-town(town-2,town-3), it negates the precondition (truck-at town-2) of the
add-truck-in rule; hence, it removes the effects of this rule from the current state.

the rule’s precondition.
If the system applies an inference rule and later adds an operator that invalidates the

rule’s preconditions, then it removes the rule’s effects from the state. For example, the
inference rule in Figure 16(a) adds (truck-in town-2) to the state. If the system then applies
leave-town (Figure 16b), it negates the preconditions of add-truck-in and cancels its
effects. This semantics differs from operators, whose effects remain in the state, unless
deleted by opposite effects of other operators.

3.2.3 Eager and lazy rules

The Backward-Chainer algorithm selects rules at its discretion and may disregard unwanted
rules. On the other hand, if some rule has an undesirable effect, it should be applied
regardless of the planner’s choice. For example, if pack-1 is not cushioned, the system should
immediately add (fragile pack-1).

When the user encodes a domain, she has to mark all rules that have unwanted effects.
When the preconditions of a marked rule hold in the current state, the system applies it at
once, even if it is not in the tail-plan. The marked inference rules are called eager rules,
whereas the others are lazy rules. Note that Backward-Chainer may use both eager and lazy
rules, and the only special property of eager rules is their forced application in the matching
states.

18

3.2.4 Truth maintenance

When prodigy applies an operator or inference rule, it updates the current state and then
identifies the previously applied rules whose preconditions no longer hold. If the system finds
such rules, it modifies the state by removing their effects. Next, prodigy looks for an eager
rule whose conditions hold in the resulting state. If the system finds such a rule, it applies
the rule and further changes the state.

If inference rules interact with each other, this process may involve a chain of rule appli-
cations and cancellations. It terminates when the system gets to a state that does not require
applying a new eager rule or removing the effects of old rules. This chain of state modifica-
tions does not involve search; it is similar to the firing of productions in the soar system
[Laird et al., 1986; Golding et al., 1987]. Blythe designed a truth-maintenance procedure
that keeps track of all applicable rules and controls this forward chaining.

If the user provides inference rules, she has to ensure that the inferences are consistent.
In particular, a rule must not negate its own preconditions. If two rules may be applied
in the same state, they must not have opposite effects. If a domain includes several eager
rules, they should not cause an infinite cyclic chain of forced applications. prodigy does
not check for such inconsistencies, and inappropriate rules may cause unpredictable results.

3.3 Complex types

We have already described a type hierarchy (see Figure 1), which defines object classes and
enables the user to limit the allowed values of variables. For example, the possible values of
the <from> variable in leave-town include all towns, but not villages. The early versions of
prodigy did not support a type hierarchy. Veloso designed a typed domain language during
her work on nolimit, and the authors of prodigy4 further developed this language.

A type hierarchy is a tree, whose nodes are called simple types. For instance, the hierarchy
in Figure 1 has five simple types: Package, Town, Village, Place, and the root type that includes
all objects. We have illustrated the use of simple types; however, they often do not provide
sufficient flexibility. For example, consider the hierarchy in Figure 17 and suppose that the
truck may get extra fuel in a town or city, but not in a village. We cannot encode this
constraint with simple types, unless we define an additional type. The prodigy language
includes a mechanism for specifying complex constraints through disjunctive and functional
types.

3.3.1 Disjunctive types

In Figure 17, we illustrate a disjunctive type that determines the possible values of the
variables <from> and <place>. The user specifies a disjunctive type as a set of simple types;
in the example, it includes Town and City. When the planner instantiates the corresponding
variable, it uses an object that belongs to any of these types. For instance, the planner may
use leave-town for departing from a town or city.

19

(truck-at <place>)
Eff:

fuel(<place>)
<place>: type (or Town City)
Pre:

add (extra-fuel)

PlacePackage

TownCity Village

Type Hierarchy

<to>: type Place
(truck-at <from>)

leave-town(<from>, <to>)

Pre:

Eff:

<from>: type (or Town City)

add (truck-at <to>)
del (truck-at <from>)

County

Figure 17: Disjunctive type. The <from> and <place> variables are declared as (or Town City),
which means that they may be instantiated with objects of two simple types, Town or City.

(b) Pseudocode for the function.

(c) Actual Lisp function.

(truck-at <from>)

leave-town(<from>, <to>)

Pre:

Eff:

<from>: type (or Town City)

add (truck-at <to>)
del (truck-at <from>)

<to>: type Place
connected(<from>,<to>)

(<from>, <to>)
If <from> = <to>,

then return False;
else, return True.

(a) Use of a functional type.

(defun connected (<from> <to>)

connected

(not (eq <from> <to>)))

Figure 18: Functional type. When prodigy instantiates leave-town, it ensures that <from> and
<to> are connected by a road. The user has to implement a boolean Lisp function for testing the
connectivity. We give an example function that defines the fully connected graph of roads.

3.3.2 Functional types

In Figure 18, we give an example of a functional type that limits the values of the <to>

variable. The description of a functional type consists of two parts: a simple or disjunctive
type and a boolean test function. The system first identifies all objects of the specified simple
or disjunctive type, and then eliminates the objects that do not satisfy the test function.
The remaining objects are the valid values of the declared variable. In the example, the
valid values of <to> include all places that have road connections with <from>. For instance,
if every place is connected with every other place except itself, then we use the test function
given in Figure 18(b). The domain encoding must include a Lisp implementation of this
function, as shown in Figure 18(c).

The boolean function is an arbitrary Lisp procedure whose arguments are operator vari-
ables. The function must input the variable described by the functional type. In addition, it
may input variables declared before this functional type; however, the function cannot input
variables declared after it. For example, we use the <from> variable in limiting the values
of <to>; however, we cannot use the <to> variable as an input to a test function for <from>

because of the declaration order.

20

3.3.3 Use of test functions

When the planner instantiates a variable with a functional type, it identifies all objects of the
specified simple or disjunctive type, prunes the objects that do not satisfy the test function,
and then selects an object from the remaining set. If the user specifies not only functional
types but also control rules, which further limit suitable instantiations, then the generation
of instantiated operators becomes a complex matching problem. Wang [1992] investigated
it and developed an efficient matching algorithm.

Test functions may use any information about the current incomplete plan, other nodes
in the search space, and the global state of the system, which allows unlimited flexibility in
constraining operator instantiations. In particular, they enable the user to encode functional
effects, that is, operator effects that depend on the current state.

3.3.4 Generator functions

The system also supports generator functions in the specification of variable types. These
functions generate and return a set of allowed values, instead of testing the available values.
The user has to specify a simple or disjunctive type along with a generator function. When
the system uses the function, it checks whether all returned objects belong to the specified
type and prunes the extraneous objects.

In Figure 18, we give an example that involves both a test function, called positive, and a
generator function, decrement. In this example, the system keeps track of the available space
in the trunk. If there is no space, it cannot load packages. We use the generator function
to decrement the available space after loading a package. The function always returns one
value, which represents the remaining space.

When the user specifies a simple or disjunctive type for a generator function, she may
define a numerical type that includes infinitely many values. For instance, the Trunk-Space

type in Figure 18 may comprise all natural numbers. On the other hand, the generator
function always returns a finite set. The prodigy manual [Carbonell et al., 1992] contains
a more detailed description of infinite types.

4 Search control

The planning efficiency depends on the search space and the order of expanding nodes of the
space. The nondeterministic prodigy algorithm in Figure 8 defines the search space, but it
does not specify the exploration order. It has several decision points (see Figure 9), which
require heuristics for selecting appropriate branches of the space.

The prodigy architecture includes a variety of search-control mechanisms, which com-
bine general heuristics, domain-specific experience, and advice by the user. Some basic
mechanisms are hard-coded into the system; however, most heuristics are optional, and the
user can enable or disable them.

