Artificial Intelligence (CAP 5625)

© Eugene Fink, Valentina Korzhova, Alvin Ntei, Danny Grullon, and Divya Bhadoria

Definitions ofAl:
Automatically performing tasks that require human intelligence (problem solving, games,
discovery, etc.)
Emulating basic human skills (vision, langygaunderstanding, speech recognition, etc.)
Something that has not been done yet
Defined by a list of sub-areas: search, leagnilanguage understanding, vision, etc.
Researchers daot agree on the definition ofl and its main goals.

Two key problems:
Perform complex tasks (ultimately, make the human obsolete)
Perform tasks like human (ultimately, pass the Turing test)

We consider several selected areas.
Search:

Basic search (Chapter 3)

Informed search (Chapter 4)

Games (Chapter 5)

Planning (Chapters 11 and 12)
Learning:

Decision trees (Chapter 18)

Neural networks (Chapter 19)

Reinforcement learning (Chapter 20)

Basic search (Chapter 3)

Review graph algorithms:

Cormen, Leiserson, and Rivestfroduction to algorithms
First edition: Chapter 23, Sections 25.1 and 25.2
Second edition: Chapter 22, Section 24.3

Search is a fundamental methodaof

Intuition: Look through multiple candidate solutions, until one of them turns out a correct
solution. Note that humans also use this method.

Basic search (a.k.a. blind, uninformed, exhawsthrute-force): Define a (very large) space of
candidate solutions, and implement somstegatic procedure for exploring it.

Example 1. Map quest

Given a map, find a route frorA to B.

_||_Fletcher || _ A

g Start fromA and use some graph
B B. .
Dguvsﬁsj [Di [:’» '/ algorithm to look for a path t@.

B Fowler - B
A - Inthe worst case, the time is proportional to the size of the
/ graph:O(V + E)
. .

For a “clever” algorithm, it may be much smaller.
For example, finding a route in Tampa should not be
B proportional to the size of a detailed map of the

Different search types:

Search for the shortest path; it is slow, but finds the best solution

Breadth-first BF9); it is faster, but may not find the best solution

(unless all edges are of the same length)

Depth-first OF9); it is usually faster thasFs, but may produce a very lengthy route

If the map is not stored as a graph, then we neasbtwstruct an explicit graph; however, we may
not need to construct the complete graph. For example, if we search for a path in Tampa, we do
not need the complete map of the.

Idea Build a graph in the process of search. For example, suppose that a fumadsinputs
an intersection and outputs adjacent intersections with distances:
roadqA) = {X (0.5 miles),Y (0.3 miles)}

A X Z
Start atA, call roadqA). '%—r)o(Call roadqX). >

Y Y
A X Z
®

A X Z
Callroadq2).
Callroadqy). v Y
1 A

We have found a route frow to B without building the complete graph of thus (or Tampa).

When we calfoadqA) and getX andY, we say @_» A
that weexpandnodeA andcreatenodesX and.

XY

Example 2: Eight puzze

5[4 Eight square tiles, numbered 1 through 8, and an empty square. We can
6/1]8 slide adjacent tiles into the empty square. In a given position, there are at
7132 most four different moves.
) e g ” 112(3
The goal is to get to a specific final position. g4
The standard final position is: 716]5
|
Construct a graph: S|4 S| 4] |5/114
Positions are nodes 6/118—6/11816| |8—
Moves are edges 7? 2| |7 |3 2 7:|3 2
) 548
Terminology: 61| —
Position is gworld) state 713[2
I

Move is atransitionor operator
Set of all possible states with transitions between thenstate spacémay be huge)

Start from the initial state and keep expanding the space until reaching the goal state.
Seart 5)4

t S initial
ree
7130 state
_—
g - g g ir 8| one-move
2315 71312 positions
2
514(15]1[4(|5]|4 two-move
6l1/8|[6] [8][6[1]8 positions
71312||713]12]|7]3]2

Problem: The search procedure creates dupli¢ates it does not violatcorrectness, but takes
extra time.

We can:
Detect two-move loops (easy) e

Detect longer loops (harder) 0\.\'\‘\0

Detect duplicates in different branche
(requires hashing)

Example 3: n-queen problem

Putn queens on an x n chess board, in such a way that they do not attack each other.
Initial state: No queens on the board

Move: Add one queen

Stupid search: Consider all possible placementsaieens.
Smarter: Put first queen in the first row, second in the second row, etc. '
Even smarter: Each queen takes a separate columnnbpbssibilities. T

Example 4: House cleaning

We need to clean a house, where some places are dirty.
We use a vacuum and can perform the following actions:
- Move to an adjacent location

- Clean the current location

We see dirt only at our current location.

initial (2) since we do not know whether unvisited locations are dirty, each node in the
stateri @ e search space corresponds teetof world states.

clean¢
e Although we do not know which locations are dirty, we can develop a plan
; . that is guaranteed to work. It is more effective to develop a tentative plan and
4

keep re-planning as we explore the world.

move - Planning for all possible situations is called@ntingency problem
£ - Re-planning as we explore the world is callaterleavingsearch and
execution

SummaryA search problem has an initial state, goal description, and transition function. The
task is to find a sequence of actions that leads from the initial state to one of the states that satisfy
the goal description.

When writing a program for solving search problems, we consider several factors:

- Speed of finding the solution (time complexity)

- Memory requirements (space complexity)

- Length of a solution (that is, the number of transitions)

- Quality of a solution (usually measured as the total “cost” of moves, for example, the total
length of a car route)

- Quality of a final state (some goal states that may be better than others)

Desirable properties of search algorithms:

- High speed and low memory

- Completeness: Guarantee to find a solution if one exists

- Optimality (a.k.a. admissibility): Guantee to find an optimal solution

Real-life problems solvable by search:
Map quest, robot navigatiofggistics transportation,
assembly sequence, schedulivigs! layout.

When solving a real-life problem, we need to “forlate” it, that is, define states and transitions.
We “abstract away” most features of the real wloDifferent applications require different

levels of abstraction. For example, we may consider a map on the level of cities (for airplanes),
intersections (for cars), or onedt squares (for robot navigation).

Converting real world into a finite state spaseften a research problem (for example, robot
navigation).

Basic search algorithm (theory, not Al)

A search algorithm explores a directed graphrtstg from a given node. The “frontier” of the
exploration is often called thieinge.

Mark visited nodes:
S—Source . nitially, all nodes are wite (“unexplored”)

- When a node is first discovered, it becomes gray (“fringe”)
O»O»0O After the adjacent nodes afare processedi, becomes black (“explored”)

For each node, we store:

color[u] — white, gray, or black

parenfu] — parent ofu in the search tree
The gray nodes are stored in some fringe structure. Wihemliscovered, it ipainted gray and
added to the fringe. When the adjacent nodes afe processed, it is painted black and removed
from the fringe.

