Prodigy search

Newell and Simon [1961; 1972] developed the means-ends analysis technique during their
work on the General Problem Solver (GPs), back in the early days of artificial intelligence.
Their technique combined goal-directed reasoning with forward chaining from the initial
state. The authors of later systems [Fikes and Nilsson, 1971; Warren, 1974; Tate, 1977
gradually abandoned forward search and began to rely exclusively on backward chaining.

Researchers investigated several types of backward chainers [Minton et al., 1994] and
discovered that least commitment improves the efficiency of goal-directed reasoning, which
gave rise to TWEAK [Chapman, 1987], ABTWEAK [Yang et al., 1996], SNLP [McAllester
and Rosenblitt, 1991], ucPoP [Penberthy and Weld, 1992; Weld, 1994], and other least-
commitment problem solvers.

Meanwhile, PRODIGY researchers extended means-ends analysis and designed a family of
problem solvers based on the combination of goal-directed backward chaining with simulation
of operator execution. The underlying strategy is a special case of bidirectional search [Pohl,
1971]. It has given rise to several versions of the PRODIGY system, including PRODIGY],
PRODIGYZ2, NOLIMIT, PRODIGY4, and FLECS.

The developed algorithms keep track of the domain state that results from executing parts
of the currently constructed solution, and use the state to guide the goal-directed reasoning.
Least commitment proved ineffective for this search technique, and Veloso developed an
alternative strategy, based on instantiating all variables as early as possible.

Experiments have demonstrated that PRODIGY search is an efficient procedure, a fair
match to least-commitment systems and other successful problem solvers. Moreover, the
PRODIGY architecture has proved a valuable tool for the development of learning techniques,
and researchers have used it in constructing a number of systems for the automated acqui-
sition of control knowledge.

We have utilized this architecture in the work on the representation changes and con-
structed the SHAPER system as an extension to PRODIGY. In particular, SHAPER’s library
of problem solvers is based on PRODIGY search algorithms. We therefore describe these
algorithms before presenting SHAPER.

First, we review the past work on the PRODIGY system and discuss advantages and draw-
backs of the developed search techniques (Section 2.1). Then, we describe the foundations
of these techniques and their use in different versions of PRODIGY (Section 2.2), as well as

38

CHAPTER 2. PRODIGY SEARCH 39

version year authors

PRODIGY1 1986 Minton and Carbonell

PRODIGY2 1989 Carbonell, Minton, Knoblock, and Kuokka
NOLIMIT 1990 Veloso and Borrajo

PRODIGY4 1992 Blythe, Wang, Veloso, Kahn, Perez, and Gil
FLECS 1994 Veloso and Stone

Table 2.1: Main versions of the PRODIGY architecture. The work on this problem-solving archi-
tecture continued for over ten years, and gave rise to a series of novel search strategies.

the main extensions to the basic search engine (Sections 2.3 and 2.4). Finally, we report
the results of a joint investigation with Blythe on the completeness of the PRODIGY search
technique (Section 2.5).

2.1 PRODIGY system

The PRODIGY system went through several stages of development, over the course of ten
years, and gradually evolved into an advanced architecture, which supports a variety of
search and learning techniques. We give a brief history of its development (Section 2.1.1)
and summarize the main features of the resulting search engines (Section 2.1.2).

2.1.1 History

The history of the PRODIGY architecture (see Table 2.1) began circa 1986, when Minton and
Carbonell implemented PRODIGY1, which became a testbed for their work on control rules
[Minton, 1988; Minton et al., 1989a]. They concentrated on explanation-based learning of
control knowledge and left few records of the original search engine.

Minton, Carbonell, Knoblock, and Kuokka used PRODIGY1 as a prototype in their work
on PRODIGY?2 [Carbonell et al., 1990], which supported an advanced language for describing
problem domains [Minton et al., 1989b]. They demonstrated the system’s effectiveness in
scheduling machine-shop operations [Gil, 1991; Gil and Pérez, 1994], planning a robot’s ac-
tions in an extended STRIPS world [Minton, 1988], and solving a variety of smaller problems.

Veloso [1989] and Borrajo developed the next version, called NOLIMIT, which signifi-
cantly differed from its predecessors. In particular, they added new branching points, which
made the search near-complete, and introduced object types for specifying possible values
of variables. Veloso demonstrated the effectiveness of NOLIMIT on the previously designed
PRODIGY domains, as well as on large-scale transportation problems.

Blythe, Wang, Veloso, Kahn, Pérez, and Gil developed a collection of techniques for
enhancing the search engine and built PRODIGY4 [Carbonell et al., 1992]. In particular,
they provided an efficient technique for instantiating operators [Wang, 1992, extended the
use of inference rules, and designed advanced data structures to improve the efficiency of
the low-level implementation. They also implemented a friendly user interface and tools for
adding new learning mechanisms.

CHAPTER 2. PRODIGY SEARCH 40

Veloso and Stone [1995] implemented the FLECS algorithm, an extension to PRODIGY4
that included an additional decision point and new strategies for exploring the search space,
and demonstrated that their strategies often improved the efficiency.

The PRODIGY architecture provides ample opportunities for the application of speed-up
learning, and researchers have used it to develop and test a variety of techniques for the
automated efficiency improvement. Minton [1998] designed the first learning module for the
PRODIGY architecture, which automatically generated control rules. He demonstrated the
effectiveness of integrating learning with PRODIGY search, which stimulated work on other
efficiency-improving techniques.

In particular, researchers have designed modules for explanation-based learning [Etzioni,
1990; Etzioni, 1993; Pérez and Etzioni, 1992], inductive generation of control rules [Veloso
and Borrajo, 1994; Borrajo and Veloso, 1996], abstraction search [Knoblock, 1993], and
analogical reuse of problem-solving episodes [Carbonell, 1983; Veloso and Carbonell, 1990;
Veloso and Carbonell, 1993a; Veloso and Carbonell, 1993b; Veloso, 1994]. They also in-
vestigated techniques for improving the quality of solutions [Pérez and Carbonell, 1993;
Pérez, 1995, learning unknown properties of the problem domain [Gil, 1992; Carbonell and
Gil, 1990; Wang, 1994; Wang, 1996, and collaborating with the human user [Joseph, 1992;
Stone and Veloso, 1996; Cox and Veloso, 1997a; Cox and Veloso, 1997b; Veloso et al., 1997].

The reader may find a summary of PRODIGY learning techniques in the review papers
by Carbonell et al. [1990] and Veloso et al. [1995]. These research results have been major
contributions to the study of machine learning; however, they have left two notable gaps.
First, PRODIGY researchers tested the learning modules separately, without exploring their
synergetic use. Even though preliminary attempts to integrate learning with abstraction
gave positive results [Knoblock et al., 1991a), the researchers have not pursued this direction.
Second, there has been no automated techniques for deciding when to invoke specific learning
modules. The user has traditionally been responsible for the choice among available learning
systems. Addressing these gaps is among the goals of our work on the SHAPER system.

2.1.2 Advantages and drawbacks

The PRODIGY architecture is based on two major design decisions, which differentiate it
from other problem-solving systems. First, it combines backward chaining with simulated
execution of relevant operators. Second, it fully instantiates operators in early stages of
search, whereas most classical systems delay the commitment to a specific instantiation.

The backward-chaining procedure selects operators relevant to the goal, instantiates
them, and arranges them into a partial-order solution. The forward chainer simulates the
execution of these operator and gradually constructs a total-order sequence of operators.
The system keeps track of the simulated world state, which would result from executing this
sequence.

The problem solver utilizes the simulated world state in selecting operators and their
instantiations, which improves the effectiveness of goal-directed reasoning. In addition,
PRODIGY learning modules use the state to identify reasons for successes and failures of
the search algorithm.

Since PRODIGY uses fully instantiated operators, it efficiently handles a powerful domain

CHAPTER 2. PRODIGY SEARCH 41

language. In particular, it supports the use of disjunctive and quantified preconditions,
conditional effects, and arbitrary constraints on the values of operator variables [Carbonell
et al., 1992]. The solver utilizes the knowledge of the world state in choosing appropriate
instantiations.

On the flip side, early commitment to full instantiations and specific execution order
leads to a large branching factor, which results in gross inefficiency of breadth-first search.
The problem solver uses depth-first search and relies on heuristics for selecting appropriate
branches of the search space, which usually leads to finding suboptimal solutions. If the
heuristics prove misleading, the solver expands wrong branches and may fail to find a solu-
tion. When a problem has no solution, a large branching factor becomes a major handicap:
PRODIGY cannot exhaust the available space in reasonable time.

A formal comparison of PRODIGY with other search systems is still an open problem;
however, multiple experimental studies have confirmed that PRODIGY search is an efficient
strategy [Stone et al., 1994]. Experiments also revealed that PRODIGY and backward chainers
perform well in different domains. Some tasks are more suitable for execution simulation,
whereas others require standard backward chaining. Veloso and Blythe [1994] identified some
domain properties that determine which of the two strategies is more effective.

Kambhampati and Srivastava [1996a; 1996b] investigated common principles underlying
PRODIGY and least-commitment search. They developed a framework that generalizes these
two types of goal-directed reasoning and combines them with direct forward search. They
implemented the Universal Classical Planner (UCP), which can use all these search strategies;
however, the resulting general algorithm has many branching points, which give rise to an
impractically large search space. The main open problem is development of heuristics that
would effectively use the flexibility of uCP to guide the search.

Blum and Furst [1997] constructed GRAPHPLAN, which uses the domain state in a differ-
ent way. They implemented propagation of constraints from the initial state of the domain,
which enables their system to identify some operators with unsatisfiable preconditions. The
system then discards these operators and uses backward chaining to construct a solution
from the remaining operators. GRAPHPLAN performs forward constraint propagation prior
to the search for a solution. Unlike PRODIGY, it does not use forward search from the initial
state.

The relative performance of PRODIGY and GRAPHPLAN also varies from domain to do-
main. The GRAPHPLAN algorithm has to generate and store all possible instantiations of
all operators before searching for a solution, which often causes a combinatorial explosion;
thus, PRODIGY usually faster than GRAPHPLAN in large-scale domains. On the other hand,
GRAPHPLAN wins in small-scale domains that require extensive search.

Researchers recently applied PRODIGY to robot navigation and discovered that its exe-
cution simulation is useful for interleaving search with real execution. In particular, Blythe
and Reilly [1993a; 1993b] explored techniques for planning routes of a household robot in a
simulated environment. Stone and Veloso [1996] constructed a mechanism for user-guided
interleaving of problem solving and execution.

Haigh and Veloso [1996; 1997; 1998a; 1998b] built a system that navigates XAVIER, a
real robot at Carnegie Mellon University. Haigh [1998] integrated this system with XAVIER’s
low-level control procedures, and demonstrated its effectiveness in planning and guiding the

CHAPTER 2. PRODIGY SEARCH 42

robot’s high-level actions.

Their interleaving algorithms begin the real-world execution before PRODIGY completes
the search for a solution, thus eliminating some backtracking points in the search space. This
strategy involves the risk of bringing the robot to a deadend or even into an inescapable trap.
To avoid such traps, Haigh and Veloso restricted the use of their system to domains with
reversible actions.