We outline some control techniques, including heuristics for avoiding redundant search
(Section 4.1), main knobs for adjusting the search strategy (Section 4.2), and control rules
(Section 4.3). The reader may find an overview of other control techniques in the article by

21

PlacePackage

TownCity Village

County

Type Hierarchy

objects
0 4321

Trunk-Space

<pack>: type Package

Pre: (at <pack> <place>)

(if (fragile <pack>)
add (broken <pack>))

del (at <pack> <place>)

load(<pack>,<place>,

<new-space>: type Trunk-Space

<old-space>: type Trunk-Space
<place>: type Place

positive(<old-space>)

decrement(<old-space>)

(truck-at <place>)

Eff:

(space-left <old-space>)

add (in-truck <pack>)
del (space-left <old-space>)
add (space-left <new-space>)

<old-space>,<new-space>)

Test Function

If <old-space>
positive

then return True;
else, return False.

(<old-space>)
> 0,

Actual Lisp Functions

(defun decrement (<old-space>)
(assert (not (= <old-space> 0)))
(list (- <old-space> 1))

(defun positive (<old-space>)
(> <old-space> 0)

Generator Function

If
(<old-space>)decrement

then signal an error;
else, return {

<old-space>

<old-space>

= 0,

- 1 }.

Figure 19: Generator function. The user provides a Lisp function, called decrement, that generates
instantiations of <new-space>; they must belong to the specified type, Trunk-Space.

Blythe and Veloso [1992], which explains dependency-directed backtracking, limited look-
ahead, and heuristics for choosing appropriate subgoals and instantiations.

4.1 Avoiding redundant search

We describe three basic techniques for eliminating redundant branches of the search space,
which are hard-coded into the planner.

4.1.1 Goal loops

We first present a mechanism that prevents prodigy from running in simple circles. To
illustrate it, consider the problem of delivering pack-1 from town-1 to ville-1 (see Figure 20).
The planner first adds unload(pack-1,ville-1), and then tries to achieve its precondition (in-

truck pack-1) by load(pack-1,ville-1); however, the precondition (at pack-1 ville-1) of load is
identical to the goal, and achieving it is as difficult as solving the original problem.

22

(pack-1,
ville-1)

unload

(truck-at
ville-1)

(in-truck
pack-1)load

(pack-1,
ville-1)(truck-at

ville-1)

Initial State Goal

ville-1)
(at pack-1

Statement

town-1)
(at pack-1

(truck-at
town-1)

ville-1)
(at pack-1

Figure 20: Goal loop in the tail-plan. The precondition (at pack-1 ville-1) of load is the same as
the goal literal; hence, the planner has to backtrack and choose another operator.

l
l

x

z
y

Figure 21: Detection of goal loops. The backward changer compares the precondition literals of a
newly added operator z with the links between z and the goal statement. If some precondition l is
identical to one of the link literals, the planner backtracks.

We call it a goal loop, which arises when a precondition of a newly added operator is
identical to the literal of some link on the path from this operator to the goal statement. We
illustrate it in Figure 21, where thick links mark the path from a new operator z to the goal.
The precondition l of z makes a loop with an identical precondition of x, achieved by y.

When the planner adds an operator to the tail-plan, it compares the operator’s precondi-
tions with the links between this operator and the goal. If the planner detects a goal loop, it
backtracks and tries either a different instantiation of the operator or an alternative operator
that achieves the same subgoal. For example, the planner may generate a new instantiation
of the load operator, load(pack-1,town-1).

4.1.2 State loops

The planner also watches for loops in the head-plan, called state loops. Specifically, it verifies
that the current state differs from all previous states. If the current state is identical to some
earlier state (see Figure 22a), the planner discards the current plan and backtracks.

(b) Example of a loop.

I C C

(at pack-1
town-1)

town-1)

(truck-at
town-1)

(at pack-2

town-1)
(pack-1,
load

town-1)
(pack-2,
load

town-1)
(pack-2,
unload

town-1)
(at pack-2

(truck-at
town-1)

(in-truck
pack-1)

town-1)
(at pack-2

(truck-at
town-1)

(in-truck
pack-1)

State
Initial

State
Intermediate

State
Current

(a) State loop.

Figure 22: State loops in the head-plan. If the current state C is the same as one of the previous
states, the planner backtracks. For example, if prodigy applies unload(pack-2,town-1) immedi-
ately after load(pack-2,town-1), it creates a state loop.

23

Initial State

town-1)

(truck-at
town-1)

(at pack-1

(at pack-2

town-1)

pack-2)

pack-1)

(truck-at
ville-1)

(in-truck

(in-truck

Current State

(pack-1,
unload

ville-1)

(town-1,

leave-
town

ville-1)
(pack-2,
unload

ville-1)

(town-1,

leave-
town

ville-1)town-1)
(pack-2,
load

town-1)
(pack-1,
load

(at pack-1
ville-1)

(at pack-2
ville-1)

Goal
Statement

town-1)
(pack-1,
load

(pack-1,
unload

ville-1)
(town-1,

leave-
town

ville-1)

town-1)
(pack-2,
load

(pack-2,
unload

ville-1)
(town-1,

leave-
town

ville-1)

(a)

(b)

Figure 23: Satisfied link. After the planner has applied three operators, it notices that all precon-
ditions of unload(pack-2,ville-1) hold in the current state; hence, it omits the tail-plan operator
leave-town, which is linked to a satisfied precondition of unload.

We illustrate a state loop in Figure 22, where the application of two opposite operators,
load and unload, leads to a repetition of an intermediate state. The planner would detect
this redundancy and either delay the application of unload or use a different instantiation.

4.1.3 Satisfied links

Next, we describe the detection of redundant tail-plan operators, illustrated in Figure 23.
In this example, prodigy is solving the problem in Figure 2, and it has constructed the
tail-plan shown in Figure 23(a). The literal (truck-in ville-1) is a precondition of two different
operators, unload(pack-1,ville-1) and unload(pack-2,ville-1). Thus, the plan includes two
identical subgoals, and the planner adds two copies of leave-town(town-1,ville-1) to achieve
these subgoals.

Such situations arise because prodigy connects each tail-plan operator to only one
subgoal, which simplifies the maintenance of links. When the planner applies an operator,
it skips redundant parts of the tail-plan. For example, suppose that it has applied the two
load operators and one leave-town, as shown in Figure 23(b). The precondition (truck-in

ville-1) of the tail-plan operator unload now holds in the current state, and the planner skips
the tail-plan operator leave-town linked to this precondition.

24

(a)

(b)

x
l

l
y

yx

Figure 24: Identification of satisfied links. prodigy keeps track of all link literals satisfied in the
current state, and disregards the tail-plan operators that support these literals.

When a tail-plan operator achieves a precondition that holds in the current state, we
call the corresponding link satisfied. We show this situation in Figure 24(a), where the
precondition l of x is satisfied, which makes the dashed operators redundant.

The planner keeps track of satisfied links and updates their list after each modification of
the current state. When prodigy selects a tail-plan operator to apply (line 1b in Figure 8)
or a subgoal to achieve (line 1c), it ignores the tail-plan branches that support satisfied links.
Thus, it would not consider the dashed operators in Figure 24 and their preconditions.

If the planner applies the operator x, it discards the dashed branch that supports a
precondition of x (Figure 24b). Note that the planner discards the dashed branch only after
applying x. If it decides to apply some other operator before x, it may delete l, in which
case dashed operators become useful again.

4.2 Knob values

The prodigy architecture includes several knob variables, which allow the user to adjust
the search strategy. Some knobs are numerical values, such as the search depth, whereas
others specify the choices among alternative heuristics.

4.2.1 Depth limit

The user usually limits the search depth, which results in backtracking upon reaching the
pre-set limit. Note that the number of operators in a solution is proportional to the search
depth; hence, limiting the depth is equivalent to limiting the solution length.

After adding operator costs to the prodigy language, Fink provided a knob for limiting
the plan cost. If the system constructs a plan whose cost is greater than the limit, it
backtracks and considers an alternative branch. If the user bounds both search depth and
plan cost, the planner backtracks upon reaching either limit.