SEARCHGraph, 9)
for each nodel in Graph
do color{u] < WHITE
parer[u] < NIL
color[s] « GRAY
fringe — {s}
while fringeis not empty
do u < “some fringe node”
for eachv adjacent tau
do if color[u] = WHITE
then color[v] < GRAY
parenfv] < u
fringe «— fringe O { v}
colorfu] « BLACK
fringe « fringe — {u}

A Bzs C Fringe:B

S AE
E
OO0 CF
D E F F

Note that the algorithm does not distinguishvee¢n gray and black nodes; the difference is only
for the explanation.

Al terminology:
. Graph is the state space or search space
- Parent pointers form the search tree
. Black nodes are expanded

Gray nodes are newly created; they are leaves of the search tree

White nodes are not explicitly representétky are “somewhere” in the state space

Al is different from theory: Explored part is

A graph is huge and there is no explicit representationB }
“ 'O artially) explicit
it is expanded in the process of search A E (P) exp

B

The search algorithm may create many copies of
the same node and add them to the search tree E

F
The search usually terminates after findangode that satisfies certain conditions, without
exploring the whole graph. For example it terminates after finding some solution e the
gueen problem

The search may proceed from several nodes in parallel

The search time depends on three main factors:
Branching factor bthat is, the (mean) numberA
of children of a node in the search tree
Search depth dhat is, the length of the path g
from the source node to the goal node
Time per node

Breadth-first search

The fringe in the search algorithm is a queBEQ); 1 S 2
thus, the oldest fringe node is expanded first. If the 3 4 526
solution is at deptld, the algorithm explores all nodes
with depth <d and some nodes with depdh 7 8 9 1

b? -1

Number of “<d” nodes: 1 +b + b? +...+ b = 1
Total number of 8 ” nodes:b*

d _ d _
Number of explored nodesb:b—1 <N< b -1

+b% thus,N = ©(b%.

For example, consider eighteen-move Rubic’s cube solution:
B=12,d=18,b"=12"¥=2.710" (a lot)

The search takes not on®(b®) time, but als®(b%) memory, which is even worse.

Advantages:

Easy to implement

Guaranteed to find a solution (“complete”)
Drawbacks:

Impractically slow

Prohibitive memory requirements

Best-first (a.k.a. uniform-cost) search

For each node, determine tsst,that is, the distance from the root,
computed as the sum of edge costs. The cheapest fringe node is
expanded first. The fringe is aiprity queue, which allows fast
identification and deletion of theheapest node. In algorithm theory,
we call it the “Dijkstra” algorithm.

Number of nodes is about the same aBHs; per-node time is larger since extracting the
cheapest node from the fringe takes nonconstant time.

Advantages

Guaranteed to find a solution (“complete”)

Finds the best (i.e. cheapest) solution (“optimal,” a.k.a. “admissible”)
Drawbacks

Even slower thamFs

Same memory requirementsBes

Depth-first search

The fringe is a stack (FO), and the newest fringe node
is expanded first. If the algorithm runs into a deadend, 3

it backtracks and considers a different branch. deadend
D,
The running time depends on many factors,
including luck. For a deptlsolution, the
algorithm may create frorh - d to many
more tharb® nodes. In particular, it can d

miss an “easy” solution and go into a deep branch.

best case Wworst case

The memory requirements are low: if the length of the expanded pdththen the memory is
O(b- d).

This strategy is good if
there are a lot of solutions deep in the space or
we have some guidance toward a solution

Advantages
Easy to implement
Low memory requirements
Often faster thaBFs
Drawbacks
Low-quality solutions
Usually not complete, that is, may fail on a solvable problem

Depth-limited search

Depth-first search that backirks upon reaching a certain depth, ﬁr?l?tth

Alternatively, it can backtrack upon reaching a cost limit.

Advantages
Easy to implement
Low memory requirements
Guaranteed to find a solution within depth limit (if any)
Guaranteed to terminate
Drawbacks
Low-quality solutions
Does not find a solution if it is beyond depth limit

| terative deepening

Repeat depth-limited search multiple times, N\
with successively increasing depth limit. limit =1
limit=2 imit=3
This search is equivalent &Fs, but it needs little memory.
d
Number of visited node®(b) + ®(b?) + O(b*) +...+ O(b%) = O(bb

+1 p
=0(bY);
—)=00)
thus, the running time is almost the samesgs.

To summarize, it is an “improvesFs.”

Alternatively, it can iterate on cost limit, which makes it near-equivale BesrS.

Bidirectional search
Start from both ends and continue search until initial goal
state

meeting in the middle. If the standard search state
takes@(bd) time, then the bidirectional search may
take as little a®(2 - b¥?) = ©(b¥%). The memory i®(b¥?), which is often impractically high
requirement.

Main problems:
Need to know the exact goal state
Need to have an efficient mechanism for comparing fringes

Summary

Uninformed search works only for small problems

Running time is the main bottleneck for large problems
Different search techniques ariéextive for different problems;
there is no “universally effective” search

| nformed search (Chapter 4)

Idea: Consider likely solutions before unlikely ones; for example:
If a key is lost, look in the pockéefore looking in the microwave
When trying to reach the downtown, move in the direction of the largest building

The hardest part is to find funotis for evaluating candidate stitins. The second hardest part is
to use them wisely, as even the best functions are only estimates. For example, the “move toward
the largest building” function may lead to a deadend.

The functions for guiding the search are calfelristic functionsand a search algorithm that
uses them is calledlzeuristic searchThese functions estimate tdestance to a goal

Examples:
The straight distance on the map is an estimate of the driving distance
The number of misplaced tiles in the eight puzzle is an estimate of the solution length

General ideaSearch in the direction of reducing the estimate function.
Greedy search

For each fringe node, estimate its distance to thed,gand expand the closest node. The distance
estimate is called heuristic functionThis search is similar tBFSandBes¥s, but it usually
takes less time.

Advantages:
Usually faster than uniformed search
Solution quality isOK (but not the best)
Usually complete (but not always)
Drawback:
Prohibitive memory requirements

Famous A* (impractical foundations of Al)

n
For each node, determine 2 3 -4
- distance from the initial state, denotg(h) startg’ _. o
estimated distance to the goal, dendiéa) gin)=5 downtown
The estimated cost of a pattiroughthe node is h(n) =4
f(n) = g(n) + h(n). Estimated path cost:
fn=5+4=9

For example, consider Map quest.
g(n) is the shortest known path to location
h(n) is the straight distance to the goal, which is an estimate of the path length

Expand the fringe node with the smallégt), that is, the shortest path through it.

The strategy helps to search for a near-optimal solution; howewuers ot an accurate estimate,
then the solution may not be optimal.

If h alwaysunderestimatethe distance, then it is called admissibleneuristic function. For
example, the straight-line distance always unsi@meates the shortest paffhe search algorithm
that expands the smallestodeanduses an admissibleis called A*,

If the branching is finite and the edge costs have a positive lower bound, then A* is complete and
optimal (a.k.a. admissible). Witkeveral semi-reasonable asgiions, it is proved to be the
most efficient among optimal algorithms.