2.2 Search engine

We next describe the basics of PRODIGY search; the description is based on the results of
joint work with Veloso on formalizing the main principles underlying the PRODIGY system
[Fink and Veloso, 1996]. All versions of the system are based on the algorithm described
here; however, they differ from each other in the decision points used for backtracking, and
in the general heuristics for guiding the search.

We present, the foundations of the PRODIGY domain language (Section 2.2.1), encoding of
intermediate incomplete solutions (Section 2.2.2), and the algorithm that combines backward
chaining with execution simulation (Sections 2.2.3 and 2.2.4). We delay the discussion of
techniques for handling disjunctive and quantified preconditions until Section 2.3. After
describing the search engine, we discuss differences among the main versions of PRODIGY
(Section 2.2.5).

2.2.1 Encoding of problems

We define a problem domain by a set of object types and a library of operators that act
on objects of these types. The PRODIGY language for describing operators is based on the
STRIPS domain language [Fikes and Nilsson, 1971], extended to express conditional effects,
disjunctive preconditions, and quantifications.

An operator is defined by its preconditions and effects. The preconditions of an operator
are the conditions that must be satisfied before its execution. They are represented by a
logical expression with negations, conjunctions, disjunctions, and universal and existential
quantifiers. The effects are encoded as a list of predicates added to or deleted from the
current state of the domain upon the execution.

We may specify conditional effects, also called if-effects, whose outcome depends on the
domain state. An if-effect is defined by its conditions and actions. If the conditions hold,
the effect changes the state, according to its actions. Otherwise, it does not affect the state.

The effect conditions are represented by a logical expression, in the same way as operator
preconditions; however, their meaning is somewhat different. If the preconditions of an
operator do not hold in the state, then the operator cannot be executed. On the other hand,
if the conditions of an if-effect do not hold, we may execute the operator, but the if-effect
does not change the state.

The actions of an if-effect are predicates, to be added to or deleted from the state; that
is, their encoding is identical to that of unconditional effects. We refer to both unconditional
effects and if-effect actions as simple effects. When we talk about “effects” without explicitly
referring to if-effects, we mean simple effects.

CHAPTER 2. PRODIGY SEARCH

’ Package ‘ ’ Place‘

’ Town‘ ’ Village ‘

43

—— TypeHierarchy —

leave-town(<from>, <to>)

<from>: type Town

<to>: type Place

Pre: (truck-at <from>)

Eff: del (truck-at <from>)
add (truck-at <to>)

leave-village(<from>, <to>)
<from>: type Village
<to>: type Place
Pre: (truck-at <from>)
(extra-fud)
Eff: del (truck-at <from>)
add (truck-at <to>)

load(<pack>, <place>)

<pack>: type Package

<place>: type Place

Pre: (at <pack> <place>)

(truck-at <place>)

Eff: del (at <pack> <place>)
add (in-truck <pack>)
(if (fragile <pack>)

unload(<pack>, <place>)
<pack>: type Package
<place>: type Place
Pre: (in-truck <pack>)
(truck-at <place>)
Eff: del (in-truck <pack>)
add (at <pack> <place>)

fuel(<place>)

<place>: type Town
Pre: (truck-at <place>)
Eff: add (extra-fuel)

cushion(<pack>)
<pack>: type Package

Eff: del (fragile <pack>)

add (broken <pack>))

Figure 2.1: Encoding of a simple trucking world in the PRODIGY domain language. The Trucking
Domain is defined by a hierarchy of object types and a library of six operators.

In Figure 2.1, we give an example of a simple domain. Note that the syntax of this
domain description slightly differs from the PRODIGY language [Carbonell et al., 1992], for
the purpose of better readability. The domain includes two types of objects, Package and
Place. The Place type has two subtypes, Town and Village. We use types to limit the allowed
values of variables in the operator description.

A truck carries packages between towns and villages. The truck’s fuel tank is sufficient
for only one ride. Towns have gas stations, so the truck can refuel before leaving a town. On
the other hand, villages do not have gas stations; if the truck comes to a village without a
supply of extra fuel, it cannot leave. To avoid this problem, the truck can get extra fuel in
any town.

We have to load packages before driving to their destination and unload afterwards. If a
package is fragile, it gets broken during loading. We may cushion a package by soft material,
which removes the fragility and prevents breakage.

A problem is defined by a list of object instances, an initial state, and a goal statement.
The initial state is a set of literals, whereas the goal statement is a condition that must hold
after executing a solution. A complete solution is a sequence of instantiated operators that
can be executed from the initial state to achieve the goal. We give an example of a problem
in Figure 2.2. The task in this problem is to deliver two packages from town-1 to ville-1. We
may solve it as follows: “load(pack-1,town-1), load(pack-2,town-1), leave-town(town-1,ville-1),
unload(pack-1,ville-1), unload(pack-2,ville-1)).”

The initial state may include literals that cannot be added or deleted by operators, called
static literals. For example, if the domain did not include the fuel operator, then (extra-fuel)

CHAPTER 2. PRODIGY SEARCH 44

N — Set of Objects
Initial State pack-1, pack-2: type Package
town-1 town-1: type Town

= 7 be ville-1: type Village
@@ —— Goal Statement ——
ville-1
(at pack-1 town-1) Q

(at pack-2 town-1) .
(truck-at town-1) (at pack-1 ville-1)
(at pack-2 ville-1)

Figure 2.2: Encoding of a problem in the Trucking Domain, which includes a set of object instances,
initial world state, and goal statement; the task is to deliver two packages from town-1 to ville-1.

would be a static literal. If all instantiations of a predicate are static literals, we say that
the predicate itself is static. Since no operator sequence can affect these literals, the goal
statement should be consistent with the static elements of the initial state. Otherwise, the
problem is unsolvable and the system reports failure without search.

2.2.2 Incomplete solutions

Given a problem, most problem-solving systems begin with the empty set of operators and
modify it until a solution is found. Examples of modifications include adding an operator,
instantiating or constraining a variable in an operator, and imposing an ordering constraint.
The intermediate sets of operators are called incomplete solutions. We view them as nodes in
the search space of the solver algorithm. Each modification of a current incomplete solution
gives rise to a new node, and the number of possible modifications determines the branching
factor of the search.

Researchers have explored a variety of structures for representing an incomplete solution.
In particular, it may be a sequence of operators [Fikes and Nilsson, 1971] or a partially
ordered set [Tate, 1977]. Some problem solvers fully instantiate the operators, whereas other
solvers use the unification of operator effects with the corresponding goals [Chapman, 1987].
Some systems mark relations among operators by causal links [McAllester and Rosenblitt,
1991], and others do not explicitly maintain these relations.

In PRODIGY, an incomplete solution consists of two parts, a total-order head and tree-
structured tail (see Figure 2.3). The root of the tail’s tree is the goal statement G, the other
nodes are fully instantiated operators, and the edges are ordering constraints.

The tail is built by a backward chainer, which starts from the goal statement and adds
operators, one by one, to achieve goal literals and preconditions of previously added oper-
ators. When the algorithm adds an operator to the tail, it instantiates the operator, that
is, replaces all the variables with specific objects. The preconditions of a fully instantiated
operator are a conjunction of literals, where every literal is an instantiated predicate.

The head is a sequence of instantiated operators that can be executed from the initial
state. It is generated by the execution-simulating algorithm described in Section 2.2.3. The

CHAPTER 2. PRODIGY SEARCH 45
Initial Current Goal
State State Statement
s
@&D@ D]Dsz}»@
=V
<--hed - = I|<gap=l =-- tal -->

Figure 2.3: Representation of an incomplete solution: It consists of a total-order head, which can
be executed from the initial state, and a tree-structured tail constructed by a backward chainer.

The current state C' is the result of applying the head operators to the initial state 1.

Initial State Current State Goal Statement

unload
(in-truck (pack-1,

o pack-1) ville-1) (atvﬁ?gkl-)l

- at pack-2 - —

(pack-1, (tgwn-l) == gap = (at pack-2

town-1) (truck-at unload ville-1)
town-1) (pack-2,
ville-1)

Figure 2.4: Example of an incomplete solution in the Trucking Domain: The head consists of a
single operator, load; the tail comprises two unload operators, linked to the goal literals.

state C achieved by executing the head is the current state. In Figure 2.4, we illustrate an
incomplete solution for the example trucking problem.

Since the head is a total-order sequence of operators that do not contain variables, the
current state C' is uniquely defined. The backward chainer, responsible for the tail, views C
as its initial state. If the tail operators cannot be executed from the current state C, then
there is a “gap” between the head and tail. The purpose of problem solving is to bridge
this gap. For example, we can bridge the gap in Figure 2.3 by a sequence of two operators,
“load(pack-2,town-1), leave-town(town-1,ville-1).”

2.2.3 Simulating execution

Given an initial state I and a goal statement (G, PRODIGY begins with the empty head and
tail, and modifies them, step by step, until it builds a complete solution. Thus, the initial
incomplete solution has no operators and its current state is the same as the initial state,
C=1.

At each step, PRODIGY can modify the current incomplete solution in one of two ways
(see Figure 2.5). First, it can add an operator to the tail (operator ¢ in the picture), to
achieve a goal literal or a precondition of another operator. Tail modification is a job of the
backward-chaining algorithm, described in Section 2.2.4.

Second, PRODIGY can move some operator op from the tail to the head (operator z in the
picture). The preconditions of op must be satisfied in the current state C. The operator op
becomes the last operator of the head, and the current state is modified according to the
effects of op. The search algorithm usually has to select among several operators that can

CHAPTER 2. PRODIGY SEARCH 46

ol e
e N\

150 no=8 [fooe oog

Adding an operator to the tail Applying an operator (moving it to the head)

Figure 2.5: Modifying an incomplete solution: PRODIGY either adds a new operator to the tail
tree (left), or moves one of the previously added operator to the head (right).

be moved to the head; thus, it needs to decide on the order of executing these operators.

Intuitively, we may imagine that the system executes the head operators in the real world
and has already changed the world from its initial state I to the current state C. If the tail
contains an operator whose preconditions are satisfied in C, then PRODIGY applies this
operator and further changes the state. Because of this analogy with the real-world changes,
moving an operator from the tail to the head is called the application of the operator;
however, this term refers to simulating an operator application. Even if the execution of the
head operators is disastrous, the world does not suffer: the search algorithm backtracks and
tries an alternative execution sequence.

When the system applies an operator to the current state, it begins with the deletion
effects, and removes the corresponding literals from the state; then, it performs addition of
new literals. Thus, if the operator adds and deletes the same literal, the net result is adding
it to the state.

For example, suppose that the current state includes the literal (truck-at town-1), and
PRODIGY simulates the application of leave-town(town-1,town-1), whose effects are “del
(truck-at town-1)” and “add (truck-at town-1).” The system first removes this literal from
the state description, and then adds it back. If the system processed the effects in the oppo-
site order, it would permanently remove the truck’s location, thus obtaining an inconsistent
state.