The effect of these bounds varies across domains. In some domains, they improve effi-
ciency by preventing a long descent into a branch that has no solutions. In other domains,
they cause an extensive search instead of a fast generation of a suboptimal plan. If the search
space has no solution within the specified bounds, the system fails to solve the problem; thus,
a depth limit may cause a failure on a solvable problem.

25

4.2.2 Time limit

By default, the planner runs until it either finds a solution or exhausts the search space.
If it takes too long, the user may enter a keyboard interrupt to terminate the execution.
Alternatively, she may pre-set a time limit; then, the system interrupts the search upon
reaching this limit. The user may also bound the number of expanded nodes, which causes
an interrupt upon reaching the specified node number.

4.2.3 Search strategies

The planner normally uses a depth-first search and terminates upon finding any solution. The
user has two options for changing this default behavior. First, prodigy allows breadth-first
exploration; however, it is usually much less efficient than the default strategy. Moreover,
some heuristics and learning modules do not work with breadth-first search.

Second, the user may request all solutions to a given problem. Then, the planner explores
the entire search space and outputs all available solutions, until it exhausts the space, gets
a keyboard interrupt, or reaches a time limit. The system also allows search for an optimal
solution. This strategy is similar to the search for all solutions; however, when finding a
new solution, the system reduces the cost bound and then looks only for better plans. If the
planner gets an interrupt, it outputs the best solution found by that time.

4.3 Control rules

The efficiency of a depth-first search depends on the heuristics for selecting appropriate
branches of the search space, as well as on the order of exploring these branches. The
prodigy architecture provides a general mechanism for specifying search heuristics in the
form of control rules. These rules usually encode domain-specific knowledge, but they may
also represent domain-independent techniques.

A control rule is an if-then rule that specifies branching decisions, which may depend
on the current state, subgoals, and other features of the current plan, as well as on the
global state of the search space. The prodigy language provides a mechanism for hand-
coding control rules. In addition, the architecture includes several learning mechanisms for
automatic generation of domain-specific rules. The work on these mechanisms has been one
of the main goals of the prodigy project.

The system uses three rule types, called select, reject, and prefer rules. A select rule points
out appropriate branches of the search space. When its applicability conditions match the
current plan, the rule generates one or more promising choices. For example, consider the
control rule in Figure 25(a). When the planner uses the leave-town operator for moving
the truck to some destination, the rule indicates that the truck should go there directly from
its current location.

A reject rule identifies wrong choices and prunes them from the search space. For in-
stance, the rule in Figure 25(b) indicates that, if prodigy has to load the truck and drive
it to a certain place, then it should delay driving until after loading. Finally, a prefer rule
specifies the order of exploring branches without pruning any of them. For example, we may
replace the select rule in Figure 25(a) with an identical prefer rule, which would mean that

26

and
and

(truck-at <place>) holds in the current state
<place> is of type Town

Then selectinstantiating <from> with <place>

If (truck-at <to>) is the current subgoal
and leave-town(<from>,<to>) is used to achieve it If (truck-at <place>) is a subgoal

Then rejectthe subgoal (truck-at <place>)

and (in-truck <pack>) is a subgoal

(b) Reject Rule(a) Select Rule

Figure 25: Examples of control rules, which encode domain-specific heuristics. The user may
provide rules that represent her knowledge about the domain. Moreover, the system includes
several mechanisms for the automatic construction of control heuristics.

the system should first try going directly from the truck’s current location to the destination,
and it should keep the other options open for later consideration. For some problems, this
rule is more appropriate than the more restrictive select rule.

At every decision point, the planner identifies all applicable rules and uses them to make
appropriate choices. First, it uses an applicable select rule to choose candidate branches
of the search space. If the current plan matches several select rules, the system arbitrarily
chooses one of them. If no select rules are applicable, all available branches become candi-
dates. Then, prodigy applies all reject rules that match the current plan, and prunes every
candidate branch indicated by at least one of these rules. Note that select and reject rules
sometimes prune branches that lead to a solution, and they may prevent the system from
solving some problems.

After pruning inappropriate branches, prodigy applies prefer rules to determine the
order of exploring the remaining branches. If the system has no applicable prefer rules, or
the rules contradict each other, then it relies on general heuristics for the exploration order.

If the system uses numerous control rules, matching of their conditions at every decision
point may take significant time, which sometimes defeats the benefits of the right selec-
tion [Minton, 1990]. Wang [1992] designed several techniques that improve the matching
efficiency; however, the study of the trade-off between matching time and search reduction
remains an open problem.

5 Completeness

A planner is complete if it finds a solution for every solvable problem. This notion does not
involve a time limit, which means that an algorithm may be complete even if it takes an
impractically long time. Although researchers used prodigy in multiple studies of learning
and search, the question of its completeness had remained unanswered for several years, until
Veloso demonstrated the incompleteness of prodigy4 in 1995.

We have further investigated completeness issues and found that all bidirectional planners
have been incomplete. We have identified specific reasons for their incompleteness and
implemented a complete planner by extending prodigy search. We have compared it with
the incomplete system and demonstrated that the extended planner is almost as efficient as
prodigy and solves a wider range of problems.

We have already shown that prodigy1 and prodigy2 do not interleave subgoals and

27

sometimes fail to solve simple problems (see Figure 10). nolimit, prodigy4, and flecs
use a more flexible strategy, and their incompleteness arises less frequently. Veloso and
Stone [1995] proved the completeness of flecs using simplifying assumptions, but their
assumptions hold only for a limited class of domains.

The incompleteness of bidirectional planners is not a major handicap. Since the search
space of most problems is very large, its complete exploration is not feasible, which makes any
planner “practically” incomplete. If incompleteness comes up only in a fraction of problems,
it is a fair payment for efficiency.

If we achieve completeness without compromising efficiency, we get two bonuses. First,
we ensure that the planner solves every problem whose search space is sufficiently small for
complete exploration. Second, incompleteness may occasionally rule out a simple solution
to a large-scale problem, causing an extensive search instead of an easy win. If a planner is
complete, it does not rule out any solutions and finds this simple solution.

The incompleteness of means-ends analysis in prodigy comes from two sources. First,
the planner does not add operators for achieving preconditions that are true in the current
state. Intuitively, it ignores potential troubles until they actually arise. Sometimes, it is too
late, and the planner fails because it did not take measures earlier. Second, prodigy ignores
the conditions of if-effects that do not establish any subgoals. Sometimes, such effects negate
preconditions of other operators, which may cause a failure.

We achieve completeness by adding new branches to the search space. The main challenge
is to minimize the number of new branches in order to preserve efficiency. We describe a
method for identifying the crucial branches, based on the information learned in failed old
branches, and present an extended planner (Sections 5.1 and 5.2). We believe that this
method may prove useful for developing complete versions of other search algorithms.

The full domain language of prodigy has two features that aggravate the completeness
problem (Section 5.3), which are not addressed in the extended planner. First, eager inference
rules may mislead the goal-directed reasoner and cause a failure. Second, functional types
allow the reduction of every computational task to a prodigy problem, and some tasks are
undecidable.

We prove that the extended planner is complete for domains that have no eager inference
rules and functional types (Section 5.4). Then, we give experimental results on the perfor-
mance of the extended planner (Section 5.5). We conclude with a summary of the main
results (Section 5.6).

5.1 Limitation of prodigy means-ends analysis

gps, prodigy1, and prodigy2 were not complete because they did not explore all branches
in their search space. The incompleteness of later means-ends analysis planners has a deeper
reason: they do not try to achieve tail-plan preconditions that hold in the current state.