A good heuristic function should ungestimate the actual distance to the goal, but be close to the
actual distance. The more accurate the h&arithe smaller the numbef expanded nodes. At
the same time, it must be efficiently computable.

For example, suppose that we are searchingfaute in Tampa (or Manhattan), where all
streets are “vertical” or “horizontal.”

! - Good heuristic: Straight distance, easy to compute
Very good heuristic: Manhattedistance, easy to compute
% . Perfect but impractical heuristicxgact path length, hard to compute
Advantages:

Complete and admissible

Faster than uniformed search
Drawback:

Prohibitive memory requirements

| terative deepening A* (a.k.a. IDA*)

IDA* is similar to the iterative deepening algorithm, with the depth-, O limit8
bound determined bfycost. It searches all nodes up to soitest g 7 X
limit, and then increases the limit, repeating this increase until tfe_*~

solution is found. It increases the depth limit to the minifrebst 5
of nodes outside the explored region. In our example, we increase

thef-cost limit to 8.5. This algorithm is similar to Abut it requires little space.

11

If the increments of depth limit arsmall (e.g. 8.0, 8.5, 8.8, 8.9, ..IpA* may re-expand the

space too many times. In the worst case, it may re-expand the space for each new node. We may
avoid this problem by increasing the bound in larger steps, but then we lose admissibility. For
example, suppose that we fix someost and increase ttiecost limit to “minimalf-cost outside

the explored region” €. Then, we get a near-optimal solution that is withiftom the optimal.

SMA*: Combination of A* andDA*, which usesll available memory to improve efficiency; it
keeps part of the search tree in memory, and re-expands the other parts.

10

Constructing heuristics

We need heuristic estimates that are close to actual path costs; good heuristics are crucial for the
efficiency.

Some ideas:

Count the number of featuresbe corrected; for example:

- Number of out-of-place pieces in the eight puzzle (estimate of the solution length)

- Number of known bugs in the codestimate of the debugging time)

Measure “distances;” for example: .

- Straight distances on a map (estimate of the route length)

- Distance of each tile in the eight puzzle from its proper place
(the sum of these distances is an estimate of the solution lengthgistance 3

Number of moves in a “relaxed” problem, tha, a simplified problem with additional

transitions; for example:

- Eight puzzle where tiles can move over each other; the solution length in this simple puzzle
is an estimate for the actual solution length

- City map where we disregard traffic lights

Pre-computed distances for some states; for example:

- Pre-compute all states of the eight puzzle that are within three moves from the goal

- Pre-compute distances froosFto major intersections

=

If we have several admissible heuristibg, h,, ..., hi, we can combine them by taking the
maximum:
h(n) = max(u(n), hx(n), ..., h(n)).
For example, suppose thatis the time of straight-line drivingto h,, faster car
the goal, andh, is the time of actual driving by a faster car, known Q
from past experience. Then, theunistic underestimate of driving hy

time ish = max(y, hy). goal

Sometimesf of a node may be smaller th&of its parent. For example, f=g+h

you drive a mile toward the downtown, and suddenly it appears two 5S+6=11
miles closer. We say that such a heuristic ismathotonic A better 6+4=10
monotonicf can be constructed as follows: B

f'(n) = max(f(n), f'(parengn))). / parent[n]

For example: 5+6=11 n
1

max(6 + 4, 11) =11

Example Admissible search for Rubik’s cube (Korf).
The cube consists of two “sub-puzzles”: Cers and sides. The “sides” state space has
12! [P*?/ 2 nodes, and the “corners” space ha&®!/ 6 nodes. We can construct an explicit
graph for each space, and compute exact distém the goal for each node, which gives two
admissible heuristics:

Distance in the “sides” space, denotad

11

Distance in the “corners” space, denoted
In addition, we can compute all states within certain number of moves
from the goal; for example, eight moves give rise to abodtstates.
Thus, we get a third heuristic, denotieg

If the state is within the expanded spabegis the exact distance

If not, h;=9
Combined heuristidh = maxy, hy, hs); runIDA* with it.

goal

| terative improvement

Suppose that we search for a state rathan a path (e.g. 8-queen problevas| design), and
need to find a sufficiently good state. We havéauefunction that evaluates the quality of a
state, and we need to find a state such Wealtigstatg = Threshold or Valugstatg is “as large
as possible.”

For example, consider the 8-queen problem.
Valugstatg = — “number of attacked queens”
Threshold=0 Value

Intuition: Search space is a landscape, ®iatlieis
the altitude of a state. We need to find a high point.

Hill-climbing
Start in a random place
Go uphi!l until reaching a hilltop ' . 6 . Always go to the
Repeat if necessary (when the hilltop is too low) child with the

If the highest child is the same as the node, keep goiAd. s 8 highest value

£ | 9 1 6 - If all children are

xample: strictly smaller

Start with an inefficient program for the homework 5%2 14 han t¥1e current

Keep improving as much as you can
If the result is not good enough, start all over
Unlike greedy search, hill-climbing does not keep the search tree.

19 18 16 hode, then stop.

Problems:
Local maximayandom re-starts may or may not help
Plateauxmay cause a random walk
Ridgesmay cause oscillation without progress, even if they slope up to a hilltop

Advantages:

Simple

Little memory
Drawback:

Limited applicability

12

Simulated annealing

This algorithm is a modification of hill-climbig based on an analogy with random fluctuations

in a cooling liquid. If the cooling process is slow, the liquid freezes in a low-energy state.

We allow random steps in the beginning of hilinebing, and gradually rduce their probability.
The algorithm uses simulated temperature, which gradually decreases.

ANNEALING
current — initial state
T < initial temperature
whileT>0
do next — random successor ofirrent
A ~ Valugnex) —Valugcurreni
ifA>0
then current — next
else with probabilitye®’”, current — next
T — decreased

Slow decrease OF gives better results, but it requiramiger search. The algorithm is more
effective than hill-climbing, but its applicability is also limited.

Games (Chapter 5)

History:
. Checkers:
- Samuel’'s program, 1952
- Schaeffer’'s Chinook: lost to Tinsley in 1992; became the world champion in 1994
Chess:
- Condon and Tompson'’s Belle reached the master level in 1982
- Campbell and Hsu’s Deep Though / Deep Blue became the world champion in 1997
Backgammon:
- Tesauro’s TD-Gammon program became one of the top three players in 1992
Go game is still unsolved

We consider two-player games:
Players take turns making moves
Their goals are opposite
Usuallyzero-sumthat is, the gain of the first player is equal to the loss of the second

Games model a competition withothmplexities of the real world. When playing a game, the
computer cannot construct a complete soluplan since it does not know the opponent’s
moves. Instead, it uses somsteategy which determines its move in each possible position.
A game is defined by:

Initial state

13

- Operators for changing the state (a.k.a. legal moves)

. Termination test for determining end-game states (for example, check-mate in chess)

. Utility function (a.k.a. payoff @inction) that determines the “quality” of each end-game state
for the first player (for example, in chess, +1, 0y, in poker, the final profit)

The first player, callediaX, tries to maximize the utility function; the second player, caed,
tries to minimize it. If the playes have enough time to explore the complete search tree of a
game, they can find a perfect strategy, that is, an optimal strategy for playing against an
opponent who also has an optimal strategy.