An operator application is the only way of updating the head. The system never inserts
a new operator directly into the head, which means that it uses only goal-relevant operators
in the forward chaining. The search terminates when the head operators achieve the goals;
that is, the goal statement G is satisfied in C. If the tail is not empty at that point, it is
dropped.

2.2.4 Backward chaining

We next describe the backward-chaining procedure that constructs the tree-structured tail
of an incomplete solution. When the problem solver invokes this procedure, it adds a new
operator to the tail, for achieving either a goal literal or a precondition literal of another tail
operator. Then, it establishes a link from the newly added operator to the literal achieved by
this operator, and adds the corresponding ordering constraint. For example, if the incomplete
solution is as shown in Figure 2.4, then the procedure may add the operator load(pack-2,ville-

CHAPTER 2. PRODIGY SEARCH 47

Current State Goal Statement

(in-truck

pack-1) ™S ?p?alg(:)l?dl
in-truck T N
(pack-1) (trt%%ﬁ?i)/ ville-1) (at pack-1
(at pack-2 ville-1)
town-1)) K-2
k-2 (in-truck (at pac

(truck-at (a%gv?/?]-l ~| load | aoko]) ~~| unload ville-1)

town-1))/ (pack-2, P)/ (pack-2,

(trt%(\:}v(ﬁ?tl) town-1) (trtl&l)(\:/!/(r_w ?i) ville-1)

Figure 2.6: Example of the tail in an incomplete solution to a trucking problem. First, the
backward chainer adds the unload operators, which achieve the two goal literals. Then, it inserts
load to achieve the precondition (in-truck pack-1) of unload(pack-2,ville-1).

|
' | load (in-truck :
.| (<pack>, —="pack-2) -~ |
| <place>) |
- - -7 - - - - - === == ~N- - = 7‘
,,,,,,,,,,,,,,, V. R N
! | ! |
| load (in-truck ! | load (in-truck !
| (pack-2, =" pack-2) - | (pack-2, —="pack-2)---- !
| town-1) | | ville-1) |
| |

Figure 2.7: Instantiating a newly added operator: If the set of objects is as shown in Figure 2.2,
PRODIGY can generate two alternative versions of load for achieving the subgoal (in-truck pack-2).

1) to achieve the precondition (in-truck pack-2) of unload(pack-2,ville-1) (see Figure 2.6). If
the backward chainer uses an if-effect of an operator to achieve a literal, then the effect’s
conditions are added to the preconditions of the instantiated operator.

PRODIGY tries to achieve a literal only if it is not true in the current state C and has
not been linked to any tail operator. Unsatisfied goal literals and preconditions are called
subgoals. For example, the tail in Figure 2.6 has two identical subgoals, marked by italics.

Before inserting an operator into the tail, the solver fully instantiates it, that is, sub-
stitutes all free variables of the operator with specific object instances. Since the PRODIGY
domain language allows the use of disjunctive and quantified preconditions, instantiating an
operator may be a difficult problem. The system uses a constraint-based matching procedure
that generates all possible instantiations [Wang, 1992].

For example, suppose that the backward chainer uses an operator load(<pack>,<place>)
to achieve the subgoal (in-truck pack-2) (see Figure 2.7). First, PRODIGY instantiates the
variable <pack> with the instance pack-2 from the subgoal literal. Then, it has to instantiate
the other free variable, <place>. Since the domain has two places, town-1 and ville-1, the
variable has two possible instantiations, which give rise to different branches in the search
space (Figure 2.7).

In Figure 2.8, we summarize the search algorithm, which explores the space of incomplete
solutions. The Operator-Application procedure builds the head and maintains the current
state, whereas Backward-Chainer constructs the tail.

CHAPTER 2. PRODIGY SEARCH 48

The algorithm includes five decision points, which give rise to different branches of the
search space. It can backtrack over the decision to apply an operator (Line 2a), and over
the choice of an “applicable” tail operator (Line 1b). It also backtracks over the choice of
a subgoal (Line 1c), an operator that achieves it (Line 2c), and the operator’s instantiation
(Line 4c). We summarize the decision points in Figure 2.9.

Note that the first two choices (Lines 2a and 1b) enable the problem solver to consider
different orderings of head operators. These two choices are essential for solving problems
with interacting subgoals; they are analogous to the choice of ordering constraints in least-
commitment algorithms.

2.2.5 Main versions

The algorithm in Figure 2.9 has five decision points, which allow flexible selection of opera-
tors, their instantiations, and order of their execution; however, these decisions give rise to a
large branching factor. The use of built-in heuristics, which eliminate some of the available
choices, may reduce the search space and improve the efficiency. On the negative side, such
heuristics prune some solutions and may direct the search to a suboptimal solution, or even
prevent finding any solution. Determining appropriate restrictions on the solver’s choices is
one of the major research problems.

Even though the described algorithm underlies all PRODIGY versions, from PRODIGY1 to
FLECS, the versions differ in their use of decision points and built-in heuristics. Researchers
investigated different trade-offs between flexibility and reduction of branching. They gradu-
ally increased the number of available decision points, from two in PRODIGY1 to all five in
FLECS. We outline the use of the backtracking mechanism and its evaluation in the PRODIGY
architecture.

The versions also differ in some features of the domain language, in the use of learning
modules, and in the low-level implementation of search mechanisms. We do not discuss these
differences; the reader may learn about them from the review article by Veloso et al. [1995].

PRODIGY1 and PRODIGY2

The early versions of PRODIGY had only two backtracking points: the choice of an operator
(Line 2c¢ in Figure 2.8) and the instantiation of the selected operator (Line 4c). The other
three decisions were based on fixed heuristics, which did not give rise to multiple search
branches. The algorithm preferred operator application to adding new operators (Line 2a),
applied the tail operator that had been added last (Line 1b), and achieved the first unsatisfied
precondition of the last added operator (Line 1c). This algorithm generated suboptimal
solutions and sometimes failed to find any solution.

For example, consider the PRODIGY2 search for the problem in Figure 2.2. The solver
adds unload(pack-1,ville-1) to achieve (at pack-1 ville-1), and load(pack-1,town-1) to achieve
the precondition (in-truck pack-1) of unload (see Figure 2.10a). Then, it applies load and
adds leave-town(town-1,ville-1) to achieve the precondition (truck-at ville-1) of unload (Fig-
ure 2.10b). Finally, PRODIGY applies leave-town and unload (Figure 2.10c), thus bringing
only one package to the village.

CHAPTER 2. PRODIGY SEARCH 49

Base-PRODIGY
la. If the goal statement G is satisfied in the current state C, then return the head.
2a. Either
(i) Backward-Chainer adds an operator to the tail,
(ii) or Operator-Application moves an operator from the tail to the head.
Decision point: Choose between (i) and (ii).
3a. Recursively call Base-PRODIGY on the resulting incomplete solution.

Operator-Application
1b. Pick an operator op, in the tail, such that
(i) there is no operator in the tail ordered before op,
(ii) and the preconditions of op are satisfied in the current state C.
Decision point: Choose one of such operators.
2b. Move op to the end of the head and update the current state C.

Backward-Chainer
lc. Pick a literal [among the current subgoals.

Decision point: Choose one of the subgoal literals.
2c. Pick an operator op that achieves .

Decision point: Choose one of such operators.
3c. Add op to the tail and establish a link from op to [.
4c. Instantiate the free variables of op.

Decision point: Choose an instantiation.
5c. If the effect that achieves [has conditions,

then add them to the operator preconditions.

Figure 2.8: Foundations of the PRODIGY search algorithm: The Operator-Application procedure
simulates execution of operators, whereas Backward-Chainer selects operators relevant to the goal.

********** Base-PRODIGY ~ -~ -~~~ -~ "1

2a. Decide whether to apply an operator

or add a new operator to the tail add new
7777777777777777777777777777777 operator
————— Operator-Application - - - -~ ------ Backward-Chainer ------
v

———————————————————————— [\l/

|

|

|

|

|

l

2c. Choose an operator |
that achievesthisliteral ;
|

|

|

|

|

|

|

4c. Choose an instantiation for
the variables of the operator

| j

Figure 2.9: Main decision points in the PRODIGY search engine, summarized in Figure 2.8. Every
decision point allows backtracking, thus giving rise to multiple branches of the search space.

CHAPTER 2. PRODIGY SEARCH a0

Goal
Statement

|
|
3 |
|
: (at pack-1 load (in-truck load (at pack-1) '
@ town-1) | loa |~ pack-1) [unioa rovillel) | |
: (truck-at | (trc))av%:b (truck-at .7 (\ﬂ?lcelz(-ll) (at pack-2 | |
: town-1) ville- D) villel)) |
; l
,,,,,,,,,,,,,,,,,,,,,,,, o

o~
S v \
Current State Goal

(in-truck
pack-1)

! [
1 |
! \
I in- - I
load [eave (in-truck load (at pack-1
O | [Gekr, [Gk | (st fonn, | XD Migealy L7 vleD |
| town-1) town-1) ville-1) "\ (truck-at 7 ville-1) | |(apack-2 | !
‘ (truck-at ville-1) ville-1) |
| town-1) |
e]
v

|\ - - - - -"-"-"=--"""-"="-"-"-"-"-"-"-"--"--"-"-"-"-"--"-"-~"-" -~ - -~ - - =" =-” "=-” 7 1

| |

| |

| 1

| |

‘ load leave- unload ‘

© ! (pack-1, (| (towna, | (Pack-L, ;

‘ town-1) villel)| | ville-1) |

| |

FAILURE

Figure 2.10: Incompleteness of PRODIGY2: The system fails to solve the trucking problem in
Figure 2.2. Since the PRODIGY2 search algorithm always prefers the operator application to adding
new operators, it cannot load both packages before driving the truck to its goal destination.

Since the algorithm uses only two backtracking points, it does not consider loading two
packages before the ride or getting extra fuel before leaving the town; thus, it fails to solve
the problem. This example demonstrates that the PRODIGY2 system is incomplete, that is, it
may fail on a problem that has a solution. The user may improve the situation by providing
domain-specific control rules, which enforce different choices of subgoals in Line 1c. Note
that PRODIGY2 does not backtrack over these choices, and an inappropriate control rule
may cause a failure. This approach often allows the enhancement of performance; however,
it requires the human operator to assume the responsibility for completeness and solution
quality.