For example, suppose that the truck is in town-1, pack-1 is in ville-1, and the goal is to
get pack-1 to town-1. The only operator that achieves the goal is unload(pack-1,town-1), so
prodigy begins by adding it to the tail-plan (see Figure 26a). The precondition (truck-at

town-1) of unload is true in the initial state. The planner may achieve the other precondition,
(in-truck pack-1), by adding load(pack-1,ville-1). The precondition (at pack-1 ville-1) of load is

28

(a)

(b)

Goal

(truck-at
town-1) (truck-at

ville-1)
(town-1,

leave-
town

ville-1)

(at pack-1
ville-1)

ville-1)
(pack-1,
load

(in-truck
pack-1)

(truck-at
town-1)

(pack-1,
unload

town-1)
(at pack-1

town-1)

(truck-at
town-1)

(at pack-1
ville-1)

Initial State
Statement

Goal

(at pack-1
town-1)

Initial State
Statement

(truck-at
town-1)

(at pack-1
ville-1)

(truck-at
ville-1)

(at pack-1
ville-1)

(town-1,

leave-
town

ville-1)

Current State

ville-1)
(pack-1,
load

(pack-1,
unload

town-1)

Figure 26: Incompleteness of means-ends analysis in prodigy. The planner does not consider
fueling the truck before applying leave-town(town-1,ville-1). Since the truck cannot leave ville-1
without extra fuel, prodigy fails to find a solution.

true in the initial state, and the other precondition is achieved by leave-town(town-1,ville-1),
as shown in Figure 26(a).

Now all preconditions are satisfied, and the planner’s only choice is to apply leave-town
(Figure 26b). The application leads into an inescapable trap, where the truck is stranded
in ville-1 without fuel. The planner may backtrack and consider different instantiations of
load, but they will eventually lead to the same trap.

To avoid such traps, a planner must sometimes add operators for achieving literals that
are true in the current state and have not been linked with any tail-plan operators. Such
literals are called anycase subgoals. The challenge is to identify anycase subgoals among the
preconditions of tail-plan operators.

A simple method is to view all preconditions as anycase subgoals. Veloso and Stone [1995]
considered this approach in building a complete version of flecs; however, it caused an
explosion in the number of subgoals, leading to gross inefficiency.

Kambhampati and Srivastava [1996b] used a similar approach to ensure the completeness
of the Universal Classical Planner. Their system may add operators for achieving precondi-
tions that are true in the current state, if these preconditions are not explicitly linked to the
corresponding literals of the state. Although this approach is more efficient than viewing all
preconditions as anycase subgoals, it considerably increases branching and often makes the
search impractically slow.

A more effective solution is to use information learned in failed branches of the search
space. Let us look again at Figure 26. The planner fails because it does not add any
operator to achieve the precondition (truck-at town-1) of unload, which is true in the initial
state. prodigy tries to achieve this precondition only when the application of leave-town
has negated it; however, after the application, the precondition can no longer be achieved.

We see that means-ends analysis may fail when some precondition is true in the current
state, but it is later negated by an operator application. We use this observation to identify
anycase subgoals: a precondition or a top-level goal literal is an anycase subgoal if, at some

29

not l l x

l x l x

l is anycasel is not anycase

l x

(d)

(a)

(b)

(c)

Figure 27: Identifying an anycase subgoal. When prodigy adds a new operator x (a), the pre-
conditions of x are not anycase subgoals (b). If some application negates a precondition l of x (c),
the planner marks l as anycase and expands the corresponding new branch of the search space (d).

point of search, an application negates it.
We illustrate a technique for identifying anycase subgoals in Figure 27. Suppose that the

planner adds an operator x, with a precondition l, to the tail-plan (plan a in the Figure 27).
The system creates the branch where l is not an anycase subgoal (plan b). If an application of
some operator negates l and if it was true before the application, then l is marked as anycase
(plan c). If the planner fails to find a solution in this branch, it eventually backtracks to
plan a. If l is marked as anycase, the system creates a new branch, where l is an anycase
subgoal (plan d).

If several preconditions of x are marked as anycase, the planner creates the branch where
they all are anycase subgoals. During the exploration of this new branch, the algorithm may
mark other preconditions of x as anycase. If it again backtracks to plan a, then it creates a
branch where the newly marked preconditions are also anycase subgoals.

We now show how this mechanism works for the example problem. The planner first
assumes that the preconditions of unload(pack-1,town-1) are not anycase subgoals. It builds
the tail-plan shown in Figure 26 and applies leave-town, negating the precondition (truck-at

town-1) of unload. The planner then marks this precondition as anycase.
Eventually, the planner backtracks, creates the branch where (truck-at town-1) is an any-

case subgoal, and uses leave-village(ville-1,town-1) to achieve it (see Figure 28). Then,
it constructs the tail-plan shown in Figure 28, which leads to the solution “fuel(town-

1), leave-town(town-1,ville-1), load(pack-1,ville-1), leave-village(ville-1,town-1), unload(pack-

1,town-1).”
When the planner identifies the set of all satisfied links (Section 4.1), it does not include

anycase links; hence, it never ignores the tail-plan operators that support anycase links. For
example, consider the tail-plan in Figure 28; the anycase precondition (truck-at town-1) of
unload holds in the state, but the planner does not ignore the operators that support it.

We also have to modify the detection of goal loops, described in Section 4.1. For instance,
consider again Figure 28; the precondition (truck-at town-1) of fuel makes a loop with the
identical precondition of unload, but the planner should not backtrack. Since this precon-
dition of unload is an anycase subgoal, it must not cause goal-loop backtracking. We use
Figure 21 to generalize this rule: if the precondition l of x is an anycase subgoal, then the

30

Goal

(in-truck
pack-1)

(truck-at
town-1)

(pack-1,
unload

town-1)
(at pack-1

town-1)

(truck-at
town-1)

(at pack-1
ville-1)

Initial State
Statement

(truck-at
ville-1)

(at pack-1
ville-1)

(town-1,

leave-
town

ville-1) ville-1)
(pack-1,
load

(ville-1,

leave-
village

town-1)
(town-1)
fuel

(truck-at
ville-1)

fuel)
(extra-

(truck-at
town-1)

(truck-at
town-1)

Figure 28: Achieving the subgoal (track-at town-1), which is satisfied in the current state. First,
the planner constructs a three-operator tail-plan, shown by solid rectangles. Then, it applies
leave-town and marks the precondition (truck-at town-1) of unload as an anycase subgoal. Finally,
it backtracks and adds the two dashed operators to achieve this subgoal.

identical precondition of z does not make a goal loop.

5.2 Clobbers among if-effects

We illustrate the other source of incompleteness, the use of if-effects, in Figure 29. The goal
is to load fragile pack-1 without breaking it. The planner adds load(pack-1,town-1) to achieve
(in-truck pack-1). The preconditions of load and the goal “not (broken pack-1)” hold in the
current state (Figure 29a), and the planner’s only choice is to apply load. The application
causes the breakage of pack-1 (Figure 29b), and no further planning improves the situation.
The planner may try other instantiations of load, but they also break the package.

The problem arises because an effect of load negates the goal “not (broken pack-1);” we call
it a clobber effect. The application reveals the clobber, and the planner backtracks and tries
to find an operator that does not cause clobbering. If the clobber effect has no conditions,
backtracking is the only way to remedy the situation.

If the clobber is an if-effect, we can try to negate its conditions [Pednault, 1988a;
Pednault, 1988b]. It may or may not be a good choice; perhaps, it is better to apply
the clobber and then re-achieve the negated subgoal. For example, if we had a means for re-
pairing a broken package, we could use it instead of cushioning. We thus need a new decision
point, where the planner determines whether it should negate a clobber’s conditions.

Introducing this new decision point for every if-effect will ensure completeness, but it may
considerably increase branching. We avoid this problem by identifying potential clobbers
among if-effects. We detect them in the same way as anycase subgoals. An if-effect is
marked as a potential clobber if it actually deletes some subgoal in one of the failed branches.
The deleted subgoal may be a goal literal, an operator precondition, or a condition of an
if-effect that achieves another subgoal. Thus, we again use information learned in failed
branches.