For example, consider the Tic-Tac-Toe tree:

The utility of a node in the search tree is equal to
the utility of the leaf that will be reached if both
players use a perfect strategy. In other words, a
T~ node’s utility isu if MAX can ensure that the end-
game utility is at leasti, andMIN can ensure that it
is at mostu.

Given enough time, we can use a bottom-up
technique to compute the utility of each node.

/

X|Of x X|1O| X X|Of X%
X|[O OO x Ol X | X
le) X Ol x|O
-1 1 0
As another example, consider a three-level game tree:
MAX g
4 In this example, iMAX uses an optimal
MIN B strategy, it will win at least 3. IMIN uses an
MAX 5 6 optimal strategy, it will lose at most 3.

-6 5 -4 3-6 213-3-46-32

The algorithm for computing utilities is callediNIMAX . The knowledge of utilities allows
players to select optimal moves.

In practice, we cannot expand a completeMAX
tree. Instead, we “cut” the search at somemIN
depth and apply an evaluation functionto 4% . A M2 OA
estimate the utility. Then, we us@NIMAX o ' St AR
to propagate the estimates to the root. If an
estimate function is accurategwisually select the best move, although the computed utility is
not exact.

unexplored part

The role of a utility estimate is similar to the role of théunction in A*: accurate estimates are
essential. Estimates are usually weighted linear functions of theviarfa + wy f, + ... + wy f,,
wherefy,..., f, are features of a state, ang, ..., w, are weights representing their importance.

14

features| weight
A good evaluation function should give an average estimate for all positiorfieen 9
with identical feature$, ..., f,. Good feature sets should identify positions rook 5
that have close utilities. For example, features of a chess position include the
available pieces and their interactions. Features must be selected by a hupg@in 1
expert; weights can be learned by the computer. castling| 0.5
Problems:

Evaluations should be applied onlydqaiescenpositions, where features cannot significantly
change in the next move; for example, opponent cannot capture the queen

The algorithm should account for therizon problemthat is, threatening moves by the
opponent that can be delayed but not avoided

Alpha-Beta Search
Sometimes, we can discard a hodeheilt considering all its children.

Idea If we already know that some move

is worse than another move, we do not needvAX
to know how bad it actually is. For example,pn
if we know that some chess move will causg, ,
at leastthe loss of a rook, we skip it and
consider another move.

-4 3 -6 -3 4
skip the rest of the search

General picture:

MAX
u

MAX S U Skip this move, since there
MIN is a better alternative.

Same oiviIN, with the opposite inequality.
During the depth-first search, we keep two values:

o is the best alternative fanax
B is the best alternative fonN

MAX a is the maximum of all circle nodes with known values
,':AA'IA'\;(B is the minimum of all square nodes with known values
MIN
MAX MAX . . MAX

. TR oSS
If MAX's is choice< a, or MIN’s 29 P MIN .
choice is> 3, skip it. In other words, if <-1,skipit SB=1
if some subtree is outside] 3], skip it. if =1, skip it

15

Game search algorithm:

MAX-VALUE (state a, B)

if CUTOFHstatg > depth limit?

then return EVAL (statg > apply evaluation function

for each successarof state

doa — max(@, MIN-VALUE (S, d,)
if a>p > MIN will not go here

then return 3 > prune the branch

return o

MIN-VALUE (state a, B)
if CUTOFHstatg

then return EVAL (statg
for each successarof state

do 3 « min(3, MAX-VALUE (s, a, B))

ifB<a
then return a
return 3

For the top-level callpt = —c0o and3 = +oo.
Note thata < 3 at all times; the actual value of a node is betwaeand[3

If the program usually guesses an optimal move and considers it first, then it quickly narrows the
[a, B] interval and skips poor moves. If guessin@lmost always correct, the branching factor is

reduced fronb to./b, and the algorithm can search twice deeper in the same amount of time.

To make good guesses:
Use simple heuristics

Run a preliminary search with smaller depth

Element of chance

MAX
CHANCE
MIN

CHANCE
MAX 6 4

6 4 234

Some games include random choice; for example, backgammon
and card games. We add random-choice nodes to the game tree.
The utility of a random-choice node is determined as the mean
utility of its children.

If different children have different probabilities, W3
we need to compute the weighted mean; for 6 ' E g
example, 0.56+0.25+0.3[4 =5.2.

16

If branching factor of random choice is small, we can apulyiMAX , but the depth is very low
for both computers and human players. Thel@athon function must allow averaging; this
requirement is different from no-chancengas, where the function needs to show only the
relative quality of nodes.

Example:
MAX MAX
MIN CHANCE
0 6 5 30100 5 ¢ 0 6 5 301005 ¢
same move different moves

If branching of random choice is large (for example, cards)mingMAX algorithm is
impractically slow. An alternative technique is reinforcement learning.

Some nontraditional approaches to games:

. Goal-directed reasoning (for exampthow to capture the opponent’s queen”)

- Recognition of standard situations and appropriate actions (for example, castling, pawn
patterns, pieces in the right places)

- Meta-reasoning: Utility of different search branches, choice among different strategies

Planning (Chapter 11 and Prodigy reading)

The task is to find a sequence of steps that leads to a certain desired situation.
Historical motivation: Planning gh-level actions of Shakey the RobeRj, early 70s).

Other examples:

- Plan a sequence of scientific experiments
- Schedule machine-shop operations

. Plan the delivery obbpspackages

- Plan military operations

Basic search algorithms, such@&s or IDA* from the initial state, are impractically slow.
We need a representation that allows dividingpalgnto subgoals, seléng operators relevant
to the goal, and reasoning abquibperties of operators.

Two main approaches:

- Domain-specific systems, with specialized ad-hoc techniques
- General systems, which are re-usable but inefficient

Some systems are in-between.

Problems:

- Representing the world state

- Describing actions and goals

. Generating appropriatequences of actions

17

Trade-off:
If a representation is simg)] hard to describe the world
If it is complex, hard to plan efficiently

Simple STRIPS representation

The world is a collection of literals:

1{A® | B , door(L2) robotin(3)
3| A door(2, 3) _mA 1)
® |n(B, 2)
Rooms: 1, 2, 3
Boxes: A/B Assume that we know everything relevant about the world.

Closed-world assumptiorif a literal is part of the description, it is true. If not, it is false; for
example, door(1, 3) is false. Thus, we do not explicitly represent negations.

An operator is defined bgreconditionsandeffects with typed variables.

R go(x, y)
-~ | X, Y. room
Xy Pre: robot-inf) C1doorf, y) [+ lockedk, y)

x andy are variables Eff: del robot-ink)
add robot-iny)

push(b, x, y)
b: box
X, Y. room
Pre: robot-inf) in(b, x) Odoorf, y) [+ lockedé, y)
Eff: del robot-ink)

del in(b, X)

add robot-iny)

add inp, y)

Thepreconditionof an operator are a conjunction aklglicates and their negationspeedicate
is a literal with variables. Theffectsare a collection of predicates to be added to or deleted from
the world state.

