
1

Artificial Intelligence (CAP 5625)
 Eugene Fink, Valentina Korzhova, Alvin Mathai, Danny Grullon, and Divya Bhadoria

Definitions ofAI :
• Automatically performing tasks that require human intelligence (problem solving, games,

discovery, etc.)
• Emulating basic human skills (vision, language understanding, speech recognition, etc.)
• Something that has not been done yet
• Defined by a list of sub-areas: search, learning, language understanding, vision, etc.
Researchers donot agree on the definition ofAI and its main goals.

Two key problems:
• Perform complex tasks (ultimately, make the human obsolete)
• Perform tasks like human (ultimately, pass the Turing test)

We consider several selected areas.
Search:
• Basic search (Chapter 3)
• Informed search (Chapter 4)
• Games (Chapter 5)
• Planning (Chapters 11 and 12)
Learning:
• Decision trees (Chapter 18)
• Neural networks (Chapter 19)
• Reinforcement learning (Chapter 20)

Basic search (Chapter 3)

Review graph algorithms:
Cormen, Leiserson, and Rivest,Introduction to algorithms
First edition: Chapter 23, Sections 25.1 and 25.2
Second edition: Chapter 22, Section 24.3

Search is a fundamental method ofAI.

Intuition: Look through multiple candidate solutions, until one of them turns out a correct
solution. Note that humans also use this method.

Basic search (a.k.a. blind, uninformed, exhaustive, brute-force): Define a (very large) space of
candidate solutions, and implement some systematic procedure for exploring it.

2

Example 1: Map quest

Given a map, find a route fromA to B.

• In the worst case, the time is proportional to the size of the
graph:O(V + E)

• For a “clever” algorithm, it may be much smaller.
For example, finding a route in Tampa should not be
proportional to the size of a detailed map of theUS.

Different search types:
• Search for the shortest path; it is slow, but finds the best solution
• Breadth-first (BFS); it is faster, but may not find the best solution

(unless all edges are of the same length)
• Depth-first (DFS); it is usually faster thanBFS, but may produce a very lengthy route

If the map is not stored as a graph, then we need toconstruct an explicit graph; however, we may
not need to construct the complete graph. For example, if we search for a path in Tampa, we do
not need the complete map of theUS.

Idea: Build a graph in the process of search. For example, suppose that a functionroadsinputs
an intersection and outputs adjacent intersections with distances:

roads(A) = {X (0.5 miles),Y (0.3 miles)}

We have found a route fromA to B without building the complete graph of theUS (or Tampa).

When we callroads(A) and getX andY, we say
that weexpandnodeA andcreatenodesX andY.

Start fromA and use some graph
algorithm to look for a path toB.

A

B

Y

A X

Y

A X Z

A X Z

Y

A

A X Z

Y

Start atA, call roads(A). Call roads(X).

Call roads(Y).
Call roads(Z).

Fowler

Fletcher

Bruce B.
Downs

A

A

X

A

Y

B

3

Example 2: Eight puzzle

Eight square tiles, numbered 1 through 8, and an empty square. We can
slide adjacent tiles into the empty square. In a given position, there are at
most four different moves.
The goal is to get to a specific final position.
The standard final position is:

Construct a graph:
• Positions are nodes
• Moves are edges

Terminology:
• Position is a(world) state
• Move is atransitionor operator
• Set of all possible states with transitions between them is astate space(may be huge)

Start from the initial state and keep expanding the space until reaching the goal state.

Problem: The search procedure creates duplicate states; it does not violate correctness, but takes
extra time.

We can:
• Detect two-move loops (easy)
• Detect longer loops (harder)

• Detect duplicates in different branches
(requires hashing)

Example 3: n-queen problem

Putn queens on ann × n chess board, in such a way that they do not attack each other.
Initial state: No queens on the board
Move: Add one queen
Stupid search: Consider all possible placements ofn queens.
Smarter: Put first queen in the first row, second in the second row, etc.
Even smarter: Each queen takes a separate column; onlyn! possibilities. …

5 4
16 8

7 3 2 31 2
4

6
8

57

16 8
7 3 2

5 4

one-move
positions

two-move
positions

Search
tree

initial
state

27 3
6 1 8
5 4

6 1
7 3 2

5 4
8

6 1 8
2

5
6 8

1

7 3 2

5 4

7 3

4

2
6

84

37
1

5

6
7

8
3 2

5
816

5 4

7 23
1

5
6 8
7 3 2

1

7

4
6

4

45

2
1
3

8

4

…

initial
state

move

clean

?

?

?

?

?

Example 4: House cleaning

We need to clean a house, where some places are dirty.
We use a vacuum and can perform the following actions:
• Move to an adjacent location
• Clean the current location
We see dirt only at our current location.

Since we do not know whether unvisited locations are dirty, each node in the
search space corresponds to asetof world states.

Although we do not know which locations are dirty, we can develop a plan
that is guaranteed to work. It is more effective to develop a tentative plan and
keep re-planning as we explore the world.
• Planning for all possible situations is called acontingency problem
• Re-planning as we explore the world is calledinterleavingsearch and

execution

Summary:A search problem has an initial state, goal description, and transition function. The
task is to find a sequence of actions that leads from the initial state to one of the states that satisfy
the goal description.

When writing a program for solving search problems, we consider several factors:
• Speed of finding the solution (time complexity)
• Memory requirements (space complexity)
• Length of a solution (that is, the number of transitions)
• Quality of a solution (usually measured as the total “cost” of moves, for example, the total

length of a car route)
• Quality of a final state (some goal states that may be better than others)

Desirable properties of search algorithms:
• High speed and low memory
• Completeness: Guarantee to find a solution if one exists
• Optimality (a.k.a. admissibility): Guarantee to find an optimal solution

Real-life problems solvable by search:
Map quest, robot navigation,logistics transportation,
assembly sequence, scheduling,VLSI layout.

When solving a real-life problem, we need to “formulate” it, that is, define states and transitions.
We “abstract away” most features of the real world. Different applications require different
levels of abstraction. For example, we may consider a map on the level of cities (for airplanes),
intersections (for cars), or one-foot squares (for robot navigation).
Converting real world into a finite state spaceis often a research problem (for example, robot
navigation).

5

Basic search algorithm (theory, not AI)

A search algorithm explores a directed graph, starting from a given node. The “frontier” of the
exploration is often called thefringe.

Mark visited nodes:
• Initially, all nodes are white (“unexplored”)
• When a nodeu is first discovered, it becomes gray (“fringe”)
• After the adjacent nodes ofu are processed,u becomes black (“explored”)

For each nodeu, we store:
color[u] – white, gray, or black
parent[u] – parent ofu in the search tree

The gray nodes are stored in some fringe structure. Whenu is discovered, it ispainted gray and
added to the fringe. When the adjacent nodes ofu are processed, it is painted black and removed
from the fringe.

SEARCH(Graph, s)
for each nodeu in Graph

do color[u] ← WHITE
parent[u] ← NIL

color[s] ← GRAY
fringe← { s}
while fringe is not empty

do u← “some fringe node”
for eachv adjacent tou

do if color[u] = WHITE
then color[v] ← GRAY

parent[v] ← u
fringe← fringe ∪ { v}

color[u] ← BLACK
fringe← fringe– {u}

Note that the algorithm does not distinguish between gray and black nodes; the difference is only
for the explanation.