We illustrate the mechanism for identifying clobbers in Figure 30. Suppose that the
planner adds an operator x with an if-effect e to the tail-plan, and that this operator is
added for the sake of its other effects (plan a in Figure 30); that is, e is not linked to a
subgoal. Initially, the planner does not try to negate e’s conditions (plan b). If x is applied
and its effect e negates a subgoal that was true before the application, then the planner
marks e as a potential clobber (plan c). If the planner fails to find a solution in this branch,

31

Initial State

(truck-at

(fragile

(at pack-1

town-1)

pack-1)

town-1) (in-truck
pack-1)

Goal Statement

(pack-1,
load

town-1) not
(broken
pack-1)

(at pack-1

(truck-at

town-1)

town-1)

(a)

(b)

Initial State

(truck-at
town-1)

(at pack-1
town-1)

pack-1)

pack-1)

(fragile

(broken
(fragile
pack-1)

town-1)
(at pack-1

(truck-at
town-1)

(pack-1,
load

town-1)

Goal Statement

pack-1)
(in-truck

not
(broken
pack-1)

Current State

Figure 29: Failure because of a clobber effect. The application of the load operator results in
breaking the package, and no further actions can undo this damage.

do not worry about e

(c)

e
x(b)

ex

(d)
cond
not

e
x

negate e’s conditions

e
x(a)

Figure 30: Identifying a clobber effect. When the planner adds a new operator x (a), it does
not try to negate the conditions of x’s if-effects (b). When applying x, prodigy checks whether
if-effects negate any subgoals that were true before the application (c). If an if-effect e of x negates
some subgoal, the planner marks e as a clobber and adds the corresponding branch to the search
space (d).

32

Initial State

(truck-at

(at pack-1

town-1)

town-1)

(pack-1,
load

town-1)

do not worry about delete the conditions of
(broken pack-1)(broken pack-1)

(pack-1,
load

town-1)

(broken
pack-1)

(pack-1,
load

town-1)
(broken
pack-1)

town-1)

town-1)

(at pack-1

(truck-at
(pack-1,
load

town-1)

(in-truck
pack-1)

Goal Statement

not(broken
pack-1) (broken

pack-1)

(at pack-1

(truck-at

town-1)

town-1)

(fragile
pack-1)

FAILURE

not
(fragile

(pack-1)
cushion

(pack-1,
load

town-1)

pack-1)

Figure 31: Negating a clobber. When load is applied, its if-effect deletes one of the goal literals.
The planner backtracks and adds cushion, which negates the conditions of this if-effect.

it backtracks to plan a. If e is now marked as a clobber, the planner adds the negation
of e’s conditions, cond, to the operator’s preconditions (plan d). If an operator has several
if-effects, the planner uses a separate decision point for each of them.

In the example of Figure 29, the application of load(pack-1,town-1) negates the goal
“not (broken pack-1)” and the planner marks the if-effect of load as a potential clobber (see
Figure 31). Upon backtracking, the planner adds the negation of the clobber’s condition
(fragile pack-1) to the preconditions of load. It uses cushion to achieve this new precondition
and generates the plan “cushion(pack-1), load(pack-1,town-1).”

We have implemented the extended search algorithm, called rasputin1, which achieves
anycase subgoals and negates the conditions of clobbers. Its main difference from prodigy4
is the backward-chaining procedure, summarized in Figure 32. We show its decision points
in Figure 33, where thick lines mark the points absent in prodigy.

5.3 Other violations of completeness

The prodigy system has two other sources of incompleteness, which arise from the advanced
features of the domain language. We have not addressed them, and their use may violate

1The Russian mystic Grigori Rasputin used the biblical parable of the Prodigal Son to justify his de-
bauchery. He tried to make the story of the Prodigal Son as complete as possible, which is similar to our
goal. Furthermore, his name comes from the Russian word rasputie, which means decision point.

33

rasputin-Backward-Chainer
1c. Pick a literal l among the current subgoals.

Decision point: Choose one of the subgoal literals.
2c. Pick an operator or inference rule step that achieves l.

Decision point: Choose one of such operators and rules.
3c. Add step to the tail-plan and establish a link from step to l.
4c. Instantiate the free variables of step.

Decision point: Choose an instantiation.
5c. If the effect that achieves l has conditions,

then add them to step’s preconditions.
6c. Use data from the failed branches to identify anycase preconditions of step.

Decision point: Choose anycase subgoals among the preconditions.
7c. If step has if-effects not linked to l, then:

use data from the failed branches to identify clobber effects;
add the negations of their conditions to the preconditions.

Decision point(s): For every clobber, decide whether to negate its conditions.

Figure 32: Backward-chaining procedure of the rasputin planner. It includes new decision points
(lines 6c and 7c), which ensure completeness of prodigy means-ends analysis.

1c. Choose an unachieved literal

2c. Choose an operator or inference
rule that achieves this literal

6c. Choose anycase subgoals
among its preconditions

7c. For every clobber effect, decide
whether to negate its conditions

3c. Choose an instantiation for
the variables of the selected
operator or inference rule

Figure 33: Decision points of rasputin’s backward-search procedure, given in Figure 32. Thick
lines show the decision points that differentiate it from prodigy (see Figures 8 and 9).

34

(a) Example problem: The truck has to leave county-1.

not (truck-in county-1)

Goal Statement

(b) Application of an inference rule.

Initial State

town-2

(truck-at
town-1)

(within
town-1
county-1)

county-2)

(within

town-2

town-1
county-1)

county-2)

(within

(within
county-1)

(truck-in
town-1)

(truck-at

Current State

(town-1,
add-truck-in

county-1)

Goal Statement

(truck-in
county-1)

not

town-1, town-2: type Town
county-1, county-2: type County

Set of Objects

(within town-1 county-1)
(within town-2 county-2)

(truck-at town-1)
Initial State

Figure 34: Failure because of an eager inference rule. prodigy does not negate the preconditions
of the rule add-truck-in(town-1,county-1), which clobbers the goal.

the completeness of the extended algorithm.

5.3.1 Eager inference rules

If a domain includes eager rules, the planner may fail to solve simple problems. For ex-
ample, consider the rules in Figure 14 and the problem in Figure 34(a), and suppose that
add-truck-in is an eager rule. The truck is initially in town-1, within county-1, and the goal
is to leave this county.

Since the preconditions of add-truck-in hold in the initial state, the system applies
it at once and adds (truck-in county-1), as shown in Figure 34(b). If the planner applied
leave-town(town-1,town-2), it would negate the rule’s preconditions and delete (truck-in

county-1); thus, it would immediately solve the problem.
The planner does not find this solution because it inserts new operators only when they

achieve some subgoal, whereas the effects of leave-town do not match the goal statement.
Since the domain has no operators with a matching effect, the planner terminates with
failure. To summarize, the planner sometimes has to negate the preconditions of eager rules
that have clobber effects, but it does not consider this option.

5.3.2 Functional types

We next show that functional types enable the user to encode every computational decision
task as a prodigy problem. Consider the artificial domain and problem in Figure 35. If
the object obj satisfies the test function, the planner uses the operator op(obj) to achieve the

35

Type Hierarchy

Root-Type

op(<var>)

Eff:

<var>: type Root-Type

add (pred <var>)
test(<var>)

Set of Objects
obj: type Root-Type

Goal Statement
(pred obj)

Figure 35: Reducing an arbitrary decision task to a prodigy problem. The test function is a Lisp
procedure that encodes the decision task. Since functional types allow encoding of undecidable
problems, they cause incompleteness of prodigy search.

goal; otherwise, the problem has no solution.
The test function may be any Lisp program, and it has access to all data in the prodigy

architecture. This flexibility allows the user to encode any decision problem, including unde-
cidable and semi-decidable tasks, such as the halting problem. Thus, we may use functional
types to specify undecidable prodigy problems, and the corresponding completeness issues
are beyond the classical planning.