Operator application:

Applicationmeans a simulation of an operator execution rather than the execution in the real
world. We can apply an operator onfyitis preconditions are satisfied.

18

A goalis a conjunction of literals and negated literals; for example,
robot-in(1)
in(A, 3)0in(B, 3)

Standard extensions

(1) Disjunctions and quantifiers in preconditicausd goals; thus, preconditions and goals may be
arbitrary logical expressions.

go(x, y)

Pre: robot-in) [1(doorf, y) C1doorfy, X))

Goals:
Ob: in(b, 3), which means “move any box to room 3”
O b: in(b, 3), which means “move all boxes to room 3”

(2) Conditional effects

push(b, x, y)
Eff: del...
del...
add...
add...
if fragile(b) [+ packedb)
then add brokeng)

Other extensions

Probabilistic effects: Changes happen with some probability, which depends on the world
state.

Partial world knowledge: We do not have cdete knowledge, and use sensors to learn
more.

Random or hostile changes in the world: Someone else is changing the world state.
Resource constraints: Operators magigsume or produce resources, such as time or
electricity; in addition, operators may have limited capacity, such as ma@rigpxes.

Different planning systems hdle different features, with different degrees of efficiency.

19

Search strategies

Forward search from the initial state
go(l, 227 It works only in very small domains. The branching

12 go(l, 3)\ -+ factor is huge since there are a lot of possible actions,
5 ¥ a3 most of which are irrelevant.
|1 B pust(A, 1, 2)
4
pust(B, 1, 2)

Backward search from the goal

in(A, 2)
" robot-in(2) pusk(B, 2, 3)> (A 3)in(B. 3)

If we consider only goal-relateaperators, this technique is bettean forward search, but the
branching factor is still impractically large.

Goal-directed reasoning

T hUsHA, 1, 2} in(A, 2~

o robot-in(2)-" push(A, 2, 3) in(A, 3)
. in(B, 3)
in(B, 2)~a HB. 2. 3
503, 2)» robot-in(2)- P B: 2

The branching factor is usually small; howewae no longer know the exact world state, which
creates problems:

Different parts of the plan may interfere with each other

—»[go(2, D>

The plan may contain redundant operators

g0(3, 2)—» robot-in(2)—[~]~,
9a(3, 2)— robotin(2—[~1-7

Alternative solutions:
Simulate the execution of some operatansistgaining information about the world state

(Prodigy)
Determine all possible interactions @berators, and impose a partial ordecfop)

20

The relative performance of these techniques depends on a specific domain; neither is
universally bettethan the other.

Prodigy search
initial state

current state

head plan

robot-in(13s{pusk(A, 1, 2}»in(A, 2
GOCZ, T} robotin A 2o gods
ga(3, 2 robot-in(Z)/ in(A, 3)
. in(B, 3)
n(B, 2~ pust(B, 2, f:’»)/v

robot-in(Z)/

tail plan

At each step of planning, we need to make several decisions that determine the next modification
of the current plan:

Decide whether to apply an operator

apply or add a new operator to the tai add a new operator
Choose an Choose some precondition or goa
operator to apply, literal that is not true in the current stgre
Choose an operator that
achieves this literal
v

Choose an instantiation for
the variables of the operatgr

Example:
» Choose a goal

in(A, 2 1> in(A, 3)
robot-in(2Y> pusf(A, 2, 3,

» Choose an operator

Q»robo1-in(2)g,...

21

» Choose an instantiation
go(3, 2)|-=>roborin(2)-—>---

If the planner makes a wrong decision, it may need to backtrack and consider a different
modification of the current plan.

}S>O try a different

modification
M*S}O W@O
|.
does not work: 02 02
backtrack 03 04

does not work:
backtrack

Thus, the planner explores a searchg where each node is a plan. Each possible

modification of a plan is a transition to a new node of the search space. The planner begins with
an initially empty plan and searches the space of plans produced by modifications until
generating a complete plan.

O O The planner performs a depth-first search with a pre-set

depth bound. The user may choose different depth

O IZIO O IZIO bounds for different domains. In addition, the user may
choose a bound on the search time, to avoid long search.

O ':H:'O O @O The planner uses general heuristic rules to choose

promising branches of the search space.
0= =0 0°20

Rule examples:

» Select operators whose preconditions are go(3, 2)|>robo+in(2)-—>:--
satisfied or almost satisfied better thargo(1, 2) because

the robot is in room 3

» Select operators with fewer preconditions go(x, 2)|->roborin(2)->-:-

better tharpush(x, 2) because
go has fewer preconditions

The planner may also use domain-specific if-then rules, calbedirol rules,to select promising
branches.

22

Examples:
» Prefer the inf, X) goal to the robot-inf) goal

work on ths
goal first Ninia, <)
robo-in(1)->"""

* If somepushcan be applied, then apply it beforéding new operators to the tail plan.

robot-in(2 _
push(B, 2, 3]>in(B, 3)> -

robo+in(1)y—=>--
current applypush(B, 2, 3) before
state working on the other goals

Control rules may be provided by thiser of learned automatically.

To reduce the branching factor, we may forbacktracking over some of the decisions.
Different versions of Prodigy backtrack over diféat decisions. For example, Prodigy2 does not
consider different goal choices, and it alway®oses the latest goal. Also, it always prefers an
operator application to adding a new operatorodiyy4 does not consider different choices of
operators to apply, and it always applies khgt added operator. When we forbid some
backtracking, we not only reduce branching fachart also eliminate some solutions, which may
have negative effect. Different limitations on béelcking are effective in different domains.

UCPOp search

* Aplanis a partially order sequence of operators
» The initial state is considered the first operator of the plan
* Some variables in the plan may not be instantiated

robot-in@)x 2 robot-in(2) 2,1
\],

initial 2=

state Y5tin(a, y) in(A 2) =
robot-in(3) pust(A, y, 2) X push(A 2, 3
in(A, 1) + | | >robot-ing obot-in(2)””
in(B, 2) _
door(1, 2) B N e S)

door(2.3)) L—s-roboting) >[gofx 2] =robot-in(2)
X=

Result:go(3, 2),pushB, 2, 3),90(3, 2),g0(2, 1),pushA, 1, 2),pusiA, 2, 3)

23

(1) Adding a new link.

Choose sme preconditions or ga
that is not linked to any operat

Decide whether to link it to on
old operator of the operations in the plan
P y or add a new operator \ hew operator

Choose an old operat Choose a new operatoy,
and link it to the goal add it to the plan,

and link it to the goal

E.9. golX, 2)qgpprobot-in(2)— pusk(A, 2, 3)
link

(2) Resolving threats.
A threatis an operator that may interfere with a link.
E.g. ---—0g0(2, 1)—--

go(X, 2)==p robot-in(2)—»| pust(A, 2, 3)

Every threat must be ordered with respect to the link; that is, if ope@i®a threat folA - B,
thenC must be either befora or afterB.