AI terminology:
• Graph is the state space or search space
• Parent pointers form the search tree
• Black nodes are expanded
• Gray nodes are newly created; they are leaves of the search tree

Fringe:B
AE

E
CF

FFE

C

D

A B = s

s – source

6

• White nodes are not explicitly represented;they are “somewhere” in the state space

AI is different from theory:
• A graph is huge and there is no explicit representation;

it is expanded in the process of search

• The search algorithm may create many copies of
the same node and add them to the search tree

• The search usually terminates after findinga node that satisfies certain conditions, without
exploring the whole graph. For example it terminates after finding some solution to then-
queen problem

• The search may proceed from several nodes in parallel

The search time depends on three main factors:
• Branching factor b, that is, the (mean) number

of children of a node in the search tree
• Search depth d, that is, the length of the path

from the source node to the goal node
• Time per node

Breadth-first search

The fringe in the search algorithm is a queue (FIFO);
thus, the oldest fringe node is expanded first. If the
solution is at depthd, the algorithm explores all nodes
with depth <d and some nodes with depthd.

Number of “<d ” nodes: 1 +b + b2 +…+ bd−1 =
1

1

db

b

−
−

Total number of “d ” nodes:bd

Number of explored nodes:
1

1

−
−

b

bd

≤ N ≤
1

1

−
−

b

bd

+ bd; thus,N = Θ(bd).

For example, consider eighteen-move Rubic’s cube solution:
B = 12,d = 18,bd = 1218 = 2.7·1019 (a lot)

The search takes not onlyΘ(bd) time, but alsoΘ(bd) memory, which is even worse.

Advantages:
• Easy to implement
• Guaranteed to find a solution (“complete”)
Drawbacks:
• Impractically slow
• Prohibitive memory requirements

B

E

F

C F

Explored part is
(partially) explicit

B

A E

4

s
1 2

3 5 6

7 8 9 10

7

Best-first (a.k.a. uniform-cost) search

For each node, determine itscost,that is, the distance from the root,
computed as the sum of edge costs. The cheapest fringe node is
expanded first. The fringe is a priority queue, which allows fast
identification and deletion of thecheapest node. In algorithm theory,
we call it the “Dijkstra” algorithm.

Number of nodes is about the same as inBFS; per-node time is larger since extracting the
cheapest node from the fringe takes nonconstant time.

Advantages
• Guaranteed to find a solution (“complete”)
• Finds the best (i.e. cheapest) solution (“optimal,” a.k.a. “admissible”)
Drawbacks
• Even slower thanBFS
• Same memory requirements asBFS

Depth-first search

The fringe is a stack (LIFO), and the newest fringe node
is expanded first. If the algorithm runs into a deadend,
it backtracks and considers a different branch.

The running time depends on many factors,
including luck. For a depth-d solution, the
algorithm may create fromb · d to many
more thanbd nodes. In particular, it can
miss an “easy” solution and go into a deep branch.

The memory requirements are low: if the length of the expanded path isd, then the memory is
Θ(b · d).

This strategy is good if
• there are a lot of solutions deep in the space or
• we have some guidance toward a solution

Advantages
• Easy to implement
• Low memory requirements
• Often faster thanBFS
Drawbacks
• Low-quality solutions
• Usually not complete, that is, may fail on a solvable problem

2.0
1.2

1.0 2.0 3.5

5.2

1.5

4.2

4

s

2
53

1

deadend

best case

d

b

worst case

8

Depth-limited search

Depth-first search that backtracks upon reaching a certain depth.
Alternatively, it can backtrack upon reaching a cost limit.

Advantages
• Easy to implement
• Low memory requirements
• Guaranteed to find a solution within depth limit (if any)
• Guaranteed to terminate
Drawbacks
• Low-quality solutions
• Does not find a solution if it is beyond depth limit

Iterative deepening

Repeat depth-limited search multiple times,
with successively increasing depth limit.

This search is equivalent toBFS, but it needs little memory.

Number of visited nodesΘ(b) + Θ(b2) + Θ(b3) +…+Θ(bd) = Θ(
1

1

−
+

b

bd

) = Θ(bd);

thus, the running time is almost the same asBFS.
To summarize, it is an “improvedBFS.”
Alternatively, it can iterate on cost limit, which makes it near-equivalent toBestFS.

Bidirectional search

Start from both ends and continue search until
meeting in the middle. If the standard search
takesΘ(bd) time, then the bidirectional search may
take as little asΘ(2 · bd/2) = Θ(bd/2). The memory isΘ(bd/2), which is often impractically high
requirement.

Main problems:
• Need to know the exact goal state
• Need to have an efficient mechanism for comparing fringes

Summary

• Uninformed search works only for small problems
• Running time is the main bottleneck for large problems
• Different search techniques are effective for different problems;

there is no “universally effective” search

limit = 3
limit = 1

limit = 2

…

initial
state

goal
state

depth
limit

9

Informed search (Chapter 4)

Idea:Consider likely solutions before unlikely ones; for example:
• If a key is lost, look in the pocket before looking in the microwave
• When trying to reach the downtown, move in the direction of the largest building

The hardest part is to find functions for evaluating candidate solutions. The second hardest part is
to use them wisely, as even the best functions are only estimates. For example, the “move toward
the largest building” function may lead to a deadend.

The functions for guiding the search are calledheuristic functions,and a search algorithm that
uses them is called aheuristic search. These functions estimate thedistance to a goal.

Examples:
• The straight distance on the map is an estimate of the driving distance
• The number of misplaced tiles in the eight puzzle is an estimate of the solution length

General idea:Search in the direction of reducing the estimate function.

Greedy search

For each fringe node, estimate its distance to the goal, and expand the closest node. The distance
estimate is called aheuristic function. This search is similar toBFSandBestFS, but it usually
takes less time.

Advantages:
• Usually faster than uniformed search
• Solution quality isOK (but not the best)
• Usually complete (but not always)
Drawback:
• Prohibitive memory requirements

Famous A* (impractical foundations of AI)

For each noden, determine
• distance from the initial state, denotedg(n)
• estimated distance to the goal, denotedh(n)
The estimated cost of a paththroughthe node is
f(n) = g(n) + h(n).

For example, consider Map quest.
• g(n) is the shortest known path to locationn
• h(n) is the straight distance to the goal, which is an estimate of the path length

Expand the fringe node with the smallestf(n), that is, the shortest path through it.

g(n) = 5
h(n) = 4
Estimated path cost:
f(n) = 5 + 4 = 9

4

downtownstart

n
2

3

10

The strategy helps to search for a near-optimal solution; however, ifh is not an accurate estimate,
then the solution may not be optimal.

If h alwaysunderestimatesthe distance, then it is called anadmissibleheuristic function. For
example, the straight-line distance always underestimates the shortest path. The search algorithm
that expands the smallest-f nodeanduses an admissibleh is called A*.

If the branching is finite and the edge costs have a positive lower bound, then A* is complete and
optimal (a.k.a. admissible). Withseveral semi-reasonable assumptions, it is proved to be the
most efficient among optimal algorithms.

A good heuristic function should underestimate the actual distance to the goal, but be close to the
actual distance. The more accurate the heuristic, the smaller the number of expanded nodes. At
the same time, it must be efficiently computable.

For example, suppose that we are searching fora route in Tampa (or Manhattan), where all
streets are “vertical” or “horizontal.”