5.4 Completeness proof

If a domain has no eager inference rules or functional types, the extended planner is complete.
To prove it, we show that, for every solvable problem, some sequence of choices in the
planner’s decision points leads to a solution.

Suppose that a problem has a solution “step1, step2, step3, ..., stepn,” where every step is
either an operator or a lazy inference rule, and that no other solution has fewer steps. We
begin by defining clobber effects, subgoals, and justified effects in the solution plan.

A clobber is an if-effect such that (1) its conditions do not hold in the plan and (2) if
we applied its actions anyways, they would make the plan incorrect.

A subgoal is a goal literal or precondition such that either (1) it does not hold in the
initial state or (2) it is negated by some prior operator or inference rule. For example, a
precondition of step3 is a subgoal if either it does not hold in the initial state or it is negated
by step1. Every subgoal in a solution is achieved by some operator or inference rule; for
example, if step1 negates a precondition of step3, then step2 must achieve it.

A justified effect is the last effect that achieves a subgoal or negates a clobber’s conditions.
For example, if step1, step2, and step3 all achieve some subgoal precondition of step4, then
the corresponding effect of step3 is justified, since it is the last among the three.

If a condition literal in a justified if-effect does not hold in the initial state, or if it is
negated by some prior step, we consider it a subgoal. Note that the definition of such a
subgoal is recursive: we define it through a justified effect, and a justified effect is defined in
terms of a subgoal in some step that comes after it.

Since we consider a shortest solution, each step has at least one justified effect. If we
link each subgoal and each clobber’s negation to the corresponding justified effect, we may
use the resulting links to convert the solution into a tree-structured tail-plan, as illustrated
in Figure 36. If a step is linked to several subgoals, we use any one of these links in the
tail-plan.

36

step 4step 32stepstep 1

2step step 4

step 3step 1

Figure 36: Converting a shortest solution into a tail-plan. We link every subgoal to the last operator
or inference rule that achieves it, and use these links to construct a tree-structured tail-plan.

We now show that the extended algorithm can construct this tail-plan. If no subgoal
holds in the initial state and the solution has no clobber effects, the tail-plan construction
is straightforward. The nondeterministic algorithm creates the desired tail-plan by always
calling Backward-Chainer rather than applying operators, choosing subgoals that correspond
to the links of the desired solution (see Line 1c in Figure 32), selecting the appropriate
operators and inference rules (Line 2c), and generating the right instantiations (Line 4c).

If some subgoal literal holds in the initial state, the planner first builds a tail-plan that
has no operator linked to this subgoal. Then, the application of some step negates the literal,
and the planner marks it as an anycase subgoal. It can then backtrack to the point before
the first application and choose the right operator or inference rule for achieving the subgoal.
Similarly, if the plan has a clobber effect, the algorithm can detect it by applying operators
and inference rules. It can then backtrack to the point before the applications and add the
right step for negating the clobber’s conditions. Note that, even if the planner always makes
the right choice, it may have to backtrack for every subgoal that holds in the initial state
and for every clobber effect.

Eventually, the algorithm constructs the plan consisting of the desired tail-plan and no
head-plan. It can then produce the solution by always deciding to apply, rather than adding
new tail-plan operators, and selecting applicable steps in the right order.

5.5 Performance of the extended planner

We have tested rasputin in three domains and compared it with prodigy4. We present
data on the relative efficiency of the two planners and show that rasputin solves more
problems than prodigy4.

We first give results for the prodigy Logistics Domain [Veloso, 1994]; the task is to
construct plans for transporting packages, by vans and airplanes. The domain consists of
several cities, each of which has an airport and postal offices. We use airplanes for carrying
packages between airports, and vans for delivery within cities. This domain has no if-effects
and does not give rise to situations that require achieving anycase subgoals; thus, prodigy4
performs better than the complete planner.

We ran both planners on fifty problems, which differed in the number of cities, vans,
airplanes, and packages. We randomly generated initial locations of packages, vans, and
airplanes, as well as destinations of packages. The results are summarized in Figure 37(a),
where each plus (+) denotes a problem. The horizontal axis shows prodigy’s running times,
and the vertical axis gives rasputin’s times for the same problems. Since prodigy is faster
on all problems, all pluses are above the diagonal. The ratio of rasputin’s to prodigy’s
time varies from 1.20 to 1.97; its mean is 1.45.

37

0.1 1 10
0.1

 1

10
(a) Logistics Domain.

PRODIGY (CPU sec)

R
A

S
P

U
T

IN
 (

C
P

U
 s

ec
)

0.1 1 10
0.1

 1

10
(b) Trucking Domain.

PRODIGY (CPU sec)

R
A

S
P

U
T

IN
 (

C
P

U
 s

ec
)

Figure 37: Comparison of rasputin and prodigyin the (a) Logistics Domain and (b) Trucking
Domain. The horizontal axes give the search times of prodigy, whereas the vertical axes show
the efficiency of rasputin on the same problems. Pluses (+) and asterisks (∗) mark the problems
solved by both planners, whereas circles (o) are the ones solved only by rasputin.

We have run similar tests in the prodigy Process-Planning Domain [Gil, 1991], which
also does not require negating if-effect conditions or achieving anycase subgoals. The task
is to construct plans for making mechanical parts with specified properties, using available
machining equipment. The ratio of rasputin’s to prodigy’s time in this domain is between
1.22 and 1.89, with the mean at 1.39.

We next show results in an extended version of the Trucking Domain. We now use
multiple trucks and connect towns and villages by roads. A truck can go from one place to
another only if there is a road between them. We have experimented with different numbers
of towns, villages, trucks, and packages. We have randomly generated road connections,
initial locations of trucks and packages, and destinations of packages.

In Figure 37(b), we show the performance of prodigy and rasputin on fifty problems.
The twenty-two problems denoted by pluses (+) do not require clobber negation or anycase
subgoals. prodigy outperforms rasputin on these problems, with a mean ratio of 1.27.

The fourteen problems denoted by asterisks (∗) require the use of anycase subgoals or the
negation of clobbers’ conditions for finding an efficient solution, but can be solved inefficiently
without it. rasputin wins on twelve of these problems and loses on two. The ratio of
prodigy’s to rasputin’s time varies from 0.90 to 9.71, with the mean at 3.69. This ratio
grows with the number of required anycase subgoals.

Finally, the circles (o) show the sixteen problems that cannot be solved without anycase
subgoals and the negation of clobbers. prodigy hits the 10-second time limit on some
problems and terminates with failure on the others, whereas rasputin solves all of them.

5.6 Summary of completeness results

We have developed a new bidirectional planner, by extending prodigy search; the resulting
algorithm is complete for a subset of the prodigy domain language. The full language
includes two features that may violate completeness: eager inference rules and functional

38

types. To our knowledge, the extended algorithm is the first complete planner that uses
means-ends analysis. It is about 1.5 times slower than prodigy4 on the problems that
do not require negating clobbers’ conditions and planning for anycase subgoals; however, it
solves problems that prodigy cannot solve.

We have built the extended planner in three steps. First, we have identified the specific
reasons for incompleteness of previous systems. Second, we have added new decision points
to eliminate these reasons, without significant increase of the search space. Third, we have
implemented an algorithm that explores the branches of the old search space first, and
extends the space only after failing to find a solution in the old space. We conjecture that
this three-step approach may prove useful for enhancing other incomplete planners.

Acknowledgments

We are grateful to Manuela Veloso and Henry Rowley for their valuable comments and
suggestions. The work was sponsored in part by the Wright Laboratory, Aeronautical Sys-
tems Center, Air Force Materiel Command, USAF, and Defense Advanced Research Project
Agency (DARPA) under grant number F33615-93-1-1330.

References

[Blum and Furst, 1997] Avrim L. Blum and Merrick L. Furst. Fast planning through plan-
ning graph analysis. Artificial Intelligence, 90(1–2):281–300, 1997.