For each threat to some link, decide
whether it is lefore or after the lin

To summarize, the planner makes three main decisions at each step:

1. Choose a precondition or goal

2. Choose an operator to achieve it

3. Choose an ordering to resolve threats

The planner backtracks over Decisions 2 and 3, but it does not backtrack over Decision 1.

goal choice, one branch
|

operator choice, many branches
| L]

7\ A \Y |resolving threats, many branches

Hierarchical planning (Sections 12.2 and 12.3)

Idea: Construct a high-level plan and then refine it by replacing each operator with more specific
operators; intuitively, a high-level operator is like a subroutine. Note that an operator may have
many possible replacements.

go to storggr— take wallet open car’'s doer——insert key

get milk get into cal/v take the seat turn key
go back 117 close car’s door (11
take wallet [(11]
take bike
(117

24

We continue to replace operators until reaching the levpliofitive operators, which have no
decomposition. The primitive operators should be easily executable; the choice of primitive
operators depends on an application.

When encoding a domain, we separate ojpesanto primitive and nonprimitive. For each
nonprimitive operator, we specify all possible decompositions, which are partially ordered plans
with appropriate links.

Example:
pusr(b X, Y)
go-to- bo>(b X) — push-to-doofb, X, y) —» push-thru-doofb, X, y) —a
notlfy usetb, X, y) IS

go -to-boxb, x) —» lift-box(b, X) —»go(x, y) — put(b,y) -
notlfy useth,x,y) — —7

ga(x, y)
The preconditions and effects of the replacement plan must match the higher-level operator. That
is, if the preconditions of the higer-level operator are satisfl, then the preconditions of all
operators in the replacement plan must also be satisfied, and the effects of the replacement plan

must be the same as the effects of the higheelleperator. The choice of decompositions is the
user’s responsibility.

At each step, the planner has to decide between adding a new link and decomposing an old
operator. If decomposing, it needs to choose an operator and its decomposition.

add Decide whether to add a Iin; decompose MO backtracking

i or decompose an operato
link v operator

< Choose an old

see abov

nonprimitive operatc> no backtracking

A 4

— backtrack over
<Choose a decomposition the choice of

decomposition
For each threat to some link, decide
>\ whether it is before or after the i

Note that decomposition of an operator may lead to new threats caused by side effects of the
decomposition. Also note that the user may provide an initial high-level plan, and use the planner
only for selecting low-level replacements of given high-level operators.

25

Problems:
A high-level plan may not haveefinements; for example, we may plan to go to a store, and
on a lower level find out that the car key is lost, and the bike has a flat tire
A good low-level plan may not have a casponding high-leveplan; for example:

N
go to stor: |—>| buy milk|—>| go bacl | | go to stae |—>| buy breac |—>| go back |

Solutions:
Provide a decomposition that does not cause these problems,
which is the user’s responsibility for each domain
Make sure that the problems do not occur too often,
and the hierarchical planning is efficient on average
Implement techniques for optimizing low-level plans

Learning

Machine learning is automated collection and analysis of new data. Usual goals:
learn a new concept or behavior, or
improve the performance (speed or solution quality).

Simple examplerThrow a hard object with ~ 2-----~ ~~
a known speed and predict the distance.
d d
Experiments:
30 feet/sec, 30 feet270
60 feet/sec, 120 feet
90 feet/sec, 270 feett20
30 v
30 60 90
Memorization:Store the available data points, and use the experience to generate correct
predictions for these known (or similar) cases.

Learning hypothesig=ind a function that fits the available data, and use it to generate
predictions for other cases; for examples V* / 30 fits the available data. The learning process is
search for an appropriate function; thgase of candidate functions is calletiygpothesis space.

Occam’s razorPrefer simple hypotheses to more quax ones. A hypothesis is considered
simpler if it has fewer parameters. For exampbe# b is simple, andaxX is also simpleax + bx

+ cis more complex, andx"+ a,.1X"* + ... +ag is even more complex.

Occam'’s razor preventsverfitting, that is, finding a complex function that fits available data but
gives wrong predictions for other data.

26

The choice of hypothesis space and preferences among its elements is ézdiedreg bias. It
determines the hypotheses (functs) that the learner may consider.

The choice of an appropriate space is essential. If it is too small, it may not have the right
functions; for example, the linear regression may be insufficient. If it is too big, the search may
take forever.

We may view any learned knowled@s a function that maps quests (problems, situations)
into appropriate answers; that figuestion) = answer. Aupervised learninglgorithm inputs
some questions with apmpriate answers, and tries to fiadpattern for answering other
guestions.

Decision trees (Chapter 18)

Example
ELS+ | FSR- |ESC? N
FLR— |LLS+ |FScC? Decision tree

¥FSAL™
Meaning:

+ —
+ need to fill the tankl E empty tank| s short drive | S sunny
- enough gas L lowtank | L longdrive | Ccloudy
F full tank R rainy

A decision tree allows us tdassifyobjects, that is, decide which objects belong to a certain
class, and which do not. We construct it from a setraihing exampleswhich are classified as
positive (i.e. belonging to the class) and negative.

Algorithm
Split examples on the first attribute E/ N F
If some nodes get both positive and negative examplesLS +” LSC - FLR -
recursively split them on the next attribute ESR+ LLS + FSR—

Continue splitting until each leaf is or -
See Figure 18.7 in the textbobdr a more detailed algorithm.

High-level view:We need to learn a Boolean function that maps examplesrtdl he tree
encodes such a function, which is a learningdthesis. The hypothesis space includes all
possible trees, and the algorithm searches for an appropriate tree.

The resulting tree correctly classifies all training examples, but it may give wrong results for new

examples. A related philosophical questiomdsv we can ever be sure that a hypothesis derived
from a training set will work for other examples.

27

Problems
Splitting on an inappropriate attribute weather

We may still get a correct tree, but with more levels. &\
According to Occam’s razor, smaller trees are better.

Insufficient training data E/ N F
For instance, suppose that there is a “medium-+ =
distance drive” scenario, but no data fsr1 37 IM\E

Insufficient attributes
For instance, we may get training examples—, LSC+, andLSC-.