• Good heuristic: Straight distance, easy to compute
• Very good heuristic: Manhattan distance, easy to compute
• Perfect but impractical heuristic: Exact path length, hard to compute

Advantages:
• Complete and admissible
• Faster than uniformed search
Drawback:
• Prohibitive memory requirements

Iterative deepening A* (a.k.a. IDA*)

IDA* is similar to the iterative deepening algorithm, with the depth
bound determined byf-cost. It searches all nodes up to somef-cost
limit, and then increases the limit, repeating this increase until the
solution is found. It increases the depth limit to the minimalf-cost
of nodes outside the explored region. In our example, we increase
thef-cost limit to 8.5. This algorithm is similar to A*, but it requires little space.

If the increments of depth limit are small (e.g. 8.0, 8.5, 8.8, 8.9, …),IDA* may re-expand the
space too many times. In the worst case, it may re-expand the space for each new node. We may
avoid this problem by increasing the bound in larger steps, but then we lose admissibility. For
example, suppose that we fix someε cost and increase thef-cost limit to “minimal f-cost outside
the explored region” +ε. Then, we get a near-optimal solution that is withinε from the optimal.

SMA*: Combination of A* andIDA* , which usesall available memory to improve efficiency; it
keeps part of the search tree in memory, and re-expands the other parts.

8.5

limit 85 6
8

9
1178

11

7
9

11

Constructing heuristics

We need heuristic estimates that are close to actual path costs; good heuristics are crucial for the
efficiency.

Some ideas:
• Count the number of features tobe corrected; for example:

- Number of out-of-place pieces in the eight puzzle (estimate of the solution length)
- Number of known bugs in the code(estimate of the debugging time)

• Measure “distances;” for example:
- Straight distances on a map (estimate of the route length)
- Distance of each tile in the eight puzzle from its proper place

(the sum of these distances is an estimate of the solution length)
• Number of moves in a “relaxed” problem, that is, a simplified problem with additional

transitions; for example:
- Eight puzzle where tiles can move over each other; the solution length in this simple puzzle

is an estimate for the actual solution length
- City map where we disregard traffic lights

• Pre-computed distances for some states; for example:
- Pre-compute all states of the eight puzzle that are within three moves from the goal
- Pre-compute distances fromUSFto major intersections

If we have several admissible heuristics,h1, h2, …, hk, we can combine them by taking the
maximum:

h(n) = max(h1(n), h2(n), …, hk(n)).
For example, suppose thath1 is the time of straight-line driving to
the goal, andh2 is the time of actual driving by a faster car, known
from past experience. Then, the heuristic underestimate of driving
time ish = max(h1, h2).

Sometimes,f of a node may be smaller thanf of its parent. For example,
you drive a mile toward the downtown, and suddenly it appears two
miles closer. We say that such a heuristic is notmonotonic. A better
monotonicf can be constructed as follows:

f'(n) = max(f(n), f'(parent[n])).

For example:

Example: Admissible search for Rubik’s cube (Korf).
The cube consists of two “sub-puzzles”: Corners and sides. The “sides” state space has
12! ⋅ 212/ 2 nodes, and the “corners” space has 8!⋅ 38 / 6 nodes. We can construct an explicit
graph for each space, and compute exact distance to the goal for each node, which gives two
admissible heuristics:
• Distance in the “sides” space, denotedh1

5 + 6 = 11

6 + 4 = 10

f = g + h

parent[n]

n

h2, faster car

h1
goal

5 + 6 = 11

max(6 + 4, 11) = 11

1

1

distance 3

12

• Distance in the “corners” space, denotedh2

In addition, we can compute all states within certain number of moves
from the goal; for example, eight moves give rise to about 118 states.
Thus, we get a third heuristic, denotedh3:
• If the state is within the expanded space,h3 is the exact distance
• If not, h3 = 9
Combined heuristic:h = max(h1, h2, h3); run IDA* with it.

Iterative improvement

Suppose that we search for a state rather than a path (e.g. 8-queen problem,VLSI design), and
need to find a sufficiently good state. We have aValuefunction that evaluates the quality of a
state, and we need to find a state such thatValue(state) ≥ Threshold, or Value(state) is “as large
as possible.”

For example, consider the 8-queen problem.
Value(state) = − “number of attacked queens”
Threshold= 0

Intuition: Search space is a landscape, andValueis
the altitude of a state. We need to find a high point.

Hill-climbing

• Start in a random place
• Go uphill until reaching a hilltop
• Repeat if necessary (when the hilltop is too low)
If the highest child is the same as the node, keep going.

Example:
• Start with an inefficient program for the homework
• Keep improving as much as you can
• If the result is not good enough, start all over
Unlike greedy search, hill-climbing does not keep the search tree.

Problems:
• Local maxima;random re-starts may or may not help
• Plateauxmay cause a random walk
• Ridgesmay cause oscillation without progress, even if they slope up to a hilltop

Advantages:
• Simple
• Little memory
Drawback:
• Limited applicability

goal

Value

9
20

6

5
7

8

610

5 14

19 18 16

• Always go to the
child with the
highest value

• If all children are
strictly smaller
than the current
node, then stop.

13

Simulated annealing

This algorithm is a modification of hill-climbing based on an analogy with random fluctuations
in a cooling liquid. If the cooling process is slow, the liquid freezes in a low-energy state.

We allow random steps in the beginning of hill-climbing, and gradually reduce their probability.
The algorithm uses simulated temperature, which gradually decreases.

ANNEALING

current← initial state
T ← initial temperature
while T > 0

do next← random successor ofcurrent
∆← Value(next) – Value(current)
if ∆ > 0

then current← next
else with probabilitye∆/T, current← next

T ← decreasedT

Slow decrease ofT gives better results, but it requires longer search. The algorithm is more
effective than hill-climbing, but its applicability is also limited.

Games (Chapter 5)

History:
• Checkers:

- Samuel’s program, 1952
- Schaeffer’s Chinook: lost to Tinsley in 1992; became the world champion in 1994

• Chess:
- Condon and Tompson’s Belle reached the master level in 1982
- Campbell and Hsu’s Deep Though / Deep Blue became the world champion in 1997

• Backgammon:
- Tesauro’s TD-Gammon program became one of the top three players in 1992

• Go game is still unsolved

We consider two-player games:
• Players take turns making moves
• Their goals are opposite
• Usuallyzero-sum,that is, the gain of the first player is equal to the loss of the second

Games model a competition withoutcomplexities of the real world. When playing a game, the
computer cannot construct a complete solution plan since it does not know the opponent’s
moves. Instead, it uses somestrategy,which determines its move in each possible position.

A game is defined by:
• Initial state

14

• Operators for changing the state (a.k.a. legal moves)
• Termination test for determining end-game states (for example, check-mate in chess)
• Utility function (a.k.a. payoff function) that determines the “quality” of each end-game state

for the first player (for example, in chess, +1, 0, or−1; in poker, the final profit)

The first player, calledMAX , tries to maximize the utility function; the second player, calledMIN,
tries to minimize it. If the players have enough time to explore the complete search tree of a
game, they can find a perfect strategy, that is, an optimal strategy for playing against an
opponent who also has an optimal strategy.

For example, consider the Tic-Tac-Toe tree:

The utility of a node in the search tree is equal to
the utility of the leaf that will be reached if both
players use a perfect strategy. In other words, a
node’s utility isu if MAX can ensure that the end-
game utility is at leastu, andMIN can ensure that it
is at mostu.