[Blythe and Reilly, 1993a] Jim Blythe and W. Scott Reilly. Integrating reactive and deliber-
ative planning in a household robot. In AAAI Fall Symposium on Instantiating Real-World
Agents, 1993.

[Blythe and Reilly, 1993b] Jim Blythe and W. Scott Reilly. Integrating reactive and deliber-
ative planning for agents. Technical Report CMU-CS-93-155, School of Computer Science,
Carnegie Mellon University, 1993.

[Blythe and Veloso, 1992] Jim Blythe and Manuela M. Veloso. An analysis of search tech-
niques for a totally-ordered nonlinear planner. In Proceedings of the First International
Conference on AI Planning Systems, pages 13–19, 1992.

[Borrajo and Veloso, 1996] Daniel Borrajo and Manuela Veloso. Lazy incremental learning
of control knowledge for efficiently obtaining quality plans. Artificial Initelligence Review,
10:1–34, 1996.

[Carbonell and Gil, 1990] Jaime G. Carbonell and Yolanda Gil. Learning by experimenta-
tion: The operator refinement method. In R. S. Michalski and Y. Kodratoff, editors, Ma-
chine Learning: An Artificial Intelligence Approach, pages 191–213. Morgan Kaufmann,
Palo Alto, CA, 1990.

39

[Carbonell et al., 1990] Jaime G. Carbonell, Craig A. Knoblock, and Steven Minton.
prodigy: An integrated architecture for planning and learning. In Kurt VanLehn, editor,
Architectures for Intelligence. Erlbaum, Hillside, NJ, 1990.

[Carbonell et al., 1992] Jaime G. Carbonell, Jim Blythe, Oren Etzioni, Yolanda Gil, Robert
Joseph, Dan Kahn, Craig A. Knoblock, Steven Minton, Alicia Pérez, Scott Reilly,
Manuela M. Veloso, and Xuemei Wang. prodigy4.0: The manual and tutorial. Technical
Report CMU-CS-92-150, School of Computer Science, Carnegie Mellon University, 1992.

[Carbonell, 1983] Jaime G. Carbonell. Learning by analogy: Formulating and generalizing
plans from past experience. In Ryszard S. Michalski, Jaime G. Carbonell, and Tom M.
Mitchell, editors, Machine Learning: An Artificial Intelligence Approach. Tioga Publish-
ers, Palo Alto, CA, 1983.

[Chapman, 1987] David Chapman. Planning for conjunctive goals. Artificial Intelligence,
32:333–377, 1987.

[Cox and Veloso, 1997a] Michael T. Cox and Manuela M. Veloso. Controlling for unexpected
goals when planning in a mixed-initiative setting. In E. Costa and A. Cardoso, editors,
Progress in Artificial Intelligence: Eighth Portuguese Conference on Artificial Intelligence,
pages 309–318. Springer-Verlag, Berlin, Germany, 1997.

[Cox and Veloso, 1997b] Michael T. Cox and Manuela M. Veloso. Supporting combined hu-
man and machine planning: An interface for planning by analogical reasoning. In D. B.
Leake and E. Plaza, editors, Case-Based Reasoning Research and Development: Second In-
ternational Conference on Case-Based Reasoning, pages 531–540. Springer-Verlag, Berlin,
Germany, 1997.

[Etzioni, 1990] Oren Etzioni. A Structural Theory of Explanation-Based Learning. PhD
thesis, School of Computer Science, Carnegie Mellon University, 1990. Technical Report
CMU-CS-90-185.

[Etzioni, 1993] Oren Etzioni. Acquiring search control knowledge via static analysis. Arti-
ficial Intelligence, 62(2):255–301, 1993.

[Fikes and Nilsson, 1971] Richard E. Fikes and Nils J. Nilsson. strips: A new approach to
the application of theorem proving to problem solving. Artificial Intelligence, 2:189–208,
1971.

[Fink and Blythe, 1998] Eugene Fink and Jim Blythe. A complete bidirectional planner. In
Proceedings of the Fourth International Conference on AI Planning Systems, pages 78–84,
1998.

[Fink and Veloso, 1996] Eugene Fink and Manuela M. Veloso. Formalizing the prodigy
planning algorithm. In M. Ghallab and A. Milani, editors, New Directions in AI Planning,
pages 261–271. IOS Press, Amsterdam, Netherlands, 1996.

40

[Fink, 1999] Eugene Fink. Automatic Representation Changes in Problem Solving. PhD
thesis, School of Computer Science, Carnegie Mellon University, 1999. Technical Report
CMU-CS-99-150.

[Gil and Pérez, 1994] Yolanda Gil and Alicia Pérez. Applying a general-purpose planning
and learning architectures to process planning. In Proceedigs of the AAAI 1994 Fall
Symposium on Planning and Learning, pages 48–52, 1994.

[Gil, 1991] Yolanda Gil. A specification of process planning for prodigy. Technical Report
CMU-CS-91-179, School of Computer Science, Carnegie Mellon University, 1991.

[Gil, 1992] Yolanda Gil. Acquiring Domain Knowledge for Planning by Experimentation.
PhD thesis, School of Computer Science, Carnegie Mellon University, 1992. Technical
Report CMU-CS-92-175.

[Golding et al., 1987] Andrew G. Golding, Paul S. Rosenbloom, and John E. Laird. Learning
general search control from outside guidance. In Proceedings of the Tenth International
Joint Conference on Artificial Intelligence, pages 334–337, 1987.

[Haigh and Veloso, 1996] Karen Zita Haigh and Manuela M. Veloso. Interleaving planning
and robot execution for asynchronous user requests. In Proceedings of the International
Conference on Intelligent Robots and Systems, 1996.

[Haigh and Veloso, 1997a] Karen Zita Haigh and Manuela M. Veloso. High-level planning
and low-level execution: Towards a complete robotic agent. Autonomous Agents, 1997.

[Haigh and Veloso, 1997b] Karen Zita Haigh and Manuela M. Veloso. Interleaving planning
and robot execution for asynchronous user requests. Autonomous Robots, 5(1):79–95, 1997.

[Haigh and Veloso, 1998] Karen Zita Haigh and Manuela M. Veloso. Planning, execution
and learning in a robotic agent. In Proceedings of the Fourth International Conference on
AI Planning Systems, pages 120–127, 1998.

[Haigh, 1998] Karen Zita Haigh. Situation-Dependent Learning for Interleaved Planning and
Robot Execution. PhD thesis, School of Computer Science, Carnegie Mellon University,
1998. Technical Report CMU-CS-98-108.

[Joseph, 1992] Robert L. Joseph. Graphical Knowledge Acquisition for Visually-Oriented
Domains. PhD thesis, School of Computer Science, Carnegie Mellon University, 1992.
Technical Report CMU-CS-92-188.

[Kambhampati and Srivastava, 1996a] Subbarao Kambhampati and Biplav Srivastava. Uni-
fying classical planning approaches. Technical Report 96-006, Deptartment of Computer
Science, Arizona State University, 1996.

[Kambhampati and Srivastava, 1996b] Subbarao Kambhampati and Biplav Srivastava. Uni-
versal classical planner: An algorithm for unifying state-space and plan-space planning.
In M. Ghallab and A. Milani, editors, New Directions in AI Planning, pages 261–271. IOS
Press, Amsterdam, Netherlands, 1996.

41

[Knoblock et al., 1991] Craig A. Knoblock, Steven Minton, and Oren Etzioni. Integrating
abstraction and explanation-based learning in prodigy. In Proceedings of the Ninth
National Conference on Artificial Intelligence, pages 541–546, 1991.

[Knoblock, 1993] Craig A. Knoblock. Generating Abstraction Hierarchies: An Automated
Approach to Reducing Search in Planning. Kluwer Academic Publishers, Boston, MA,
1993.