NOLIMIT and PRODIGY4

During the work on the NOLIMIT system, Veloso added two more backtracking points, de-
laying the application of tail operators (Line 2a) and choosing a subgoal (Line 1c), and

CHAPTER 2. PRODIGY SEARCH o1
at pack-1 2
(tove/n-l)\ load
L (truck-at (pack-1, N (in-truck 1
Initial State & 7] Yown-1)| M(in-tru ~ unload Goal
town-1) pack-1) Statement
(at pack-1 Teave- 3 (truck-at .7 (\F/)I?fgll)
town-1) applied (truck—zitt (ttgv\/,vrgl_ L 7 ville-d) {(at pack-1
(%@%9152 scond ~ town-1) ville-1) (VIHG‘?Z
at pack-
truck-at (at pack-2 5 (intruck. ———4 A Vi ﬁe—l)
o) applied town-1)™\ l(gggk_z /('Qacw%) N t’g';gf%
first (tthv%:%// town-1) (tr_lﬁ:k-ﬁt/ ville-1)
ville-

Figure 2.11: Example of inefficiency in the PRODIGY4 system; the boldface numbers, in the upper
right corners of operators, mark the order of adding operators to the tail. Since the PRODIGY4
algorithm always applies the last added operator, it attempts to apply leave-town before one of
the load operators, which leads to a deadend and requires backtracking.

later PRODIGY4 inherited these points. On the other hand, PRODIGY4 makes no decision in
Line 1b: it always applies the last added operator. The absence of this decision point does
not rule out any solutions, but sometimes negatively affects the search time.

For instance, if we use PRODIGY4 to solve the problem in Figure 2.2, it may generate
the tail shown in Figure 2.11, where the numbers show the order of adding operators. We
could now solve the problem by applying the two load operators, the leave-town operator,
and then both unload operators; however, the solver cannot use this application order. The
system applies leave-town before one of the load operators, which leads to a deadend. It
then has to backtrack and construct a new tail, which allows the right order of applying the
operators.

FLECS

The FLECS algorithm has all five decision points, but it does not backtrack over the choice of
a subgoal (Line 1c), which means that only four points give rise to multiple search branches.
Since backtracking over these points may produce an impractically large space, Veloso and
Stone [1995] implemented general heuristics that further limit the space.

They experimented with two versions of the FLECS algorithm, called SAVTA and SABA,
which differ in their choice between adding an operator to the tail and applying an operator
(Line 2a). SAVTA prefers to apply tail operators before adding new ones, whereas SABA tries
to delay their application.

Experiments have demonstrated that the greater flexibility of PRODIGY4 and FLECS usu-
ally gives an advantage over PRODIGY2, despite the larger branching factor. The relative
effectiveness of PRODIGY4, SAVTA, and SABA depends on the specific domain, and the right
choice among these algorithms is often essential for performance [Stone et al., 1994].

Veloso has recently fixed a minor bug in the implementation of SABA, which sometimes led
to inappropriate search decisions; however, she has not yet reported empirical evaluation of
the corrected algorithm. Note that we employed the original version of SABA in experiments
with the SHAPER system, since the bug has been found after the completion of our work.

CHAPTER 2. PRODIGY SEARCH 92

Goal Statement
cushion(<pack>, <place>) Cexists <pack>_of type Package >
<pack>: type Package (at <pack>ville-1))
<place>: type Place (b) Existential quantification.

Pre: (or (at <pack> <place>)
(in-truck <pack>)) Goal Statement
Eff: del (fragile <pack>) Cforall <pack> of type Package >
(at <pack> ville-1))

(@) Disjunction. () Universal quantification.
Figure 2.12: Examples of disjunction and quantification in the PRODIGY domain language. The
user may utilize these constructs in precondition expressions and goal statements.

2.3 Extended domain language

The PRODIGY domain language is an extension of the STRIPS language [Fikes and Nilsson,
1971]. The STRIPS system used a limited description of operators, and PRODIGY researchers
added several advanced features, which allowed encoding of large-scale domains. The new
features included complex preconditions and goal expressions (Section 2.3.1), inference rules,
(Section 2.3.2), and flexible use of object types (Section 2.3.3).

2.3.1 Extended operators

The PRODIGY domain language allows complex logical expressions in operator preconditions,
if-effect conditions, and goal statements. They may include not only negations and conjunc-
tions, but also disjunctions and quantifications. The language also enables the user to specify
the costs of operators, which serve as a measure of solution quality.

Disjunctive preconditions

To illustrate the use of disjunction, we consider a variation of the cushion operator, given
in Figure 2.12(a). In this example, we can cushion a package when it is inside or near the
truck.

When PRODIGY instantiates an operator with disjunctive preconditions, it generates an
instantiation for one element of the disjunction and discards all other elements. For example,
if the solver has to cushion pack-1, it may choose the instantiation (at pack-1 town-1), which
matches (at <pack> <place>), and discard the other element, (in-truck <pack>).

If the initial choice does not lead to a solution, the solver backtracks and considers the in-
stantiation of another element. For instance, if the selected version of the cushion(o)perator
has proved inadequate, PRODIGYmay discard the first element of the conjunction, (at <pack>
<place>), and choose the instantiation (in-truck pack-1) of the other element.

CHAPTER 2. PRODIGY SEARCH 93

Quantified preconditions

We illustrate the use of quantifiers in Figures 2.12(b) and 2.12(c). In the first example, the
solver has to transport any package to ville-1. In the second example, it has to deliver all
packages to the village.

When the problem solver instantiates an existential quantification, it selects one object of
the specified type. For example, it may decide to deliver pack-1 to ville-1, thus replacing the
goal in Figure 2.12(b) by (at pack-1 ville-1). If the chosen object does not lead to a solution,
PRODIGY backtracks and tries another one. When instantiating a universally quantified
expression, the solver treats it as a conjunction over all matching objects.

Instantiated operators

The PRODIGY language allows arbitrary logical expressions, which may contain multiple
levels of negations, conjunctions, disjunctions and quantifications. When adding an opera-
tor to the tail, the problem solver generates all possible instantiations of its preconditions
and chooses one of them. If the solver backtracks, it chooses an alternative instantiation.
Every instantiation is a conjunction of literals, some of which may be negated; it has no
disjunctions, quantifications, or negated conjunctions.

Wang [1992] has designed an advanced algorithm for generating possible instantiations of
operators and goal statements. In particular, she developed an efficient mechanism for prun-
ing inconsistent choices of objects and provided heuristics for selecting the most promising
instantiations.

Costs

The use of operator costs allows us to measure the quality of complete solutions. We assign
nonnegative numerical costs to instantiated operators, and define a solution cost as the sum
of its operator costs. The lower the cost, the better the solution.

The authors of the original PRODIGY architecture did not provide support for operator
costs, and usually measured the solution quality by the number of operators. Pérez [1995]
has implemented a mechanism for using operator costs during her exploration of control
rules for improving solution quality; however, she did not incorporate costs into the main
version.

We re-implemented the cost mechanism during the work on the SHAPER system. In
Figure 2.13, we give an example of cost encoding. For every operator, the user specifies a
Lisp function, whose arguments are operator variables. Given specific object instances, the
function returns the corresponding cost, which must be a nonnegative real number. If the
operator cost does not depend on the instantiation, it may be specified by a number rather
than a function. If the user does not encode a cost, then by default it is 1.

The example in Figure 2.13(a) includes two cost functions, called leave-cost and load-
cost. We give pseudocode for these functions (Figure 2.13b) and their real encoding in the
PRODIGY system (Figure 2.13c).

The cost of driving between two locations is linear in the distance, determined by the
miles function. The user may specify distances by a matrix or by a list of initial-state

CHAPTER 2. PRODIGY SEARCH o4

leave-town(<from>, <to>) load(<pack>, <place>) cushion(<pack>)
<from>: type Town <pack>: type Package <packos: ¢ pe Backane
<to>: type Place <place>: type Place pack=: ype Fackag
Cost: leave-cost(<from>,<to>) Cost: load-cost(<place>) Cost: 5
(a) Use of cost functions and constant costs.

leave-cost (<from>,<to>) (defun leave-cost (<from> <to>)

Return 0.2 - miles(<from>,<to>) + 5. (+ (* 0.2 (miles <from> <to>)) 5))

load-cost (< place>) (defun load-cost (<place>)

If <place> isof type Village, (if (eq (type-name (prodigy-object-type <place>)) ' Village)
then, return 4; esle, return 3. 43)

(b) Pseudocode of the cost functions. (c) Actua LISP functions.

Figure 2.13: Encoding of operator costs: The user may specify a constant cost value or, alterna-
tively, a Lisp function that inputs operator variables and returns a nonnegative real number. If the
description of an operator does not include a cost, PRODIGY assumes that it is 1.

literals, and should provide the appropriate look-up procedure. The loading cost depends
on the location type; it is larger in villages. Finally, the cost of the cushion operator is
constant.

When the problem solver instantiates an operator, it calls the corresponding function
to determine the cost of the resulting instantiation. If the returned value is negative, the
system signals an error. Note that, since incomplete solutions consist of fully instantiated
operators, the solver can determine the cost of every intermediate solution.

2.3.2 Inference rules

The PRODIGY language supports two mechanisms for changing the domain state, operators
and inference rules, which have identical syntax but differ in semantics. Operators encode
actions that change the world, whereas rules point out implicit properties of the world state.

Example

In Figure 2.14, we show three inference rules for the Trucking Domain. In this example,
we have made two modifications to the original domain description (see Figure 2.1). First,
the cushion operator adds (cushioned <pack>) instead of deleting (fragile <pack>), and the
add-fragile rule indicates that uncushioned packages are fragile. Thus, the user does not
have to specify fragility in the initial state.

Second, the domain includes the type County and the predicate (within <place> <county>).
Note that this predicate is static, that is, it is not an effect of any operator or inference
rule. We use the add-truck-in rule to infer the county of the truck’s current location. For
example, if the truck is at town-1, and town-1 is within county-1, then the rule adds (truck-in

CHAPTER 2. PRODIGY SEARCH 95

TypeHierarch
P y Inf-Rule add-fr agile(<pack>)

<pack>: type Package
Pre: not (cushioned <pack>)
Eff: add (fragile <pack>)

cushion(<pack>)
<pack>: type Package
Eff: add (cushioned <pack>)

’ Package ‘ ’ Place ‘ ’ County‘

’ Town‘ ’ Village ‘

Inf-Rule add-in(<pack>, <place>, <county>)
<pack>: type Package
<place>: type Place
<county>: type County
Pre: (at <pack> <place>)
(within <place> <county>)
Eff: add (in <pack> <county>)

Inf-Rule add-truck-in(<place>, <county>)
<place>: type Place
<county>: type County
Pre: (truck-at <place>)
(within <place> <county>)
Eff: add (truck-in <county>)

Figure 2.14: Encoding of inference rules in the PRODIGY domain language. These rules point out
indirect results of changing the world state; their syntax is identical to that of operators.

Initial State

truck-at

(town-1) (truck-at Goal Statement

(within leave-town town-2)~| add-truck-in)
townt—l 0 (trtuck—at1)= (town-1, 7 (withi (town-2, | (truck-ltn 2
county- own- within county-

(withiny town-2) town-2 ~~| county-2) y
town-2 county-2)

county-2)

Figure 2.15: Use of an inference rule in backward chaining: PRODIGY links the add-truck-in rule
to the goal literal, and then adds leave-town to achieve the rule’s precondition (truck-at town-2).

county-1) to the current state. Similarly, we use add-in to infer the current county of each
package.

Use of inferences

The encoding of inference rules is the same as that of operators, which may include disjunctive
and quantified preconditions, and if-effects; however, the rules have no costs and their use
does not affect the overall solution cost.