Given enough time, we can use a bottom-up
technique to compute the utility of each node.

As another example, consider a three-level game tree:

In this example, ifMAX uses an optimal
strategy, it will win at least 3. IfMIN uses an
optimal strategy, it will lose at most 3.

The algorithm for computing utilities is calledMINIMAX . The knowledge of utilities allows
players to select optimal moves.

In practice, we cannot expand a complete
tree. Instead, we “cut” the search at some
depth and apply an evaluation function to
estimate the utility. Then, we useMINIMAX
to propagate the estimates to the root. If an
estimate function is accurate, we usually select the best move, although the computed utility is
not exact.

The role of a utility estimate is similar to the role of theh-function in A*: accurate estimates are
essential. Estimates are usually weighted linear functions of the formw1· f1 + w2· f2 + … + wn· fn ,
wheref1,…, fn are features of a state, andw1,…, wn are weights representing their importance.

×

× ×
×

× ×
× ×
×

× ×
×
×

×

×
…

××

…

−1 1 0

MAX

MIN
−3 4 −2

4

4 −3 4 3 −2 5

unexplored part

3 –3

3
MAX

MAX

MIN

2

3–4 –3

5 –4 3 3 6

–6 5 –4 –63 2 1 –4 –36

–3

15

A good evaluation function should give an average estimate for all positions
with identical featuresf1, …, fn. Good feature sets should identify positions
that have close utilities. For example, features of a chess position include the
available pieces and their interactions. Features must be selected by a human
expert; weights can be learned by the computer.

Problems:
• Evaluations should be applied only toquiescentpositions, where features cannot significantly

change in the next move; for example, opponent cannot capture the queen
• The algorithm should account for thehorizon problem,that is, threatening moves by the

opponent that can be delayed but not avoided

Alpha-Beta Search

Sometimes, we can discard a node without considering all its children.

Idea: If we already know that some move
is worse than another move, we do not need
to know how bad it actually is. For example,
if we know that some chess move will cause
at leastthe loss of a rook, we skip it and
consider another move.

General picture:

Same ofMIN, with the opposite inequality.

During the depth-first search, we keep two values:
α is the best alternative forMAX

β is the best alternative forMIN

α is the maximum of all circle nodes with known values
β is the minimum of all square nodes with known values

If MAX ’s is choice≤ α, or MIN’s
choice is≥ β, skip it. In other words,
if some subtree is outside [α, β], skip it.

features weight
queen 9
rook 5
… …

pawn 1
castling 0.5
… …

[α, β]

MAX
MIN
MAX

MIN
MAX

MAX

...
MIN

Skip this move, since there
is a better alternative.

MAX

≤ u

...

u

MAX
MIN
MAX

α = −1

−3 −1

−2 −5

if ≤ −1, skip it

MIN

if ≥ 1, skip it
β = 1

2

4

1

2

MAX

MAX
MIN

… …

MAX

MAX

MIN

–4 –63 –3 –4

–4 3 –3

≤ –4 ≤ –3

3

skip the rest of the search

3

…

16

Game search algorithm:

MAX-VALUE (state, α, β)
if CUTOFF(state) ! depth limit?

then return EVAL(state) ! apply evaluation function

for each successors of state
do α ← max(α, MIN-VALUE (s, α, β))

if α ≥ β ! MIN will not go here

then return β ! prune the branch

return α

MIN-VALUE (state, α, β)
if CUTOFF(state)

then return EVAL(state)
for each successors of state

do β ← min(β, MAX-VALUE (s, α, β))
if β ≤ α

then return α
return β

For the top-level call,α = −∞ andβ = +∞.
Note thatα < β at all times; the actual value of a node is betweenα andβ

If the program usually guesses an optimal move and considers it first, then it quickly narrows the
[α, β] interval and skips poor moves. If guessing isalmost always correct, the branching factor is

reduced fromb to ,b and the algorithm can search twice deeper in the same amount of time.

To make good guesses:
• Use simple heuristics
• Run a preliminary search with smaller depth

Element of chance

Some games include random choice; for example, backgammon
and card games. We add random-choice nodes to the game tree.
The utility of a random-choice node is determined as the mean
utility of its children.

If different children have different probabilities,
we need to compute the weighted mean; for
example, 0.5⋅ 6 + 0.2⋅ 5 + 0.3 ⋅ 4 = 5.2.

5

MAX

CHANCE

MIN

CHANCE
MAX 6 4

6 4 2 3 4
6 5 4

0.20.5 0.3

17

If branching factor of random choice is small, we can applyMINIMAX , but the depth is very low
for both computers and human players. The evaluation function must allow averaging; this
requirement is different from no-chance games, where the function needs to show only the
relative quality of nodes.

Example:

If branching of random choice is large (for example, cards), theMINIMAX algorithm is
impractically slow. An alternative technique is reinforcement learning.

Some nontraditional approaches to games:
• Goal-directed reasoning (for example, “how to capture the opponent’s queen”)
• Recognition of standard situations and appropriate actions (for example, castling, pawn

patterns, pieces in the right places)
• Meta-reasoning: Utility of different search branches, choice among different strategies

Planning (Chapter 11 and Prodigy reading)

The task is to find a sequence of steps that leads to a certain desired situation.

Historical motivation: Planning high-level actions of Shakey the Robot (SRI, early 70s).

Other examples:
• Plan a sequence of scientific experiments
• Schedule machine-shop operations
• Plan the delivery ofUPSpackages
• Plan military operations

Basic search algorithms, such asDFSor IDA* from the initial state, are impractically slow.
We need a representation that allows dividing a goal into subgoals, selecting operators relevant
to the goal, and reasoning aboutproperties of operators.

Two main approaches:
• Domain-specific systems, with specialized ad-hoc techniques
• General systems, which are re-usable but inefficient
Some systems are in-between.

Problems:
• Representing the world state
• Describing actions and goals
• Generating appropriatesequences of actions

MAX

MIN
0 3 0 3

0 6 5 3 0 100 5 3
same move

MAX

CHANCE
3 4 50 4

0 6 5 3 0 100 5 3
different moves

18

Trade-off:
• If a representation is simple, hard to describe the world
• If it is complex, hard to plan efficiently

Simple STRIPS representation

The world is a collection of literals:

door(1, 2) robot-in(3)
door(2, 3) in(A, 1)

in(B, 2)
Rooms: 1, 2, 3
Boxes: A, B Assume that we know everything relevant about the world.

Closed-world assumption:If a literal is part of the description, it is true. If not, it is false; for
example, door(1, 3) is false. Thus, we do not explicitly represent negations.

An operator is defined bypreconditionsandeffects, with typed variables.

go(x, y)
x, y: room
Pre: robot-in(x) ∧ door(x, y) ∧ ¬ locked(x, y)
Eff: del robot-in(x)

add robot-in(y)
push(b, x, y)
b: box
x, y: room
Pre: robot-in(x) ∧ in(b, x) ∧ door(x, y) ∧ ¬ locked(x, y)
Eff: del robot-in(x)

del in(b, x)
add robot-in(y)
add in(b, y)

Thepreconditionsof an operator are a conjunction of predicates and their negations; apredicate
is a literal with variables. Theeffectsare a collection of predicates to be added to or deleted from
the world state.

