
NCPC 2008

The 2008 Nordic Collegiate Programming Contest
October 4, 2008

The Problem Set

A Aspen Avenue
B Best Compression Ever
C Code Theft
D Dinner
E Event Planning
F Fixing the Bugs
G Getting Gold
H Hard Evidence
I Introspective Caching
J Just A Few More Triangles!

2

Advice, hints, and general information

• Your submissions will be run multiple times, on several different input files. If your
submission is incorrect, the error message you get will be the error exhibited on the
first input file on which you failed. E.g., if your instance is prone to crash but also
incorrect, your submission may be judged as either “wrong answer” or “run time
error”, depending on which is discovered first.

• For problems with floating point output, we only require that your output is correct
up to either a relative or absolute error of 10−6. For example, this means that

– If the correct answer is 0.05, any answer between 0.049999 and .050001 will be
accepted.

– If the correct answer is 50, any answer between 49.99995 and 50.00005 will be
accepted.

Any reasonable format for floating point numbers is acceptable. For instance,
“17.000000”, “0.17e4”, and “17” are all acceptable ways of formatting the number
17. For the definition of reasonable, please use your common sense.

NCPC 2008 Problem A: Aspen Avenue 1

Problem A

Aspen Avenue

“Phew, that was the last one!” exclaimed the garden helper Tim
as he threw the last tree plant to the ground. His employer,
countess Esmeralda Hunt who owned the estate, has ordered him
to arrange an avenue of aspen trees along both sides of the front
road leading up to the house. The first trees in the avenue are
supposed to be planted at the very beginning of the road, and the
last trees of the avenue at the very end of the road. Tim, who
was constantly being reminded of her sense of accuracy, knew that
the countess would insist on the trees being placed in perfectly
aligned tree pairs, one on each side of the road, and with exactly
the same spacing between the pairs along the road. However,
when bringing the tree plants to the estate, Tim had just dropped them arbitrarily along
the left side of the road and was now facing the task of moving the trees to their correct
positions to meet the countess’s requirements. Being stronger in mind than in arms, and
since it was time for a coffee break anyway before he started digging, he sat down to
figure out which trees to move to which positions so as to minimize the total (Euclidean)
distance that he had to move the trees.

Input specifications

The input file starts with a positive even integer N between 4 and 2000 (inclusive), giving
the total number of trees in the avenue. The next line contains two integers L and W ,
where 1 ≤ L ≤ 10000 is the length of the road, in meters, and 1 ≤ W ≤ 20 is the width
of the road, in meters. The next N lines each describe where Tim had dropped of the
trees. Each such line contains an integer 0 ≤ p ≤ L indicating the position of a tree plant
along the left side of the road, measured in meters from the start of the road.

Output specifications

For each test case, the smallest total number of meters the tree plants need to be moved.
The answer should be given with an absolute or relative error of at most 10−6.

Sample input 1 Sample output 1

4

10 1

1

0

10

10

2.4142135624

2 NCPC 2008 Problem A: Aspen Avenue

Sample input 2 Sample output 2

6

10 1

0

9

3

5

5

6

9.2853832858

NCPC 2008 Problem B: Best Compression Ever 3

Problem B

Best Compression Ever

Being educated in Computer Science and Mathematics is
not always easy. Especially not if you have “friends” who
repeatedly insist on showing you their new “proofs” that P
equals NP, that the Riemann Hypothesis is true, and so on.

One of your friends recently claims to have found a fantastic
new compression algorithm. As an example of its amazing
performance, your friend has told you that every file in your
precious collection of random bit strings after compression
would be at most b bits long! Naturally, you find this a bit
hard to believe, so you want to determine whether it is even
theoretically possible for this to be true.

Your collection of random bit strings consists of N files, no
two of which are identical, and each of which is exactly 1000 bits long.