[Laird et al., 1986] John E. Laird, Paul S. Rosenbloom, and Allen Newell. Chunking in Soar:
The anatomy of a general learning mechanism. Machine Learning, 1:11–46, 1986.

[McAllester and Rosenblitt, 1991] David A. McAllester and David Rosenblitt. Systematic
nonlinear planning. In Proceedings of the Ninth National Conference on Artificial Intelli-
gence, pages 634–639, 1991.

[Minton et al., 1989a] Steven Minton, Jaime G. Carbonell, Craig A. Knoblock, Dan R.
Kuokka, Oren Etzioni, and Yolanda Gil. Explanation-based learning: A problem-solving
perspective. Artificial Intelligence, 40:63–118, 1989.

[Minton et al., 1989b] Steven Minton, Dan R. Kuokka, Yolanda Gil, Robert L. Joseph, and
Jaime G. Carbonell. prodigy2.0: The manual and tutorial. Technical Report CMU-CS-
89-146, School of Computer Science, Carnegie Mellon University, 1989.

[Minton et al., 1994] Steven Minton, John Bresina, and Mark Drummond. Total-order and
partial-order planning: A comparative analysis. Journal of Artificial Intelligence Research,
2:227–262, 1994.

[Minton, 1988] Steven Minton. Learning Search Control Knowledge: An Explanation-Based
Approach. Kluwer Academic Publishers, Boston, MA, 1988.

[Minton, 1990] Steven Minton. Quantitative results concerning the utility of explanation-
based learning. Artificial Intelligence Journal, 42:363–391, 1990.

[Newell and Simon, 1961] Allen Newell and Herbert A. Simon. GPS, a program that sim-
ulates human thought. In H. Billing, editor, Lernende Automaten, pages 109–124. R.
Oldenbourg, Munich, Germany, 1961.

[Newell and Simon, 1972] Allen Newell and Herbert A. Simon. Human Problem Solving.
Prentice Hall, Englewood Cliffs, NJ, 1972.

[Pednault, 1988a] Edwin P. D. Pednault. Extending conventional planning tecnhiques to
handle actions with context-dependent effects. In Proceedings of the Seventh National
Conference on Artificial Intelligence, pages 55–59, 1988.

[Pednault, 1988b] Edwin P. D. Pednault. Synthesizing plans that contain actions with
context-dependent effects. Computational Intelligence, 4:356–372, 1988.

42

[Penberthy and Weld, 1992] J. Scott Penberthy and Daniel S. Weld. ucpop: A sound, com-
plete, partial-order planner for ADL. In Proceedings of the Third International Conference
on Knowledge Representation in Reasoning, pages 103–114, 1992.

[Pérez and Carbonell, 1993] M. Alicia Pérez and Jaime G. Carbonell. Automated acquisition
of control knowledge to improve the quality of plans. Technical Report Technical Report
CMU-CS-93-142, School of Computer Science, Carnegie Mellon University, 1993.

[Pérez and Etzioni, 1992] M. Alicia Pérez and Oren Etzioni. dynamic: A new role for
training problems in EBL. In D. Sleeman and P. Edwards, editors, Proceedings of the
Ninth International Conference on Machine Learning, San Mateo, CA, 1992. Morgan
Kaufmann.

[Pérez, 1995] M. Alicia Pérez. Learning Search Control Knowledge to Improve Plan Quality.
PhD thesis, School of Computer Science, Carnegie Mellon University, 1995. Technical
Report CMU-CS-95-175.

[Pohl, 1971] Ira Pohl. Bi-directional search. In Bernard Meltzer and Donald Michie, editors,
Machine Intelligence 6, pages 127–140. American Elsevier Publishers, New York, NY,
1971.

[Stone and Veloso, 1996] Peter Stone and Manuela M. Veloso. User-guided interleaving of
planning and execution. In M. Ghallab and A. Milani, editors, New Directions in AI
Planning, pages 103–112. IOS Press, Amsterdam, Netherlands, 1996.

[Stone et al., 1994] Peter Stone, Manuela M. Veloso, and Jim Blythe. The need for different
domain-independent heuristics. In Proceedings of the Second International Conference on
AI Planning Systems, pages 164–169, 1994.

[Tate, 1977] Austin Tate. Generating project networks. In Proceedings of the Second Inter-
national Joint Conference on Artificial Intelligence, pages 888–900, 1977.

[Veloso and Blythe, 1994] Manuela M. Veloso and Jim Blythe. Linkability: Examining ca-
sual link commitments in partial-order planning. In Proceedings of the Second Interna-
tional Conference on AI Planning Systems, pages 170–175, 1994.

[Veloso and Borrajo, 1994] Manuela M. Veloso and Daniel Borrajo. Learning strategy knowl-
edge incrementally. In Proceedings of the Sixth International Conference on Tools with
Artificial Intelligence, pages 484–490, New Orleans, LA, 1994.

[Veloso and Carbonell, 1990] Manuela M. Veloso and Jaime G. Carbonell. Integrating anal-
ogy into a general problem-solving architecture. In M. Zemankova and Z. Ras, editors,
Intelligent Systems, pages 29–51. Ellis Horwood, Chichester, United Kingdom, 1990.

[Veloso and Carbonell, 1993a] Manuela M. Veloso and Jaime G. Carbonell. Derivational
analogy in prodigy: Automating case acquisition, storage, and utilization. Machine
Learning, 10:249–278, 1993.

43

[Veloso and Carbonell, 1993b] Manuela M. Veloso and Jaime G. Carbonell. Towards scaling
up machinge learning: A case study with derivational analogy in prodigy. In M. Ze-
mankova and Z. Ras, editors, Machine Learning Methods for Planning, pages 233–272.
Morgan Kaufmann, San Mateo, CA, 1993.

[Veloso and Stone, 1995] Manuela M. Veloso and Peter Stone. flecs: Planning with a
flexible commitment strategy. Journal of Artificial Intelligence Research, 3:25–52, 1995.

[Veloso et al., 1995] Manuela M. Veloso, Jaime G. Carbonell, M. Alicia Pérez, Daniel Bor-
rajo, Eugene Fink, and Jim Blythe. Integrating planning and learning: The prodigy
architecture. Journal of Experimental and Theoretical Artificial Intelligence, 7(1):81–120,
1995.

[Veloso et al., 1997] Manuela M. Veloso, Alice M. Mulvehill, and Michael T. Cox. Rationale-
supported mixed-initiative case-based planning. In Proceedings of the Fifteenth National
Conference on Artificial Intelligence, pages 1072–1077, 1997.

[Veloso, 1989] Manuela M. Veloso. Nonlinear problem solving using intelligent casual com-
mitment. Technical Report CMU-CS-89-210, School of Computer Science, Carnegie Mel-
lon University, 1989.

[Veloso, 1994] Manuela M. Veloso. Planning and Learning by Analogical Reasoning.
Springer-Verlag, 1994.

[Wang, 1992] Xuemei Wang. Constraint-based efficient matching in prodigy. Technical
Report Technical Report CMU-CS-92-128, School of Computer Science, Carnegie Mellon
University, 1992.

[Wang, 1994] Xuemei Wang. Learning planning operators by observation and practice. In
Proceedings of the Second International Conference on AI Planning Systems, pages 335–
340, 1994.

[Wang, 1996] Xuemei Wang. Learning Planning Operators by Observation and Practice.
PhD thesis, School of Computer Science, Carnegie Mellon University, 1996. CMU-CS-96-
154.

[Warren, 1974] D. H. D. Warren. warplan: A system for generating plans. Technical
Report Memo 76, Department of Computational Logic, University of Edinburg, 1974.

[Weld, 1994] Daniel S. Weld. An introduction to least commitment planning. AI Magazine,
15(4):27–61, 1994.

[Yang et al., 1996] Qiang Yang, Josh Tenenberg, and Steve Woods. On the implementation
and evaluation of abtweak. Computational Intelligence, 12(2):295–318, 1996.

44