Operator application:

Applicationmeans a simulation of an operator execution rather than the execution in the real
world. We can apply an operator only if its preconditions are satisfied.

go(3, 2)

robot-in(3)
in(A, 1)
in(A, 2)
…

robot-in(2)
in(A, 1)
in(A, 2)
…

x andy are variables

x y

A B1

3
2

19

A goal is a conjunction of literals and negated literals; for example,
• robot-in(1)
• in(A, 3) ∧ in(B, 3)

Standard extensions

(1) Disjunctions and quantifiers in preconditionsand goals; thus, preconditions and goals may be
arbitrary logical expressions.

go(x, y)
Pre: robot-in(x) ∧ (door(x, y) ∨ door(y, x))
Goals:
• ∃ b: in(b, 3), which means “move any box to room 3”
• ∀ b: in(b, 3), which means “move all boxes to room 3”

(2) Conditional effects

push(b, x, y)
Eff: del…

del…
add…
add…
if fragile(b) ∧ ¬ packed(b)

then add broken(b)

Other extensions

• Probabilistic effects: Changes happen with some probability, which depends on the world
state.

• Partial world knowledge: We do not have complete knowledge, and use sensors to learn
more.

• Random or hostile changes in the world: Someone else is changing the world state.
• Resource constraints: Operators may consume or produce resources, such as time or

electricity; in addition, operators may have limited capacity, such as moving≤5 boxes.

Different planning systems handle different features, with different degrees of efficiency.

20

Search strategies

• Forward search from the initial state
It works only in very small domains. The branching
factor is huge since there are a lot of possible actions,
most of which are irrelevant.

• Backward search from the goal

If we consider only goal-relatedoperators, this technique is better than forward search, but the
branching factor is still impractically large.

• Goal-directed reasoning

The branching factor is usually small; however, we no longer know the exact world state, which
creates problems:

• Different parts of the plan may interfere with each other

• The plan may contain redundant operators

Alternative solutions:
• Simulate the execution of some operators, thus gaining information about the world state

(Prodigy)
• Determine all possible interactions ofoperators, and impose a partial order (UCPop)

in(A, 3) ∧ in(B, 3)
…
…

in(A, 2)
in(B, 3)
robot-in(2)

push(A, 2, 3)
push(B, 2, 3)

push(B, 1, 2)

go(1, 2)
go(1, 3)
…
push(A, 1, 2)
…

…

…
…

A
B

5

4

3

2

1

… go(2, 3) …

… go(2, 1) …

go(3, 2)

go(3, 2) …

robot-in(2)

robot-in(2)

…
…

in(A, 3)
in(B, 3)

push(A, 1, 2)
…

…

go(3, 2)
…

…

push(A, 2, 3)
in(A, 2)

robot-in(2)

in(B, 2)
robot-in(2)

push(B, 2, 3)

21

The relative performance of these techniques depends on a specific domain; neither is
universally better than the other.

Prodigy search

At each step of planning, we need to make several decisions that determine the next modification
of the current plan:

Example:
• Choose a goal

• Choose an operator

head plan

Decide whether to apply an operator
or add a new operator to the tail

Choose some precondition or goal
literal that is not true in the current state

Choose an operator that
achieves this literal

Choose an instantiation for
the variables of the operator

Choose an
operator to apply

apply add a new operator

tail plan

goalsrobot-in(1)

go(3, 2)

go(3, 2)

push(A, 1, 2) in(A, 2)

robot-in(2)

in(B, 2)

robot-in(2)

in(A, 3)
in(B, 3)

push(A, 2, 3)

push(B, 2, 3)

go(2, 1)

go(x, 2) robot-in(2) …

current state
robot-in(3)
in(A, 1)
in(B, 2)
door(1, 2)
door(2, 3)

go(3, 2) robot-in(2)
…

initial state

robot-in(2)
push(A, 2, 3)

in(A, 2) in(A, 3)
in(B, 3)

22

go(3, 2) robot-in(2) …

• Choose an instantiation

If the planner makes a wrong decision, it may need to backtrack and consider a different
modification of the current plan.

Thus, the planner explores a search space, where each node is a plan. Each possible
modification of a plan is a transition to a new node of the search space. The planner begins with
an initially empty plan and searches the space of plans produced by modifications until
generating a complete plan.

The planner performs a depth-first search with a pre-set
depth bound. The user may choose different depth
bounds for different domains. In addition, the user may
choose a bound on the search time, to avoid long search.
The planner uses general heuristic rules to choose
promising branches of the search space.

Rule examples:
• Select operators whose preconditions are

satisfied or almost satisfied

• Select operators with fewer preconditions

The planner may also use domain-specific if-then rules, calledcontrol rules,to select promising
branches.

go(3, 2) robot-in(2) …

go(x, 2) robot-in(2) …

better thango(1, 2) because
the robot is in room 3

better thanpush(x, 2) because
gohas fewer preconditions

O2
O3

O2
O4

...

try a different
modification

does not work:
backtrack

does not work:
backtrack

...

O1 O2

23

Examples:
• Prefer the in(b, x) goal to the robot-in(y) goal

• If somepushcan be applied, then apply it before adding new operators to the tail plan.

Control rules may be provided by theuser of learned automatically.

To reduce the branching factor, we may forbidbacktracking over some of the decisions.
Different versions of Prodigy backtrack over different decisions. For example, Prodigy2 does not
consider different goal choices, and it always chooses the latest goal. Also, it always prefers an
operator application to adding a new operator. Prodigy4 does not consider different choices of
operators to apply, and it always applies thelast added operator. When we forbid some
backtracking, we not only reduce branching factor, but also eliminate some solutions, which may
have negative effect. Different limitations on backtracking are effective in different domains.

UCPop search

• A plan is a partially ordered sequence of operators
• The initial state is considered the first operator of the plan
• Some variables in the plan may not be instantiated

Result:go(3, 2),push(B, 2, 3),go(3, 2),go(2, 1),push(A, 1, 2),push(A, 2, 3)

robot-in(1)
in(A, 3) ……

work on this
goal first

robot-in(2)
in(B, 2)

…
current
state

push(B, 2, 3) in(B, 3) …
robot-in(1) …

applypush(B, 2, 3) before
working on the other goals

robot-in(z)

robot-in(y)

x = 3

push(A, y, 2)

robot-in(2) go(2, 1)

robot-in(3)
in(A, 1)
in(B, 2)
door(1, 2)
door(2, 3)

in(A, y) in(A, 2)

robot-in(2)
push(A, 2, 3)

push(B, 2, 3)
go(x, 2)

in(B, 2)

robot-in(2)robot-in(x)

z = 3
y = 1go(z, 2)

in(A, 3)
in(B, 3)

goals

y = 1
initial
state

24

(1) Adding a new link.

E.g. go(x, 2) robot-in(2)

(2) Resolving threats.
A threat is an operator that may interfere with a link.
E.g.

go(x, 2) robot-in(2)

Every threat must be ordered with respect to the link; that is, if operatorC is a threat forA → B,
thenC must be either beforeA or afterB.

To summarize, the planner makes three main decisions at each step:
1. Choose a precondition or goal
2. Choose an operator to achieve it
3. Choose an ordering to resolve threats
The planner backtracks over Decisions 2 and 3, but it does not backtrack over Decision 1.