The use of inference rules is also similar to that of operators: the problem solver adds an
instantiated rule to the tail, for achieving the selected subgoal, and applies the rule when its
preconditions hold in the current state. We illustrate it in Figure 2.15, where the solver uses
the add-truck-in rule to achieve the goal, and then adds leave-town to achieve a rule’s
precondition.

If the system applies an inference rule and later adds an operator that invalidates the
rule’s preconditions, then it removes the rule’s effects from the state. For example, the
inference rule in Figure 2.16(a) adds (truck-in town-2) to the state. If the system then applies

CHAPTER 2. PRODIGY SEARCH o6

. Initial State 1

1 / (truck-at 1

i town-1) (truck et !

! e ruck- !

within

l (town-1 _ town-2) | |

| county-1) leave-town add-truck-in (truck-in |
@ ! | (within -—{ (town-1, - (town-2, county-2) | !

‘ town-2 town-2) county-2) (within...) | |

| county-2) (within..) |

L | (within |

| town-3 |

. _county-3) / |

L - — o - —mmmm e mm mm m—— - — - — - — |
Y ______
1 Current State |
|
/N I
} leave-town . add-truck-in leave-town e 1

(b) (town-1, L (town-2, —{ (town-2, (within..) |

| town-2) | county-2) town-3) (within...) | |
| LRI |
| |

Figure 2.16: Cancelling the effects of an inference rule upon the negation of its preconditions:
When PRODIGY applies leave-town(town-2,town-3), it negates the precondition (truck-at town-2)
of the add-truck-in rule; hence, the system removes the effects of this rule from the current state.

leave-town (Figure 2.16b), it negates the preconditions of add-truck-in and, hence, cancels
its effects. This semantics differs from the use of operators, whose effects remain in the state,
unless deleted by opposite effects of other operators.

Eager and lazy rules

The Backward-Chainer algorithm selects rules at its discretion and may disregard unwanted
rules. On the other hand, if some inference rule has an undesirable effect, it should be applied
regardless of the solver’s choice. For example, if pack-1 is not cushioned in the initial state,
the system should immediately add (fragile pack-1) to the state.

When the user encodes a domain, she has to mark all rules that have unwanted effects.
When the preconditions of a marked rule hold in the current state, the system applies it at
once, even if it is not in the tail. The marked inference rules are called eager rules, whereas
the others are lazy rules. Note that Backward-Chainer may use both eager an lazy rules, and
the only special property of eager rules is their forced application in the matching states. If
the user wants Backward-Chainer to disregard some eager rules, she may provide a control
rule that prevents their use in the tail.

Truth maintenance

When the PRODIGY system applies an operator or inference rule, it updates the current state
and then identifies the previously applied rules whose preconditions no longer hold. If the
system finds such rules, it modifies the state by removing their effects. If some rules that

CHAPTER 2. PRODIGY SEARCH S7

remain in force have if-effects, the system must check the conditions of every if-effect, which
may also lead to modification of the state. Next, PRODIGY looks for an eager rule whose
conditions hold in the resulting state. If the system finds such a rule, then it applies the rule
and further changes the state.

If inference rules interact with each other, then this process may involve a chain of rule
applications and cancellations. It terminates when the system gets to a state that does
not require applying a new eager rule or removing effects of old rules. This chain of state
modifications, which does not involve search, is similar to the firing of productions in the
Soar system [Laird et al., 1986; Golding et al., 1987).

Blythe designed an efficient truth-maintenance procedure, which keeps track of all ap-
plicable inference rules and controls the described forward chaining. The solver invokes this
procedure after each application of an operator or inference rule from the tail.

If the user provides inference rules, she has to ensure that the resulting inferences are
consistent. In particular, a rule must not negate its own preconditions. If two rules may
be applied in the same state, they must not have opposite effects. If a domain includes
several eager rules, they should not cause an infinite cyclic chain of forced application. The
PRODIGY system does not check for such inconsistencies, and an inappropriate rule set may
cause unpredictable results.

2.3.3 Complex types

We have already explained the use of a type hierarchy (see Figure 2.1), which defines object
classes and enables the user to specify the allowed values of variables in operator precon-
ditions, conditions of if-effects, and goal statements. For example, the possible values of
the <from> variable in leave-town include all towns, but not villages. The early versions
of the PRODIGY system did not support a type hierarchy. Veloso designed a typed domain
language during her work on NOLIMIT, and the authors of PRODIGY4 further developed the
mechanism for using types.

A type hierarchy is a tree, whose nodes are called simple types. For instance, the hierarchy
in Figure 2.1 has five simple types: Package, Town, Village, Place, and the root type that
includes all objects. We have illustrated the use of simple types in the operator encoding;
however, they often do not provide sufficient flexibility.

For example, consider the type hierarchy in Figure 2.17 and suppose that truck may
get in extra fuel in a town or city, but not in a village. We cannot encode this constraint
with simple types, unless we define an additional type. The PRODIGY language includes a
mechanism for defining complex constraints, through disjunctive and functional types.

Disjunctive types

We illustrate the use of a disjunctive type in Figure 2.17, where it specifies the possible values
of <from> and <place>. The user specifies a disjunctive type as a set of simple types; in our
example, it includes Town and City. When the problem solver instantiates the corresponding
variable, it uses an object that belongs to any of these types. For instance, the system may
use the leave-town operator for departing from a town or city.

CHAPTER 2. PRODIGY SEARCH o8

TypeHierarchy leave-town(<from>, <to>)
<from>: type (or Town City) fuel(<place>)
’Package ‘ ’ Place ‘ ’ State ‘ <to>: type Place <place>: type (or Town City)
Pre: (truck-at <from>) Pre: (truck-at <place>)
| City | | Town | | Village | Eff: del (truck-at <from>) Eff: add (extra-fuel)
add (truck-at <to>)

Figure 2.17: Disjunctive type: The <from> and <place> variables are declared as (or Town City),
which means that they may be instantiated with objects of two simple types, Town and City.

connected(<from>, <to>)
If <from> = <to>,

then return Falseg;

else, return True.

leave-town(<from>, <to>)

<from>: type (or Town City)

<to>: type Place
connected(<from>,<to>)

Pre: (truck-at <from>) (b) Pseudocode for the function.
Eff: del (truck-at <from>)
add (truck-at <to>) (defun connected (<from> <to>)
(not (eq <from> <to>)))
(&) Use of afunctional type. (c) Actual LISP function.

Figure 2.18: Functional type: When PRODIGY instantiates leave-town, it ensures that <from>
and <to> are connected by a road. The user has to implement a boolean Lisp function for testing
the connectivity. We give an example function, which defines the fully connected graph of roads.

Functional types

We give an example of a functional type in Figure 2.18, where it limits the values of the <to>
variable. The description of a functional type consists of two parts: a simple or disjunctive
type, and a boolean test function. The system first identifies all objects of the specified simple
or disjunctive type, and then eliminates the objects that do not satisfy the test function. The
remaining objects are the valid values of the declared variable. In our example, the valid
values of the <to> variable include all places that have road connections with the <from>
location.

The boolean function is an arbitrary Lisp procedure, whose arguments are the operator
variables. The function must input the variable described by the functional type. In addition,
it may input variables declared before this functional type; however, the function cannot
input variables declared after it. For example, we use the <from> variable in limiting the
values of <to>; however, we cannot use the <to> variable as an input to a test function for
<from>, because of the declaration order.

For instance, if every place is connected with every other place except itself, then we
use the test function given in Figure 2.18(b). The domain encoding must include a Lisp
implementation of this function, as shown in Figure 2.18(c).

CHAPTER 2. PRODIGY SEARCH 99

Use of test functions

When the system instantiates a variable with a functional type, it identifies all objects of the
specified simple or disjunctive type, prunes the objects that do not satisfy the test function,
and then selects an object from the remaining set. If the user specifies not only functional
types but also control rules, which further limit suitable instantiations, then the generation
of instantiated operators becomes a complex matching problem. Wang [1992] investigated
it and developed an efficient matching algorithm.

Test functions may use any information about the current incomplete plan, other nodes
in the search space, and the global state of the system, which allows unlimited flexibility
in constraining operator instantiations. In particular, they enable us to encode functional
effects, that is, operator effects that depend on the current state.

Generator functions

The system also supports the use of generator functions in the specification of variable types.
These functions generate and return a set of allowed values, instead of testing the available
values. The user has to specify a simple or disjunctive type along with a generator function.
When the system uses the function, it checks whether all returned objects belong to the
specified type and prunes the extraneous objects.

In Figure 2.18, we give an example that involves both a test function, called positive, and
a generator function, decrement. In this example, the system keeps track of the available
space in the trunk. If there is no space, it cannot load more packages. We use the generator
function to decrement the available space after loading a package. The function always
returns one value, which represents the remaining space.

When the user specifies a simple or disjunctive type used with a generator function,
she may define a numerical type that includes infinitely many values. For instance, the
Trunk-Space type in Figure 2.18 may comprise all natural numbers. On the other hand, the
generator function always returns a finite set. The PRODIGY manual [Carbonell et al., 1992]
contains a more detailed description of infinite types.

2.4 Search control

The efficiency of problem solving depends on the search space and the order of expanding
nodes of the space. The nondeterministic PRODIGY algorithm in Figure 2.32 defines the
search space, but does not specify the exploration order. The algorithm has several decision
points (see Figure 2.33), which require heuristics for selecting appropriate branches of the
search space.

The PRODIGY architecture includes a variety of search-control mechanisms, which com-
bine general heuristics, domain-specific experience, and advice by the human user. Some
of the basic mechanisms are an integral part of the search algorithm, hard-coded into the
system; however, most mechanisms are optional, and the user can enable or disable them at
her discretion.

CHAPTER 2. PRODIGY SEARCH 60

Type Hierarchy

’Package ‘ ’ Place ‘ ’ County‘ Trunk- Space

123
objects

’City‘ ’Town‘ ’Village‘ E /‘\ ﬂ

—— Test Function —
|load(<pack>,<place>, -
<old-space>,<new-space>) positive (<old-space>)

<pack>: type Package If <old-space> > 0,
. then return True;
<prace>: type Place else, return False
<old-space>: type Trunk-Space : i
positive(<old-space>)
<new-space>: type Trunk-Space
decrement(< old-space>) decrement (<old-space>)

Pre: (at <pack> <place>) It <old-—space> - 0_’
(ruck-at <place>) cen retrn { <o1dpace> - 1)
(empty <old-space>) ’ ¥ :

Eff: del (at <pack> <place>)
add (in-truck <pack>)

—— Generator Function

— Actual Lisp Functions

del (empty <old-space>) (defun positive (<old-space>)

add (empty <new-space>) (> <old-space> 0)

(if (fragile <pack>) (defun decrement (<old-space>)
add (broken <pack>)) (list (- <old-space> 1))

Figure 2.19: Generator function: The user provides a Lisp function, called decrement, which
generates instances of <new-space>; these instances must belong to the specified type, Trunk-Space.