Overfitting _ _
For instance, suppose thatttraining examples are we need: we get.
LSC—, LSR—-, andLSs+. TheLsst+ example comes from E/ |I\F E/ |D\F
driving to Canada, where the gas is more expensive, * S/\L~ M\
but the destination is not among the attributes. 67%— +
Theoverfittingis building a tree that fits the training S ICN\R

data “too well”; that is, an accurate fit does not lead to a generalization.
Limited expressiveness
- Hard to deal with real-valued attributes; usually, we
discretize such attributes lo\efining appropriate ranges
- Near-impossible to learn parity

To evaluate the quality of a tree:
Divide the available examples into training set and test set
Use the training set to build a tree
Use the test set to evaluate its accuracy, that is, the percentage of correct classifications

learning curve

To determine the quality of available data, repeat these steps for 100%
several random divisions into training and test sets, and take the acct-
average. To determine the necessary number of examples, evaluatécy number o
the accuracy for sets of different sizes. examples

»
»

Selecting informative attributes

Different attributes provide different amount ofammation about the right answer; for example,
the amount of fuel is very informative, and the weather is not at all. Intuitively, if we earn certain
money for giving the right answer, then we will ypalifferently for different attributes. The
“value” of information is measured in bits. Thgrediction of a fair-coin outcome is worth one
bit. The prediction of an unfair coin is worth less because we already have a good idea about the
outcome. If a “coin” hak sides, with the corresponding probabilitigs... 0k, then the value of
an accurate prediction is

1(Qz,...0) == 0g a1 — g2 g G2 — ... — Ok Lg O

Fair coin:—0.50g 0.5-0.50g 0.5 =1.

Unfair coin:—qOgq-(1-9) g (1 - Q).

One-sided “coin™- 1 [g 1 = 0 (no information at all).
Gas decisionq=3/6 =0.5;1 = 1.

28

Each attribute gives part of the informatiomuss, one attribute is worth less than 1. We may
determine the exact worth of an attribute by calculating how much information weafiegthe
attribute test.

If we havep positive anch negative examples, the worth of an accurate classification is
n n

cost(p n=-——m—— -—" g

p+n ~ p+n p+n - p+n
An attribute divides examples into severabgps, each with positive and negative examples:

p, N gas example
3,3
PL M P2, M .o P Nk EANF

2,0 1,1 0,2
For each group, we need to make a decision, which incurs additional cost:

cos{p, n) gas elxample

cos(py, 1)~ cos(pz, N2) ... ~cos(px, Nk OEﬂlL\FO

We need to adjust additional costs by their probabilities:
. +n p,t+n
Additional-Cost= > cogt p p+...+ P [cogt
itional-Cos 0T n cost p N oF N cost,p N
Gas example:

Additional-Cost= 0.33[0 + 0.33[L + 0.33[0D = 0.33

The worth of an attribute is
Gain=cos{p, n) — Additional-Cost
_ ptn P + N,
= COS -———=[Ico —..———* [Jcost
t(tpn p+n stpp p+n CYM eI)
Gas example:
Gain=1-0.33=0.67

The resulting value is called thaeformation gainof the attribute. We
EANF compute it for each attribute, select the attribute with the highest gain,
and put it at the root of the tree. This strategy helps to minimize the depth
of the final tree.

ELS+" LSC—- FLR -
ESR+ LLS + FSR—

When recursively constructing the next levéltibe tree, we use the corresponding subgroups of
examples for computing the information gain.rfostance, we need to compute the information

gain of the driving distance and weather for the grougc-, LLS+.”
If the information gain of all attributes is “tomw,” we should not split at all, thus preventing

overfitting. If the gain is low, then the distribution of positive and negative examples in the
leaves is about the same as in the parent:

29

p. N If p/n=p/m=pa2/m=..=p/ng
/’\ then the split is not useful.
P, N1 P2, N2 ... Pr Nk
The gain isnot low if the distribution deviates from this pattern with statistical significance as
measured by the?distribution test. Thus, we use an attribute in splitting only if it passes the
statistical x° test. This strategy is calleg? pruning it allows handling “noise” and insufficient
data without overfitting.

Cross-validation:Set aside some of the available data and use them to evaluate the quality of a
tree. We may also use them to prune inappropriate branches, thus avoiding overfitting.

Sample complexity

Intuitively, the sample complexity of a learning algorithm is the dependency between the number
of training examples and the accuracy of the learned knowledge.

A learned hypothesis (e.g. a decision tree)approximately correcif it correctly classifies
“almost all” examples; that is, the error rate is within some smal learning algorithm is good

if it produces an approximately correct hypothesis with high probability; that is, the probability
of not being approximately correct is within some snéalln this case, we say that learning is
probably approximately corre@AC). The required number of traimg examples is a function of

€ ando; this function is calledsample complexity.

The probability that the learned hypothesis incorrectly classifies a given example is dvithin
whered is the chance that the learned hypothesis is no goodgasdhe chance that a good
hypothesis gives a wrong result.

Stationarity assumptionitraining examples have the same distribution as test examples. Without
this assumption, we cannot guarantee good results.

The learner selects a hypothesis from a certain pre-defined space, for instance, from the space of
possible decision trees. The hypothesis is consistent with all training examples; thus, each
example eliminates wrong hypotheses from the space. The more examples, the fewer wrong
hypotheses are left.

Suppose thatl is a “bad” hypothesis; that is, its error rate is.>The

e i - . : L :
X probability that it is consistent with one training example is<d The

H KV probability that it is consistent witn training examples is < (% &)™
1 M ¥ Suppose that the space includhedifferent hypotheses. Then, the
W W WG probability that at least one bad hypothesis is consistent witin all
.1 3 /4 examples is 41 [{1 — €)™ This probability must be bounded By
ex ex% hd1-¢)"<3,

which holds if
m>2rnt+inn).
€)

30

Thus, to ensure probable approximate correctness, we [nlewglﬂn h)}training examples.
€

The number of examples depends on error rateand 6, and on the number of candidate
hypothesesh. The hypothesis-space size is usuallypexential in the length of hypothesis
description, and the required number of exampassually polynomial in the description length.

Justification for Occam’s razorShorter hypotheses requirewfer examples for a given error
rate; in other words, they allow more accurate learning with the available examples. Selecting a
small hypothesis space is essential.

Space of decision trees:
Suppose that we considarattributes, withk values for each attribute. For a given ordering of

attributes, the tree hdg leaves, and each leaf #sor —; thus, there ar@"" different trees. We
may considem! attribute orderings; thus, the total number of tread ig2*" .
In(n' 02)=Inn'+In 2<nOnn+K'=k"
m= 1 [{In E +k")
€)
Thus, the number of examples is exponentiahi& depth of the tree; however, it is reasonably
small for a limited depth, for instance,nf= 3.

Neural networks (Chapter 19, except 19.6)

The neural networks are based on the agghith the human brain; however, they dot

provide a plausible model of human problem-solving abilities. The artificial neural networks are
non-symbolic and massively glel. On the other hand, human problem solving is probably
based on symbolic sequentidgarithms. Although a brain consists of neurons, they seem to
form a close analog of a sequential digital computer.

Human neurons

Some inputs increase the electric potential of the
connected to neuron, and some decrease the potential. When the
other neurons potential reaches a certain threshold, the neuron sends

an output impulse. The input/output connections and
d?nd”t' their strength can change over time, which may be
(input) viewed as “self-reprogramming,” that is, learning.

Artificial neurons

“Neurons” in artificial neural networks are calledhitsor nodes;*axons” arelinks with weights.
The output is usually O or 1; in some models, itkor 1.