Hierarchical planning (Sections 12.2 and 12.3)

Idea:Construct a high-level plan and then refine it by replacing each operator with more specific
operators; intuitively, a high-level operator is like a subroutine. Note that an operator may have
many possible replacements.

new
link

push(A, 2, 3)

… …go(2, 1)
push(A, 2, 3)

For each threat to some link, decide
whether it is before or after the link

………

goal choice, one branch

operator choice, many branches

resolving threats, many branches

insert key
turn key

⋅ ⋅ ⋅

open car’s door
take the seat
close car’s door

⋅ ⋅ ⋅

go to store
get milk
go back

or take wallet
get into car

⋅ ⋅ ⋅
take wallet
take bike

⋅ ⋅ ⋅

Choose some preconditions or goal
that is not linked to any operator

Choose a new operator,
add it to the plan,

and link it to the goal

Choose an old operator
and link it to the goal

Decide whether to link it to one
of the operations in the plan

or add a new operator new operatorold operator

25

We continue to replace operators until reaching the level ofprimitiveoperators, which have no
decomposition. The primitive operators should be easily executable; the choice of primitive
operators depends on an application.

When encoding a domain, we separate operators into primitive and nonprimitive. For each
nonprimitive operator, we specify all possible decompositions, which are partially ordered plans
with appropriate links.

Example:

The preconditions and effects of the replacement plan must match the higher-level operator. That
is, if the preconditions of the higher-level operator are satisfied, then the preconditions of all
operators in the replacement plan must also be satisfied, and the effects of the replacement plan
must be the same as the effects of the higher-level operator. The choice of decompositions is the
user’s responsibility.

At each step, the planner has to decide between adding a new link and decomposing an old
operator. If decomposing, it needs to choose an operator and its decomposition.

Note that decomposition of an operator may lead to new threats caused by side effects of the
decomposition. Also note that the user may provide an initial high-level plan, and use the planner
only for selecting low-level replacements of given high-level operators.

go(x, y)
……

push(b, x, y)
go-to-box(b, x) push-to-door(b, x, y) push-thru-door(b, x, y)

notify-user(b, x, y)
go-to-box(b, x) lift-box(b, x) go(x, y) put(b, y)

notify-user(b, x, y)

Decide whether to add a link
or decompose an operator

Choose an old
nonprimitive operator

Choose a decomposition

For each threat to some link, decide
whether it is before or after the link

see above

decompose
operator

no backtracking

no backtracking

backtrack over
the choice of

decomposition

add
link

26

Problems:
• A high-level plan may not haverefinements; for example, we may plan to go to a store, and

on a lower level find out that the car key is lost, and the bike has a flat tire
• A good low-level plan may not have a corresponding high-levelplan; for example:

Solutions:
• Provide a decomposition that does not cause these problems,

which is the user’s responsibility for each domain
• Make sure that the problems do not occur too often,

and the hierarchical planning is efficient on average
• Implement techniques for optimizing low-level plans

Learning

Machine learning is automated collection and analysis of new data. Usual goals:
• learn a new concept or behavior, or
• improve the performance (speed or solution quality).

Simple example:Throw a hard object with
a known speed and predict the distance.

Experiments:
30 feet/sec, 30 feet
60 feet/sec, 120 feet
90 feet/sec, 270 feet

Memorization:Store the available data points, and use the experience to generate correct
predictions for these known (or similar) cases.

Learning hypothesis:Find a function that fits the available data, and use it to generate
predictions for other cases; for example,d = v2 / 30 fits the available data. The learning process is
search for an appropriate function; the space of candidate functions is called ahypothesis space.

Occam’s razor:Prefer simple hypotheses to more complex ones. A hypothesis is considered
simpler if it has fewer parameters. For example,ax+ b is simple, andaxb is also simple;ax2 + bx
+ c is more complex, andanx

n + an−1x
n−1 + ... +a0 is even more complex.

Occam’s razor preventsoverfitting,that is, finding a complex function that fits available data but
gives wrong predictions for other data.

obtain milk obtain bread

go to store buy milk go back go to store buy bread go back

45º

d

30 9060

120

30

270

d

v

27

The choice of hypothesis space and preferences among its elements is called alearning bias. It
determines the hypotheses (functions) that the learner may consider.

The choice of an appropriate space is essential. If it is too small, it may not have the right
functions; for example, the linear regression may be insufficient. If it is too big, the search may
take forever.

We may view any learned knowledge as a function that maps questions (problems, situations)
into appropriate answers; that is,f(question) = answer. Asupervised learningalgorithm inputs
some questions with appropriate answers, and tries to finda pattern for answering other
questions.

Decision trees (Chapter 18)

Example
ELS + FSR− ESC?
FLR − LLS + FSC?
LSC − ESR+

Meaning:
+ need to fill the tank
− enough gas

E empty tank
L low tank
F full tank

S short drive
L long drive

S sunny
C cloudy
R rainy

A decision tree allows us toclassifyobjects, that is, decide which objects belong to a certain
class, and which do not. We construct it from a set oftraining examples,which are classified as
positive (i.e. belonging to the class) and negative.

Algorithm
• Split examples on the first attribute
• If some nodes get both positive and negative examples,

recursively split them on the next attribute
• Continue splitting until each leaf is+ or −
See Figure 18.7 in the textbookfor a more detailed algorithm.

High-level view:We need to learn a Boolean function that maps examples into+/−. The tree
encodes such a function, which is a learning hypothesis. The hypothesis space includes all
possible trees, and the algorithm searches for an appropriate tree.

The resulting tree correctly classifies all training examples, but it may give wrong results for new
examples. A related philosophical question ishow we can ever be sure that a hypothesis derived
from a training set will work for other examples.

E L F
S L+ –

+ –

Decision tree

E L F
ELS +
ESR+

LSC –
LLS +

FLR –
FSR–

28

Problems
• Splitting on an inappropriate attribute

We may still get a correct tree, but with more levels.
According to Occam’s razor, smaller trees are better.

• Insufficient training data
For instance, suppose that there is a “medium-
distance drive” scenario, but no data forLM ∗ .

• Insufficient attributes
For instance, we may get training examplesLSC−, LSC+, andLSC−.

• Overfitting
For instance, suppose that the training examples are
LSC−, LSR−, andLSS+. TheLSS+ example comes from
driving to Canada, where the gas is more expensive,
but the destination is not among the attributes.
Theoverfitting is building a tree that fits the training
data “too well”; that is, an accurate fit does not lead to a generalization.

• Limited expressiveness
- Hard to deal with real-valued attributes; usually, we

discretize such attributes bydefining appropriate ranges
- Near-impossible to learn parity

To evaluate the quality of a tree:
• Divide the available examples into training set and test set
• Use the training set to build a tree
• Use the test set to evaluate its accuracy, that is, the percentage of correct classifications

To determine the quality of available data, repeat these steps for
several random divisions into training and test sets, and take the
average. To determine the necessary number of examples, evaluate
the accuracy for sets of different sizes.

Selecting informative attributes

Different attributes provide different amount of information about the right answer; for example,
the amount of fuel is very informative, and the weather is not at all. Intuitively, if we earn certain
money for giving the right answer, then we will pay differently for different attributes. The
“value” of information is measured in bits. Theprediction of a fair-coin outcome is worth one
bit. The prediction of an unfair coin is worth less because we already have a good idea about the
outcome. If a “coin” hask sides, with the corresponding probabilitiesq1,...,qk, then the value of
an accurate prediction is

I(q1,...,qk) = − q1 ⋅ lg q1 − q2 ⋅ lg q2 − ... − qk ⋅ lg qk.