We outline some control mechanisms, including heuristics for avoiding redundant search
(Section 2.4.1), main knobs for adjusting the search strategy (Section 2.4.2), and the use of
control rules to guide the search (Section 2.4.3). The reader may find an overview of other
control techniques in the article by Blythe and Veloso [1992], which explains dependency-
directed backtracking in PRODIGY, the use of limited look-ahead, and some heuristics for
choosing appropriate subgoals and instantiations.

2.4.1 Avoiding redundant search

We describe three basic techniques for eliminating redundant branches of the search space.
These techniques improve the performance in almost all domains and, hence, they are hard-
coded into the search algorithm, which means that the user cannot turn them off.

CHAPTER 2. PRODIGY SEARCH 61

Initial State Goal
(at pack-1 (in-truck Statement
ville-1) N load pack-1) ~| unload
(pack-1, 7 (pack-1, = (at_ﬁacll<-1
(truck-at 7| villel) | (truck-at.7| ville-1) ville-1)
ville-1) ville-1)

Figure 2.20: Goal loop in the tail: The precondition (at pack-1 ville-1) of the load operator is the
same as the goal literal; hence, the solver has to backtrack and choose another operator.

I~
7 =yl
D]

X

Figure 2.21: Detection of goal loops: The backward changer compares the precondition literals of
a newly added operator z with the links between z and the goal statement. If some precondition [
is identical to one of the link literals, then the solver backtracks.

Goal loops

We present a mechanism that prevents PRODIGY from running in simple circles. To illustrate
it, consider the problem of delivering pack-1 from town-1 to ville-1 (see Figure 2.20). The solver
first adds unload(pack-1,ville-1) and then may try to achieve its precondition (in-truck pack-1)
by load(pack-1,ville-1); however, the precondition (at pack-1 ville-1) of load is identical to the
goal and, hence, achieving it is as difficult as solving the original problem.

We call it a goal loop, which arises when a precondition of a newly added operator is
identical to the literal of some link on the path from this operator to the goal statement.
We illustrate it in Figure 2.21, where thick links mark the path from a new operator z to
the goal. The precondition [of z makes a loop with an identical precondition of x, achieved
by y.

When the problem solver adds an operator to the tail, it compares the operator’s precon-
ditions with the links between this operator and the goal. If the solver detects a goal loop, it
backtracks and tries either a different instantiation of the operator or an alternative operator
that achieves the same subgoal. For example, the solver may generate a new instantiation
of the load operator, load(pack-1,town-1).

State loops

The problem solver also watches for loops in the head of an incomplete solution, called state
loops. Specifically, it verifies that the current state differs from all previous states. If the
current state is identical to some earlier state (see Figure 2.22a), then the solver discards
the current incomplete solution and backtracks.

We illustrate a state loop in Figure 2.22; where the application of two opposite operators,
load and unload, leads to a repetition of an intermediate state. The solver would detect
this redundancy and either delay the application of unload or use a different instantiation.

CHAPTER 2. PRODIGY SEARCH 62
Initial Intermediate Current
State State State

load load unload
(pack-1, (?(I)VQ,%(EIBZ (pack-2, — (pack-2, (%V?,%(EIBZ
. . town-1) town-1) town-1)
(truck-at (truck-at

(in-truck
pack-1)

town-1)

(in-truck
pack-1)

town-1)

(a) Stateloop. (b) Example of aloop.

Figure 2.22: State loops in the head of an incomplete solution: If the current state C is the same
as one of the previous states, then the problem solver backtracks. For example, if PRODIGY applies
unload(pack-2,town-1) immediately after load(pack-2,town-1), then it creates a state loop.

Satisfied links

Next, we describe the detection of redundant tail operators, illustrated in Figure 2.23. In this
example, PRODIGY is solving the problem in Figure 2.2, and it has constructed the tail shown
in Figure 2.23(a). Note that the literal (truck-in ville-1) is a precondition of two different oper-
ators in this solution, unload(pack-1,ville-1) and unload(pack-2,ville-1). Thus, they introduce
two identical subgoals, and the solver adds two copies of the operator leave-town(town-
1,ville-1) to achieve these subgoals.

Such situations arise because PRODIGY links each tail operator to only one subgoal, which
simplifies the maintenance of links. When the solver applies an operator, it detects and skips
redundant parts of the tail. For example, suppose that it has applied the two load operators
and one leave-town, as shown in Figure 2.23(b). The precondition (truck-in ville-1) of the
tail operator unload now holds in the current state, and the solver skips the tail operator
leave-town, linked to this precondition.

When a tail operator achieves a precondition that holds in the current state, we call the
corresponding link satisfied. We show this situation in Figure 2.24(a), where the precondi-
tion [of z is satisfied, which makes the dashed operators redundant.

The problem solver keeps track of satisfied links, and updates their list after each mod-
ification of the current state. When the solver selects a tail operator to apply (line 1b
in Figure 2.8) or a subgoal to achieve (line 1c), it ignores the tail branches that support
satisfied links. Thus, it would not consider the dashed operators in Figure 2.24 and their
preconditions.

If the algorithm applies the operator x, it discards the dashed branch that supports a
precondition of z (Figure 2.24b). This strategy allows the deletion of redundant operators
from the tail. Note that the solver discards the dashed branch only after applying z. If it
decides to apply some other operator before x, it may delete /, in which case dashed operators
become useful again.

CHAPTER 2. PRODIGY SEARCH 63

| load |
| (pack-1, w
! town-1) N unload !
| leave- 7 villeel) [\ Statement
: (tttg)v‘\llvnrll (at pack-1 :
A [pm -
@ i VI||e-l) (VI”e-i)z i
load al pack-
} (pack-2, N ville-1) :
| town-1) | \ unload |
[I (pack-2, [
! eave- '
| to\v/vn / ville-1) |
! (town-1 !

! ville-1) !
Lo . !
R
| Current State }
? (s (o, | 1

‘ -)
[eave- . ville-1) !
(b) ! load load ¢ !
| (pack-1, (— (pack-2, (— iy — (rEluek |
\ town-1) town-1) ville-1) I?ave unload A\]
i (truck-a (town-1, = (pack-2, |
| town-2) ville1)| | ville-d) ‘

Figure 2.23: Satisfied link: After the solver has applied three operators, it notices that all pre-
conditions of unload(pack-2,ville-1) hold in the current state; hence, it omits the tail operator
leave-town, which is linked to a satisfied precondition of unload.

2.4.2 Knob values

The PRODIGY architecture includes several knob variables, which allow the user to adjust
the search strategy to a current domain. and changes in their values may have a drastic
impact on performance. Some of the knobs are numerical values, such as the search depth,
whereas others specify the choices among alternative techniques and heuristics. We list some
of the main knob variables, which were used in our experiments with the SHAPER system.

Depth limit

The user usually limits the search depth, which results in backtracking upon reaching the
pre-set limit. If the system explores all branches of the search space to the specified depth and
does not find a solution, then it terminates with failure. Note that the number of operators
in a solution is proportional to the search depth; hence, limiting the depth is equivalent to
limiting the solution length.

After adding operator costs to the PRODIGY language, we provided a knob for limiting
the solution cost. If the system constructs a partial solution whose cost is greater then the
limit, it backtracks and considers an alternative branch. If the user bounds both search
depth and solution cost, the solver backtracks upon reaching either limit.

CHAPTER 2. PRODIGY SEARCH 64

Figure 2.24: Identification of satisfied links: The solver keeps track of all link literals that are
satisfied in the current state, and disregards the tail operators that support these satisfied literals.

The effect of these bounds varies across domains and specific problems. Sometimes, they
improve not only solution quality but also efficiency, by preventing a long descent into a
branch that has no solutions. In other domains, they cause an extensive search instead of
fast generation of a suboptimal solution. If the search space has no solution within the
specified bound, then the system fails to solve the problem, which means that a depth limit
may cause a failure on a solvable problem.

Time limit

By default, the problem solver runs until it either finds a solution or exhausts the available
search space. If it takes too long, the user may enter a keyboard interrupt or terminate the
execution.

Alternatively, she may pre-set a time limit before invoking the solver and then the system
automatically interrupts the search upon reaching this limit. We will analyze the role of time
limits in Chapter 7.

The user may also bound the number of expanded nodes in the search space, which causes
an interrupt upon reaching the specified node number. If she limits both running time and
node number, then the search terminates after hitting either bound.

Search strategies

The system normally uses depth-first search and terminates upon finding any complete
solution. The user has two options for changing this default behavior. First, PRODIGY
allows breadth-first exploration; however, it is usually much less efficient than the default
strategy. Moreover, some heuristics and learning modules do not work with breadth-first
search.

Second, the user may request all solutions to a given problem. Then, the solver explores
the entire search space and outputs all available solutions, until it exhausts the space, gets
a keyboard interrupt, or reaches a time or node bound. The system also allows search for
an optimal solution. This strategy is similar to the search for all solutions; however, when
finding a new solution, the system reduces the cost bound and then looks only for better
solutions. If the solver gets an interrupt, it outputs the best solution found by that time.

CHAPTER 2. PRODIGY SEARCH 65

(a) Select Rule (b) Reject Rule

If (truck-at <to>) isthe current subgoal
and leave-town(<from>,<to>) is used to achieve it
and (truck-at <place>) holdsin the current state and (in-truck <pack>) is a subgoal
and <place> if of type Town

Then select instantiating <from> with <place>

If (truck-at <place>) is a subgoal

Thenreject the subgoal (truck-at <place>)

Figure 2.25: Examples of control rules, which encode domain-specific heuristics for guiding
PRODIGY search. The user may provide rules that represent her knowledge about the domain.
Moreover, the system includes several mechanism for automatic construction of control heuristics.

2.4.3 Control rules

The efficiency of depth-first search crucially depends on the heuristics for selecting appro-
priate branches of the search space, as well as on the order of exploring these branches. The
PRODIGY architecture provides a general mechanism for specifying search heuristics, in the
form of control rules. These rules usually encode domain-specific knowledge, but they may
also represent general domain-independent techniques.

A control rule is an if-then rule that specifies appropriate branching decisions, which may
depend on the current state, subgoals, and other features of the current incomplete solution,
as well as on the global state of the search space. The PRODIGY domain language provides
a mechanism for hand-coding control rules. In addition, the architecture includes several
learning mechanisms for automatic generation of domain-specific rules. The development of
these mechanisms has been one of the main goals of the PRODIGY project.

The system uses three rule types, called select, reject, and prefer rules. A select rule points
out appropriate branches of the search space. When its applicability conditions match the
current incomplete solution, the rule generates one or more promising choices. For example,
consider the control rule in Figure 2.25(a). When the problem solver uses the leave-town
operator for moving the truck to some destination, the rule indicates that the truck should
go there directly from its current location.

A reject rule determines inappropriate choices and removes them from the search space.
For instance, the rule in Figure 2.25(b) indicates that, if PRODIGY has to load the truck and
drive it to a certain place, then it should delay driving until after loading.

Finally, a prefer rule specifies the order of exploring branches, without pruning any of
them. For example, we may replace the select rule in Figure 2.25 with an identical prefer
rule, which would mean that the system should first try going directly from the truck’s
current location to the destination, but keep the other options open for later consideration.
For some problems, this rule is more appropriate than the more restrictive select rule.