31

8 Wi

L uniti & a is the output of unit
:: Fu’tput a; the output of unif, connected to unit
Inputs W, is the weight of the connection between unigndi

The “potential” is called thenput function: in=>W; 4.
The “threshold” is called thactivation function:
g g g;

+1] +1— o1 Sigmoid:
E 1
>N, ——O—>ini in; 8 = 1+ ™

t
step function sign function sigmoid function

We usually use the sigmoid function because it allows an easy computation of the derivative,
which is required for learning. To simulate & function using a sigmoid, we add unit 0 with
the constant output —1.

8 W, a W, R
a W wors| almost ey \
' —> same as Ak —» L, same as & — "
g 0
2= -1 a0= ~14 L
Wo,i= Wo.=

g 2 : A neural network is a collection of units, some of which are connected. The
units that represent the outside input are caltguait units,and the units that
output the final result are callemutput units;all other units ardidden units.

input hiddenoutput - The input values may be different from 0 and 1.

Neural networks operate wittontinuous real values, which is different from most othier
techniques.

Example
Multilayer network

Perceptron Perceptron
K K

1 1
1.5 0.5

-1 -1
Conjunction Disjunction

A network without cycles is callefbed-forward A network with cycles igecurrent Note that
recurrent networks require some “clock”; they kamternal state and may lead to very long (or
infinite) looping. Most applications use feed-forward networks.

32

If a feed forward-network has no hidden units, it is called a
perceptron;otherwise, it is anultilayer networkWe usually
use feed-forward networks arranged in layers; each unit of a
layer is connected only to the next layer. For example, the []
network in the picture is a three-layer network; note that we do .
not count the input layer. 'Inp“t hidden output
ayer layers layer
A network represents a specific function, whiagkpeénds on the structure (units and links) and
weights. A learning algorithm has to find a fuion that fits training examples. Usually, the
human user defines the structure, and gering algorithm adjusts the weights.

Some approaches to automatically changing the structure:

- Genetic algorithms: Simulate tlevolution” of neural networks
Optimal brain damage: Remove the connections that seem unnecessary and readjust the
weights of the other connections; repeat until the performance begins to degrade
Tiling algorithm: Add new units to improve éclassification accuracy using techniques
similar to building a decision tree

Perceptrons

A perceptrons a one-layer feed-forward network; thus, it W
has no hidden units. Each output unit is independent of theIl D\14
other units, which means that we can limit the study to |, W2
single-output perceptrons.

in=yw 0 M W
0 =1

A perceptron can represent some Boolean functions, suekRmsOR, and
majority, but it cannot represerOR or parity.

If a perceptron uses the “sign” activation function, it outputs 0 wheff [1; < 0, and 1
otherwise. If we view possible inputs as pointswdimensional space, then this inequality
describes a halfspace.

. 12 Thus, positive examples must be separated from negative by a hyperplane in
o outputl then-dimensional space; we say that they lmearly separablelf this
“0 condition does not hold, a perceptron cannot reliably distinguish between
output O™, 1 positive and negative examples.
Example
I "
;. % % o positive
19 0 lo0 © 1i o O negative
- 1 Sl 1
0 1 0 1 0 1
AND OR XOR
separable separable not separable

33

Thus, constructing a perceptron for a given setxamples is equivalent to finding a hyperplane
that separates positive and negative examples. If the examples are separable, we can efficiently
construct a perceptron that classifies them.

Make a perceptron with arpgropriate number of inputs
Randomly assign weights (usually, between —0.5 and 0.5)
Repeatedly recompute weights based on the training examples'

Updating weights:
If the perceptron correctly classifies a training example, do not change the weights
If it gives 1 instead of O (negative error), increase the weights of the negative inputs
and decrease the weights of the positive inputs
If it gives 0O instead of 1 (positive error), do the opposite

Thus, we update each weigg as follows:
W ~ W +a O LErT
lj is inputj for the current example
Err = Correct-Output- Observed-Outpytwhich is -1, 0, or 1
- If the output is correctzrr =0
- If 1 instead of OErr = -1
-IfOinstead of 1LErmr =1
a is the learning rate

We can re-use an example several times during the learning procespoAiof learning is
updating the weights for each of the examples;ldarning process involves multiple epochs.

Example:Learning the majority function.

Examples Weights

i I I3 | Wi W W3 W

-05 0.5 -05 0.0

I354_1 1 1 -1|/-05 05 -05 0.0
' -1 1 -1/-04 04 -04 0.1

a=0.1 1 -2 1/-03 03 -0.3 0.0

This search is hill-climbing toward appropriate weights, with no local maximaidf
sufficiently small to avoid “jumping acrosbké maximum,” the perceptron converges to
appropriate weights.
Multilayer networks
The learning algorithm is similar to perceptrons; it repeatedly modifies
weights until the network correctly classifies (almost) all examples.

The activation function in multilayer networks is usually the sigmoid.

34

Back-propagationAt each step, the update of weights g 2 i
propagates backward from the output layer.
For each output unit determine its error: D ——
Err; = Correct-Output— Observed-Output
If the activation function is the sigmoidrr; may be fractional, between —1 and 1.
Compute the corresponding error term:
A = Err; Eg’(ini)
g'(in;) is the derivative of the activation function; for the sigmaiin;) = g(in;) ({1 —g(in;))
For each unif linked toi, update the weight\; ;:
Wi « Wi +a L LA
The rule is similar to that for percéapn, but there are two differences:
- we useA; instead ofErr;
- we update the weights of links outgoing from the
next-to-last layer rather than from the input units
Compute the error term for each upin the next-to-last layer;
intuitively, we propagate the error term:
Ay =g'(img) - YW, i - Ai (the sum over output units; the weights aeforethe update)
Thus, we compute these error terms before updating the weights.
Use these error terms to update the weights of incoming links,
propagate error terms backward to the next layer, and so on.

Steps of back-propagation:
ComputeA values for the output layer
Repeat until reaching the earliest hidden layer:
- propagate\ values back to the previous layer
- update the weights between the two layers
Update the weights between the eatikidden layer and the input layer
For more details, see the algorithm in Figure 19.14 of the textbook.

2
Mathematical foundations 2 Err;

The error for a specific example is a function of all weights in the network
The back-propagation procedure is a gradient descend toward the minim
of this function. The learning ratedetermines the size of steps. ¥ W
1

The convergence time depends on a specifiobekamples; in the worst case, it may be
exponential in the number of inputs. Furthermahe gradient descent can stop at a local
minimum; for instance, if most examples are positive, it may converge to classifying all
examples as positive. We can use simulated annealing to avoid local maxima.

Advantages and drawbacks
In theory, we can represent any continuous fiorcby a two-layer network, and any function at

all by three layers; however, the required hanof nodes may be exponential. Note that the
expressiveness of a network with a specific fixed structure is still limited.

35

Advantages:
Effective for dealing with continuous values
Insensitive to noise

Drawbacks:
Provides yes/no answers without probabilities
Does not provide explanations
Does not use prior knowledge in learning

Some applications:
Handwriting recognition (e.g. zip codes)
Face detection and recognition
Automated driving (NavLab)

36