Fair coin:− 0.5 ⋅ lg 0.5− 0.5 ⋅ lg 0.5 = 1.
Unfair coin:− q ⋅ lg q − (1 − q) ⋅ lg (1 − q).
One-sided “coin”:− 1 ⋅ lg 1 = 0 (no information at all).
Gas decision:q = 3 / 6 = 0.5;I = 1.

S C R

weather

–

E L F

S L
+ –

+
M

?

E L F
S L+ –

67%– +

we need:

E L F
S L+ –

–

+

we get:

S C R
+–

100%
accu-
racy

number of
examples

learning curve

29

Each attribute gives part of the information; thus, one attribute is worth less than 1. We may
determine the exact worth of an attribute by calculating how much information we needafter the
attribute test.

If we havep positive andn negative examples, the worth of an accurate classification is

(,) lg lg
p p n n

cost p n
p n p n p n p n

= − ⋅ − ⋅
+ + + +

.

An attribute divides examples into several groups, each with positive and negative examples:

For each group, we need to make a decision, which incurs additional cost:

We need to adjust additional costs by their probabilities:

1 1
1 1- (,) ... (,)k k

k k

p np n
Additional Cost cost p n cost p n

p n p n

++= ⋅ + + ⋅
+ +

Gas example:
Additional-Cost= 0.33⋅ 0 + 0.33⋅ 1 + 0.33⋅ 0 = 0.33

The worth of an attribute is
Gain= cost(p, n) − Additional-Cost

= 1 1
1 1(,) (,) ... (,)k k

k k

p np n
cost p n cost p n cost p n

p n p n

++− ⋅ − − ⋅
+ +

Gas example:
Gain= 1 − 0.33 = 0.67

The resulting value is called theinformation gainof the attribute. We
compute it for each attribute, select the attribute with the highest gain,
and put it at the root of the tree. This strategy helps to minimize the depth
of the final tree.

When recursively constructing the next level of the tree, we use the corresponding subgroups of
examples for computing the information gain. For instance, we need to compute the information
gain of the driving distance and weather for the group “LSC−, LLS+.”

If the information gain of all attributes is “toolow,” we should not split at all, thus preventing
overfitting. If the gain is low, then the distribution of positive and negative examples in the
leaves is about the same as in the parent:

p, n

p2, n2 ...p1, n1 pk, nk
E L F

2, 0 1, 1 0, 2

gas example
3, 3

cost(p, n)

cost(p2, n2) ...cost(p1, n1) cost(pk, nk) E L F

0 1 0

gas example
1

E L F
ELS +
ESR+

LSC –
LLS +

FLR –
FSR–

30

If p / n ≈ p1 / n1 ≈ p2 / n2 ≈ ... ≈ pk / nk,
then the split is not useful.

The gain isnot low if the distribution deviates from this pattern with statistical significance as
measured by theχ2-distribution test. Thus, we use an attribute in splitting only if it passes the
statisticalχ2 test. This strategy is calledχ2 pruning; it allows handling “noise” and insufficient
data without overfitting.

Cross-validation:Set aside some of the available data and use them to evaluate the quality of a
tree. We may also use them to prune inappropriate branches, thus avoiding overfitting.

Sample complexity

Intuitively, the sample complexity of a learning algorithm is the dependency between the number
of training examples and the accuracy of the learned knowledge.

A learned hypothesis (e.g. a decision tree) isapproximately correctif it correctly classifies
“almost all” examples; that is, the error rate is within some smallε. A learning algorithm is good
if it produces an approximately correct hypothesis with high probability; that is, the probability
of not being approximately correct is within some smallδ. In this case, we say that learning is
probably approximately correct(PAC). The required number of training examples is a function of
ε andδ; this function is calledsample complexity.

The probability that the learned hypothesis incorrectly classifies a given example is withinδ + ε,
whereδ is the chance that the learned hypothesis is no good, andε is the chance that a good
hypothesis gives a wrong result.

Stationarity assumption:Training examples have the same distribution as test examples. Without
this assumption, we cannot guarantee good results.

The learner selects a hypothesis from a certain pre-defined space, for instance, from the space of
possible decision trees. The hypothesis is consistent with all training examples; thus, each
example eliminates wrong hypotheses from the space. The more examples, the fewer wrong
hypotheses are left.

Suppose thatH is a “bad” hypothesis; that is, its error rate is >ε. The
probability that it is consistent with one training example is < 1− ε. The
probability that it is consistent withm training examples is < (1− ε)m.
Suppose that the space includesh different hypotheses. Then, the
probability that at least one bad hypothesis is consistent with allm
examples is <h ⋅ (1 − ε)m. This probability must be bounded byδ:

h ⋅ (1 − ε)m ≤ δ,
which holds if

1 1
(ln ln).

ε δ
m h≥ ⋅ +

p, n

p2, n2 ...p1, n1 pk, nk

H4

H1

H5 H6

H3H2

ex3 ex2

ex1

31

Thus, to ensure probable approximate correctness, we need
1 1

(ln ln)
ε δ

h
 ⋅ +  

training examples.

The number of examples depends on error rates,ε and δ, and on the number of candidate
hypotheses,h. The hypothesis-space size is usually exponential in the length of hypothesis
description, and the required number of examples is usually polynomial in the description length.

Justification for Occam’s razor:Shorter hypotheses require fewer examples for a given error
rate; in other words, they allow more accurate learning with the available examples. Selecting a
small hypothesis space is essential.

Space of decision trees:
Suppose that we considern attributes, withk values for each attribute. For a given ordering of

attributes, the tree haskn leaves, and each leaf is+ or −; thus, there are
nk2 different trees. We

may consider !n attribute orderings; thus, the total number of trees isn! ⋅
nk2 .

ln(n! ⋅
nk2) = ln n! + ln

nk2 ≤ n ⋅ ln n + kn ≈ kn

1 1
(ln)

ε δ
nm k= ⋅ +

Thus, the number of examples is exponential in the depth of the tree; however, it is reasonably
small for a limited depth, for instance, ifn = 3.

Neural networks (Chapter 19, except 19.6)

The neural networks are based on the analogy with the human brain; however, they donot
provide a plausible model of human problem-solving abilities. The artificial neural networks are
non-symbolic and massively parallel. On the other hand, human problem solving is probably
based on symbolic sequential algorithms. Although a brain consists of neurons, they seem to
form a close analog of a sequential digital computer.

Human neurons

Some inputs increase the electric potential of the
neuron, and some decrease the potential. When the
potential reaches a certain threshold, the neuron sends
an output impulse. The input/output connections and
their strength can change over time, which may be
viewed as “self-reprogramming,” that is, learning.

Artificial neurons

“Neurons” in artificial neural networks are calledunitsor nodes;“axons” arelinkswith weights.
The output is usually 0 or 1; in some models, it is−1 or 1.

dendrite
(input)

axon
(output)

connected to
other neurons

32

ai is the output of uniti
aj the output of unitj, connected to uniti
Wj,i is the weight of the connection between unitsj andi

The “potential” is called theinput function: ini = ∑Wj,i ⋅ aj.
The “threshold” is called theactivation function:

Sigmoid:
1

1 ii in
a

e−=
+

We usually use the sigmoid function because it allows an easy computation of the derivative,
which is required for learning. To simulate a step function using a sigmoid, we add unit 0 with
the constant output −1.