At every decision point, the system identifies all applicable rules and uses them to make
appropriate choices. First, it uses an applicable select rule to choose candidate branches of
the search space. If the current incomplete solution matches several select rules, the system
arbitrarily selects one of them. If no select rules are applicable, then all available branches
become candidates. Next, PRODIGY applies all reject rules that match the current solution
and prunes every candidate branch indicated by at least one of these rules. Note that select
and reject rules sometimes prune branches that lead to a solution; hence, they may prevent

CHAPTER 2. PRODIGY SEARCH 66

the system from solving some problems.

After using select and reject rules to prune branches at the current decision point,
PRODIGY applies prefer rules to determine the order of exploring the remaining branches. If
the system has no applicable prefer rules, or the applicable rules contradict each other, then
it relies on general heuristics for selecting the exploration order.

If the system uses numerous control rules, matching of their conditions at every decision
point may take significant time, which sometimes defeats the benefits of the right selection
[Minton, 1990]. Wang [1992] has implemented several techniques that improve the matching
efficiency; however, the study of the trade-off between matching time and search reduction
remains an open problem.

2.5 Completeness

A search algorithm is complete if it finds a solution for every solvable problem. This notion
does not involve a time limit, which means that an algorithm may be complete even if it
takes an impractically long time for some problems.

Even though researchers used the PRODIGY search engine in multiple studies of learning
and search, the question of its completeness had remained unanswered for several years.
Veloso demonstrated the incompleteness of PRODIGY4 in 1995. During the work on SHAPER,
we further investigated completeness issues, in collaboration with Blythe.

The investigation showed that, to date, all PRODIGY algorithms had been incomplete;
moreover, it revealed the specific reasons for their incompleteness. Then, Blythe implemented
a complete solver by extending the PRODIGY4 search engine. We compared it experimentally
with the incomplete system, and demonstrated that the extended algorithm is almost as
efficient as PRODIGY and solves a wider range of problems [Fink and Blythe, 1998]. We now
report, the results of this work on completeness.

We have already shown that PRODIGY1 and PRODIGY2 do not interleave goals and some-
times fail to solve very simple problems. NOLIMIT, PRODIGY4, and FLECS use a more flexible
strategy, and they fail less frequently. Veloso and Stone [1995] proved the completeness of
FLECS using simplifying assumptions, but their assumptions hold only for a limited class of
domains.

The incompleteness of PRODIGY is not a major handicap. Since the search space of most
problems is very large, a complete exploration of the space is not feasible, which makes any
problem solver “practically” incomplete. If incompleteness comes up only in a fraction of
problems, it is a fair payment for efficiency.

If we achieve completeness without compromising efficiency, we get two bonuses. First,
we ensure that the system solves every problem whose search space is sufficiently small for
complete exploration. Second, incompleteness may occasionally rule out a simple solution
to a large-scale problem, causing an extensive search instead of an easy win. If a solver is
complete, it does not rule out any solutions and is able to find such a simple solution early
in the search.

The incompleteness of means-ends analysis in PRODIGY comes from two sources. First,
the problem solver does not add operators for achieving preconditions that are true in the
current state. Intuitively, it ignores potential troubles until they actually arise. Sometimes,

CHAPTER 2. PRODIGY SEARCH 67

it is too late and the solver fails because it did not take measures earlier. Second, PRODIGY
ignores the conditions of if-effects that do not achieve any subgoal. Sometimes, such effects
negate goals or preconditions of other operators, which may cause a failure.

We achieve completeness by adding crucial new branches to the search space. The main
challenge is to minimize the number of new branches, in order to preserve efficiency. We
describe a method for identifying the crucial branches, based on the use of the informa-
tion learned in failed old branches, and give an extended search algorithm (Sections 2.5.1
and 2.5.2). We believe that this method will prove useful for developing complete versions
of other search algorithms.

The extended domain language of PRODIGY has two features that aggravate the com-
pleteness problem (Section 2.5.3), which are not addressed in the extended algorithm. First,
eager inference rules may mislead the goal-directed reasoner and cause a failure. Second,
functional types allow the reduction of every computational task to a PRODIGY problem,
and some problems are undecidable.

We prove that the extended algorithm is complete for domains that have no eager infer-
ence rules and functional types (Section 2.5.4). Then, in Section 2.5.5, we give experimental
results on the relative performance of PRODIGY4 and the extended solver. We conclude with
the summary and discussion of the main results (Section 2.5.6).

2.5.1 Limitation of PRODIGY means-ends analysis

GPS, PRODIGY1, and PRODIGY?2 were not complete because they did not explore all branches
in their search space. The incompleteness of later algorithms has a deeper reason: they do
not try to achieve tail preconditions that hold in the current state.

For example, suppose that the truck is in town-1, pack-1 is in ville-1, and the goal is to
get pack-1 to town-1. The only operator that achieves the goal is unload(pack-1,town-1), so
PRODIGY begins by adding it to the tail (see Figure 2.26a). The precondition (truck-at town-1)
of unload is true in the initial state. The problem solver may achieve the other precondition,
(in-truck pack-1), by adding load(pack-1,ville-1). The precondition (at pack-1 ville-1) of load is
true in the initial state, and the other precondition is achieved by leave-town(town-1,ville-1),
as shown in Figure 2.26(a).

Now all preconditions are satisfied, and the solver’s only choice is to apply leave-town
(Figure 2.26b). The application leads straight into an inescapable trap, where the truck is
stranded in ville-1 without a supply of extra fuel. The algorithm may backtrack and consider
different instantiations of load, but they will eventually lead to the same trap.

To avoid such traps, a solver must sometimes add operators for achieving literals that
are true in the current state and have not been linked with any tail operators. Such lit-
erals are called anycase subgoals. The challenge is to identify anycase subgoals among the
preconditions of tail operators.

A simple method is to view all preconditions as anycase subgoals. Veloso and Stone [1995]
considered this approach in building a complete version of their FLECS search algorithm; how-
ever, it proved to cause an explosion in the number of subgoals, leading to gross inefficiency.

Kambhampati and Srivastava [1996b] used a similar approach to ensure the completeness
of the Universal Classical Planner. Their system may add operators for achieving precondi-

CHAPTER 2. PRODIGY SEARCH 68

l Goal
‘ (truck-at (at pack-1 (truck-at Statement
| UCK- [- -
(@ ' | town-1) (truck-at I?%Vv% |7 villel) "™\ load |~ town-1) "\ unload (at pack-1
| (at pack-1 town-1)— | (town-1 (truck-at - (p-?fk'll’ (in-truck - (tpack-%, town-1)
GRS villeD) | “yiller) 7L Vvilled) | “pack-1) 7| town-1)
S o ______ o .
y
Current State Goal
Statement

leave- (truck-at load unload
RSN
ville-1) viﬁe-l) ville-1) own-1)

Figure 2.26: Incompleteness of means-ends analysis in the PRODIGY system: The solver does not
consider fueling the truck before the application of leave-town(town-1,ville-1). Since the truck
cannot leave ville-1 without extra fuel, PRODIGY fails to find a solution.

@ (1=

T
| is not anycase T~ | isanycase

v S .
o (| == @ () ===
7 o g\

© (FHF=nott 1=03==]

Figure 2.27: Identifying an anycase subgoal: When PRODIGY adds a new operator z (a), the pre-
conditions of = are not anycase subgoals (b). If some application negates a precondition ! of z (c),
the solver marks [as anycase and expands the corresponding new branch of the search space (d).

tions that are true in the current state, if the preconditions are not explicitly linked to the
corresponding literals of the state. Even though this approach is more efficient than viewing
all preconditions as anycase subgoals, it considerably increases branching and often makes
search impractically slow.

A more effective solution is based on the use of information learned in failed branches of
the search space. Let us look again at Figure 2.26. The problem solver fails because it does
not add any operator to achieve the precondition (truck-at town-1) of unload, which is true
in the initial state. The solver tries to achieve this precondition only when the application of
leave-town has negated it; however, after the application, the precondition can no longer
be achieved.

We see that means-ends analysis may fail when some precondition is true in the current
state, but is later negated by an operator application. We use this observation to identify
anycase subgoals: a precondition or a goal literal is an anycase subgoal if, at some point of
the search, an application negates it.

CHAPTER 2. PRODIGY SEARCH 69

****** extra- Ve
Initial State (yruck-at__ ' fuel |~ (fuel) \ﬂ?,?ﬁe e coal
town-l)%: (town-1)r (truck-at /1 (ville-1, ™\ Statement
- : " truck-at
(E[%JV%_% ,,,,,, L ville-D) towni-1) (town-l)\\ unload (et pack 1
(a pack-1 , (at pack-1 (ntruk | gy [town)
ville-1) (truck-at__ | town |~ villeD) X '(gggk L pack-1)
t -1)—| (town-1 - oL

Figure 2.28: Achieving the subgoal (track-at town-1), which is satisfied in the current state.
First, the solver constructs a three-operator tail, shown by solid rectangles. Then, it applies the
leave-town operator and marks the precondition (truck-at town-1) of unload as an anycase sub-
goal. Finally, PRODIGY backtracks and adds the two dashed operators, which achieve this subgoal.

In Figure 2.27, we illustrate a technique for identifying anycase subgoals in Figure 2.27.
Suppose that the problem solver adds an operator x, with a precondition /, to the tail (node a
in the picture). The solver creates the branch where [is not an anycase subgoal (node b).
If, at some descendent, an application of some operator negates | and if it was true before
the application, then [is marked as anycase (node c). If the solver fails to find a solution
in this branch, it eventually backtracks to node a. If [is marked as anycase, the problem
solver creates a new branch, where [is an anycase subgoal (node d).

If several preconditions of z are marked as anycase, the solver creates the branch where
they all are anycase subgoals. Note that, during the exploration of this new branch, the
algorithm may mark some other preconditions of x as anycase. If it again backtracks to
node a, then it creates a branch where the newly marked preconditions are also anycase
subgoals.

Let us see how this mechanism works for the example problem. The solver first assumes
that the preconditions of unload(pack-1,town-1) are not anycase subgoals. It builds the tail
shown in Figure 2.26 and applies leave-town, negating the precondition (truck-at town-1) of
unload. The solver then marks this precondition as anycase.

Eventually, the algorithm backtracks, creates the branch where (truck-at town-1) is an
anycase subgoal, and uses the operator leave-village(ville-1,town-1) to achieve this sub-
goal (see Figure 2.28). The problem solver then constructs the tail shown in Figure 2.28,
which leads to the solution “fuel(town-1), leave-town(town-1,ville-1), load(pack-1,ville-1),
leave-village(ville-1,town-1), unload(pack-1,town-1)" (note that the precondition (truck-at
ville-1) of leave-village is satisfied after applying leave-town).

When the solver identifies the set of all satisfied links (Section 2.4.1), it does not includes
anycase links into this set; hence, it never ignores the tail operators that support anycase
links. For example, consider the tail in Figure 2.28: the anycase precondition (truck-at town-1)
of unload holds in the state, but the solver does not ignore the operators that support it.

