Artificial Intelligence: Assignment 5

Due date: March 29 (Wednesday)

Problem 1 (2 points)

Read Chapter 18 and answer the following questions:

- (a) What are the main advantages and drawbacks of using Occam's razor in learning?
- (b) What are the main limitations of the decision-tree learning?

Problem 2 (3 points)

Suppose we are trying to learn the concept of "scientist," based on the following examples:

=======			===========	
	ΙQ	good hacker?	has publications?	hobby
positive	160 100 100 160 130 100 130 160	yes yes no yes yes no yes no yes	no no yes yes yes yes yes yes no	sci-fi music tennis tennis tennis music music music sci-fi
negative negative negative negative negative	130 130 100 130 100	yes no no yes no	no no yes no no	sci-fi sci-fi tennis music music

Use these data to construct a decision tree; you should compute the information gains to decide which attributes are more important. For each node of the tree, indicate the corresponding information gain.

Problem 3 (5 points)

Implement a program for building decision trees. It should read a file with training and test examples, use the training examples to build a tree, and then classify the test examples. The only required output is the classification of the test examples; it does *not* have to include the tree itself. The input format is as follows:

```
<classification> <attribute> <attribute> ... <attribute> ... <classification> <attribute> <attribute> ... <attribute> <attribute> ... <attribute> ... <attribute> ... <attribute> ... <attribute> ... <attribute>
```

The training examples are above the blank line, and the test examples are below. <classification> is either "positive" or "negative," and each <attribute> is a string of lower-case letters. The length of an attribute is at most twenty characters; successive attributes are separated by one or more spaces. For instance, the following file includes three training examples and two test examples:

positive	smart	hacker	nopapers	scifi
positive	average	hacker	papers	music
negative	average	nohacker	nopapers	music
average	hacker	papers	music	
smart	nohacker	nopapers	scifi	