A neural network is a collection of units, some of which are connected. The
units that represent the outside input are calledinput units,and the units that
output the final result are calledoutput units;all other units arehidden units.
The input values may be different from 0 and 1.

Neural networks operate withcontinuous real values, which is different from most otherAI
techniques.

Example

A network without cycles is calledfeed-forward. A network with cycles isrecurrent. Note that
recurrent networks require some “clock”; they have internal state and may lead to very long (or
infinite) looping. Most applications use feed-forward networks.

aj ai
Wj,i

unit i…
…

inputs
output

+1

ini

ai

+1

ini

ai

+1

ini

ai

step function sign function sigmoid function
t 0

input hidden output

same as
almost
same as

a0 = −1 W0,i= t

ak

aj Wj,i

Wk,i

0

aj Wj,i

a0 = − 1 W0,i= t

ak
Wk,i

t

aj Wj,i

Wk,iak

1

1

–1
1.5

Perceptron

Conjunction

1

1

–1
0.5

Perceptron

Disjunction –1
–10.5

0.5
1

1
1
1

1

–1

–1
1.5

XOR

Multilayer network

33

If a feed forward-network has no hidden units, it is called a
perceptron;otherwise, it is amultilayer network.We usually
use feed-forward networks arranged in layers; each unit of a
layer is connected only to the next layer. For example, the
network in the picture is a three-layer network; note that we do
not count the input layer.

A network represents a specific function, which depends on the structure (units and links) and
weights. A learning algorithm has to find a function that fits training examples. Usually, the
human user defines the structure, and the learning algorithm adjusts the weights.

Some approaches to automatically changing the structure:
• Genetic algorithms: Simulate the“evolution” of neural networks
• Optimal brain damage: Remove the connections that seem unnecessary and readjust the

weights of the other connections; repeat until the performance begins to degrade
• Tiling algorithm: Add new units to improve the classification accuracy using techniques

similar to building a decision tree

Perceptrons

A perceptronis a one-layer feed-forward network; thus, it
has no hidden units. Each output unit is independent of the
other units, which means that we can limit the study to
single-output perceptrons.

in = ∑Wj ⋅ Ij

A perceptron can represent some Boolean functions, such asAND, OR, and
majority, but it cannot representXOR or parity.

If a perceptron uses the “sign” activation function, it outputs 0 when∑ Wj ⋅ Ij < 0, and 1
otherwise. If we view possible inputs as points inn-dimensional space, then this inequality
describes a halfspace.

Thus, positive examples must be separated from negative by a hyperplane in
then-dimensional space; we say that they arelinearly separable.If this
condition does not hold, a perceptron cannot reliably distinguish between
positive and negative examples.

Example

…

I1

I2

In

W1

W2

W0
Wn I0 = –1

input
layer

output
layer

hidden
layers

output 1

output 0
I1

I2

I1

I2

1

10
I1

I2

1

10
I1

I2

1

10

positive
negative

AND OR XOR
separable separable not separable

34

Thus, constructing a perceptron for a given set ofexamples is equivalent to finding a hyperplane
that separates positive and negative examples. If the examples are separable, we can efficiently
construct a perceptron that classifies them.

• Make a perceptron with an appropriate number of inputs
• Randomly assign weights (usually, between –0.5 and 0.5)
• Repeatedly recompute weights based on the training examples

Updating weights:
• If the perceptron correctly classifies a training example, do not change the weights
• If it gives 1 instead of 0 (negative error), increase the weights of the negative inputs

and decrease the weights of the positive inputs
• If it gives 0 instead of 1 (positive error), do the opposite

Thus, we update each weightsWj as follows:
Wj ← Wj + α ⋅ Ij ⋅ Err

Ij is input j for the current example
Err = Correct-Output– Observed-Output, which is –1, 0, or 1

- If the output is correct,Err = 0
- If 1 instead of 0,Err = –1
- If 0 instead of 1,Err = 1

α is the learning rate

We can re-use an example several times during the learning process. Anepochof learning is
updating the weights for each of the examples; the learning process involves multiple epochs.

Example:Learning the majority function.

α = 0.1

This search is hill-climbing toward appropriate weights, with no local maxima. Ifα is
sufficiently small to avoid “jumping across the maximum,” the perceptron converges to
appropriate weights.

Multilayer networks

The learning algorithm is similar to perceptrons; it repeatedly modifies
weights until the network correctly classifies (almost) all examples.
The activation function in multilayer networks is usually the sigmoid.

Examples Weights
I1 I2 I3 W1 W2 W3 W0

−0.5 0.5 −0.5 0.0
1 1 −1 −0.5 0.5 −0.5 0.0

−1 1 −1 −0.4 0.4 −0.4 0.1
1 −1 1 −0.3 0.3 −0.3 0.0

…

0

0.5

–0.5 –1

–0.5I1

I2

I3

35

Back-propagation:At each step, the update of weights
propagates backward from the output layer.

• For each output uniti, determine its error:
Erri = Correct-Outputi – Observed-Outputi

If the activation function is the sigmoid,Erri may be fractional, between –1 and 1.
• Compute the corresponding error term:

∆i = Erri ⋅ g′(ini)
g′(ini) is the derivative of the activation function; for the sigmoid,g′(ini) = g(ini) ⋅ (1 –g(ini))

• For each unitj linked to i, update the weightWj,i:
Wj,i ← Wj,i + α ⋅ aj ⋅ ∆i

The rule is similar to that for perceptron, but there are two differences:
- we use∆i instead ofErri

- we update the weights of links outgoing from the
next-to-last layer rather than from the input units

• Compute the error term for each unitj in the next-to-last layer;
intuitively, we propagate the error term:
∆j = g′(inj) · ∑Wj, i · ∆i (the sum over output units; the weights arebeforethe update)

Thus, we compute these error terms before updating the weights.
• Use these error terms to update the weights of incoming links,

propagate error terms backward to the next layer, and so on.

Steps of back-propagation:
• Compute∆ values for the output layer
• Repeat until reaching the earliest hidden layer:

- propagate∆ values back to the previous layer
- update the weights between the two layers

• Update the weights between the earliest hidden layer and the input layer
For more details, see the algorithm in Figure 19.14 of the textbook.

Mathematical foundations

The error for a specific example is a function of all weights in the network.
The back-propagation procedure is a gradient descend toward the minimum
of this function. The learning rateα determines the size of steps.

The convergence time depends on a specific setof examples; in the worst case, it may be
exponential in the number of inputs. Furthermore, the gradient descent can stop at a local
minimum; for instance, if most examples are positive, it may converge to classifying all
examples as positive. We can use simulated annealing to avoid local maxima.

Advantages and drawbacks

In theory, we can represent any continuous function by a two-layer network, and any function at
all by three layers; however, the required number of nodes may be exponential. Note that the
expressiveness of a network with a specific fixed structure is still limited.

W2

W1

∑ Erri
2

…

…

update

36

Advantages:
• Effective for dealing with continuous values
• Insensitive to noise
Drawbacks:
• Provides yes/no answers without probabilities
• Does not provide explanations
• Does not use prior knowledge in learning

Some applications:
• Handwriting recognition (e.g. zip codes)
• Face detection and recognition
• Automated driving (NavLab)