We also have to modify the detection of goal loops, described in Section 2.4.1. For
instance, consider again Figure 2.28: the precondition (truck-at town-1) of fuel makes a loop
with the identical precondition of unload; however, the solver should not backtrack.

Since this precondition of unload is an anycase subgoal, it must not cause goal-loop
backtracking. We use Figure 2.21 to generalize this rule: if the precondition [of z is an
anycase subgoal, then the identical precondition of z does not make a goal loop.

CHAPTER 2. PRODIGY SEARCH 70

(broken
(truck-at pack-1)

town-1)

| |
| |
l l
| H |
: (at pack-1__ load (in-truck |
- 7 pack-1
@ ' town-1) (pock-1, pack-1) |
! (truck-at —=| town-1) !
1 town-1) |
NS N |
v
. Initial State Current State 1
l |
| |
: town-1) (in—tg(ucik :
O - load packel) |
ragiie ack-1,

1 pgg('l) (tenwn-l) not :
| |
| |
| |
| |
|

Figure 2.29: Failure because of a clobber effect: The application of the load operator results in
the breakage of the package, and no further actions can undo this damage.

2.5.2 Clobbers among if-effects

In Figure 2.29, we illustrate another source of incompleteness: the use of if-effects. The goal
is to load fragile pack-1, without breaking it. The problem solver adds load(pack-1,town-1)
to achieve (in-truck pack-1). The preconditions of load and the goal “not (broken pack-1)”
hold in the current state (Figure 2.29a), and the solver’s only choice is to apply load. The
application causes the breakage of pack-1 (Figure 2.29b), and no further search improves the
situation. The solver may try other instances of load, but they also break the package.

The problem arises because an effect of load negates the goal “not (broken pack-1);” we
call it a clobber effect. The application reveals the clobber, and the solver backtracks and
tries to find another instance of load, or another operator, which does not cause clobbering.
If the clobber effect has no conditions, backtracking is the only way to remedy the situation.

If the clobber is an if-effect, we can try another alternative: negate its conditions [Ped-
nault, 1988a; Pednault, 1988b]. It may or may not be a good choice; perhaps, it is better to
apply the clobber and then re-achieve the negated subgoal. For example, if we had a means
for repairing a broken package, we could use it instead of cushioning. We thus need to add
a new decision point, where the algorithm determines whether it should negate a clobber’s
conditions.

Introducing this new decision point for every if-effect will ensure completeness, but may
considerably increase branching. We avoid this problem by identifying potential clobbers
among if-effects. We detect them in the same way as anycase subgoals. An effect is marked as
a potential clobber if it actually deletes some subgoal in one of the failed branches. The deleted
subgoal may be a literal of the goal statement, an operator precondition, or a condition of

CHAPTER 2. PRODIGY SEARCH 71

@| | eE}»O

~

do not W?rry aboute T~ _ negate€ sconditions
o
e ! e !
(b) 0 [}90 (d) not | »[}»O |
| |
A A ~ T
£ v X

© (xr=e 3=

Figure 2.30: Identifying a clobber effect. When the solver adds a new operator z (a), it does not try
to negate the conditions of z’s if-effects (b). When applying x, PRODIGY checks whether if-effects
negate any subgoals that were true before the application (c). If an if-effect e of = negates some
subgoal, the solver marks e as a clobber and adds the respective branch to the search space (d).

an if-effect that achieves another subgoal. Thus, we again use information learned in failed
branches to guide the search.

We illustrate the mechanism for identifying clobbers in Figure 2.30. Suppose that the
problem solver adds an operator x with an if-effect e to the tail, and that this operator is
added for the sake of some other of its effects (node a in Figure 2.30); that is, e is not linked
to a subgoal. Initially, the problem solver does not try to negate e’s conditions (node b). If,
at some descendent, x is applied and its effect e negates a subgoal that was true before the
application, then the solver marks e as a potential clobber (node ¢). If the solver fails to
find a solution in this branch, it backtracks to node a. If e is now marked as a clobber, the
solver adds the negation of e’s conditions, cond, to the operator’s preconditions (node d). If
an operator has several if-effects, the solver uses a separate decision point for each of them.

In the example of Figure 2.29, the application of load(pack-1,town-1) negates the goal
“not (broken pack-1)" and the problem solver marks the if-effect of load as a potential clobber
(see Figure 2.31). Upon backtracking, the solver adds the negation of the clobber’s condition
(fragile pack-1) to the preconditions of load. The solver uses cushion to achieve this new
precondition and generates the solution “cushion(pack-1), load(pack-1,town-1).”

We have implemented the extended search algorithm, called RASPUTIN', which achieves
anycase subgoals and negates the conditions of clobbers. Its main difference from PRODIGY4
is the backward-chaining procedure, summarized in Figure 2.32. We show its main decision
points in Figure 2.33, where thick lines mark the points absent in PRODIGY.

2.5.3 Other violations of completeness

The PRODIGY system has two other sources of incompleteness, which arise from the advanced
features of the domain language. We have not addressed them in our work; hence, the use
of these language features may violate the completeness of the extended algorithm.

!The Russian mystic Grigori Rasputin used the biblical parable of the Prodigal Son to justify his de-
bauchery. He tried to make the story of the Prodigal Son as complete as possible, which is similar to our
goal. Furthermore, his name comes from the Russian word rasputie, which means decision point.

CHAPTER 2. PRODIGY SEARCH 72

(at pack-1 |
“1y | load
town-1) (pack-1,
(truck-at —=| town-1)

N (broken

town-1) pack-1)
do not worry ébout delete th\e conditions of
(broken pack-1) (broken pack-1)

,,,,,,,,,,,,, Y T
1 O load | | (ztag V%%cli)l |
‘ (pack-1, | (hroken | | 7N |
‘ town-1 B - ! ! truck-at load ‘
L ,,,,,,,,,, 2 —_ Péd,(}), > : (town-]_) - (pack-l, = :
V ! (fraqi(le 7| town-1) !
f’”7]0;&”””””””7 | pack-1) }
‘ broken L ST T T T T T T T T T T

! (pack-1, = (- w w
| O town-1) pack-1) O | B o !
*********************** w cushion | _ l((p)ggk 1= |
| - -4, |
FAILURE : (pack-1) town-1) :

,,,,,,,,,,,,,,,,,,,,,,,,,

Figure 2.31: Negating a clobber. When load is applied, its if-effect clobbers one of the goal literals.
The solver backtracks and adds the cushion operator, which negates the conditions of this if-effect.

Eager inference rules

If a domain includes eager rules, the system may fail to solve simple problems. For exam-
ple, consider the rules in Figure 2.14 and the problem in Figure 2.34(a), and suppose that
add-truck-in is an eager rule. The truck is initially in town-1, within county-1, and the goal
is to leave this county.

Since the preconditions of add-truck-in hold in the initial state, the system applies it
at once and adds (truck-in county-1), as shown in Figure 2.34(b). If we applied the opera-
tor leave-town(town-1,town-2), it would negate the rule’s preconditions, which would cause
the deletion of (truck-in county-1). In other words, the application of leave-town would
immediately solve the problem.

The system does not find this solution because it inserts new operators only when they
achieve some subgoal, whereas the effects of leave-town do not match the goal statement.
Since the domain has no operators with a matching effect, the problem solver terminates
with failure.

To summarize, the solver sometimes has to negate the preconditions of eager rules that
have clobber effects, but it does not consider this option. We plan to implement the negation
of clobber rules as in the future.

CHAPTER 2. PRODIGY SEARCH 73

RASPUTIN-Back-Chainer
lc. Pick a literal [among the current subgoals.
Decision point: Choose one of the subgoal literals.
2c. Pick an operator or inference rule step that achieves I.
Decision point: Choose one of such operators and rules.
3c. Add step to the tail and establish a link from op to (.
4c. Instantiate the free variables of step.
Decision point: Choose an instantiation.
5c. If the effect that achieves [has conditions,
then add them to step’s preconditions.
6¢. Use data from the failed descendants to identify anycase preconditions of step.
Decision point: Choose anycase subgoals among the preconditions.
7c. If step has if-effects not linked to I, then:
use data from the failed branches to identify clobber effects;
add the negations of their conditions to the preconditions.
Decision point(s): For every clobber, decide whether to negate its conditions.

Figure 2.32: Backward-chaining procedure of the RASPUTIN problem solver; it includes new deci-
sion points (lines 6¢ and 7c), which ensure completeness of PRODIGY means-ends analysis.

1c. Choose an unachieved literal

{

2c. Choose an operator or inference
rule that achieves this litera

{

3c. Choose an instantiation
for itsvariables

I
6¢. Choose anycase subgoals
among its preconditions
v

< 7c. For every clobber effect, decide 2

< e corcitions >
whether to negate its conditions
C ™ >

Figure 2.33: Main decision points in RASPUTIN’s backward-search procedure, summarized in Fig-
ure 2.32; thick lines show the decision points that differentiate it from PRODIGY (see Figure 2.8).

CHAPTER 2. PRODIGY SEARCH 74

Initial State Set of Objects Goal St
o atement
(truck-at town-1) town-1, town-2: type Town ,
(w!th! n town-1 county-1) county-1, county-2: type County not (truck-in county-1)
(within town-2 county-2)

() Example problem: the truck hasto leave county-1.

Initial State Current State
R ruck-at

(truck-at town-1) Goal Statement
town-1) (truck-in

(V\{ithin L add-truck-in (‘??:_nty-l) ot
own- - - | (within .
county-1) (town-1, town-1 (trggﬁﬁlt n_l)

(within county-1) county-1) y
town-2 (within
county-2) town-2

county-2)

(b) Application of an inferencerule.

Figure 2.34: Failure because of an eager inference rule: The PRODIGY solver does not attempt to
negate the preconditions of the rule add-truck-in(town-1,county-1), which clobbers the goal.

— Set of Objects —
Type Hierarchy op(<var>) obj: type Root-Type
<var>: type Root-Type

Root-Type test(<var>) r Goal Statement

Eff: add (pred <var>) (pred obj)

Figure 2.35: Reducing an arbitrary decision task to a PRODIGY problem; the test function is a
Lisp procedure that encodes the decision task. Since functional types allow encoding of undecidable
problems, they cause incompleteness of PRODIGY search.

Functional types

We next show that functional types enable the user to encode every computational decision
task as a PRODIGY problem. Consider the artificial domain and problem in Figure 2.35. If
the object obj satisfies the test function, then the solver uses the operator op(obj) to achieve
the goal; otherwise, the problem has no solution.

The test function may be any Lisp program, which has full access to all data in the
PRODIGY architecture. This flexibility allows the user to encode any decision problem,
including undecidable and semi-decidable tasks, such as the halting problem.

Thus, we may use functional types to specify undecidable PRODIGY problems, and the
corresponding completeness issues are beyond the scope of classical search. A related open
problem is defining restricted classes of useful functions, which do not cause computational
difficulties, and ensuring completeness for these functions.