Input specifications

The input consists of two integers N (1 ≤ N ≤ 1015) and b (0 ≤ b ≤ 50), giving the
number of files in your collection and the maximum number of bits a compressed file is
allowed to have.

Output specifications

Output a line containing either “yes” if it is possible to compress all the N files in your
collection into files of size at most b bits, or “no” otherwise.

Sample input 1 Sample output 1

13 3 yes

Sample input 2 Sample output 2

1 0 yes

Sample input 3 Sample output 3

31415926535897 40 no

Almost blank page

NCPC 2008 Problem C: Code Theft 5

Problem C

Code Theft

While reviewing code recently being checked into the repository,
Jim discovered that some employees now and then seemed to copy
code right from the Internet into the company code base. This
would be a potential disaster as the company then risks getting
sued by copyright holders of the original code. The obvious
solution, talking to the employees and kindly ask them not to
submit any stolen code, seemed to solve the problem. Still, it
was decided that a screening process should be introduced to
detect newly stolen code.

The screening would work as follows: Every time new code was checked in, the full
contents of the changed files where matched against a repository of known open source
code. For each file the longest match, in number of consecutive lines, should be reported.

Comparison is done line by line. Empty lines, and lines only containing space, are
ignored during comparison and not counted. Leading and trailing spaces should be ignored
completely and consecutive space characters inside the lines are treated as one single space.
The comparison is case-sensitive.

Input specifications

Test data starts with the number 0 ≤ N ≤ 100 of code fragments in the repository. Then
follows, for each code fragment, one line containing the file name that the fragment was
fetched from and the contents of the fragment on subsequent lines. File names will neither
contain whitespace nor be guaranteed to be unique. The name is at most 254 characters
long. Each fragment is terminated by ***END*** on a line by its own. This line is not
considered being part of the fragment.

After the fragments in the repository have all been listed, comes the actual code
snippet to find matches for. This snippet is also terminated by ***END*** on a line by
its own.

Lines are guaranteed to be no longer than 254 characters. No code fragment will
be longer than 10000 lines. Any code and file name lines will only contain the ASCII
characters 32-126. The total size of the input file will not exceed 106 characters.

Output specifications

For each test case, write the number of matching consecutive lines (empty lines not
counted) in a longest match from the repository, followed by a space-separated list of the
file names of each fragments containing a match of this length, given in the order that the
matching fragments were presented in the repository description. If no fragments match,
write the number 0 on a line of its own.

6 NCPC 2008 Problem C: Code Theft

Sample input 1 Sample output 1

2

HelloWorld.c

int Main() {

printf("Hello %d\n",i);

}

END

Add.c

int Main() {

for (int i=0; i<10; i++)

sum += i;

printf("SUM %d", sum);

}

END

int Main() {

printf("Hello %d\n",i);

printf("THE END\n");

}

END

2 HelloWorld.c

Sample input 2 Sample output 2

2

HelloWorld1.bas

10 PRINT "*******************"

20 PRINT "*******************"

30 PRINT "--- HELLO WORLD ---"

40 PRINT "*******************"

50 PRINT "*******************"

END

HelloWorld2.bas

10 PRINT "-------------------"

20 PRINT "*******************"

30 PRINT "--- HELLO WORLD ---"

40 PRINT "*******************"

50 PRINT "-------------------"

END

10 REM Hello ver 1.0 (c) Acme 2008

20 PRINT "*******************"

30 PRINT "--- HELLO WORLD ---"

40 PRINT "*******************"

50 END

END

3 HelloWorld1.bas HelloWorld2.bas

NCPC 2008 Problem D: Dinner 7

Problem D

Dinner

For several years now, the Nordic Conference on Partitions and
Combinatorics, NCPC, has had a growing number of participants.
This year the organizing team is expecting an all time high record
in the hundreds. Due to the politics of arranging this prestigious
event, the conference site was decided a long time ago to be the
Grand Hôtel in Stockholm. The hotel has two large dining halls,
but unfortunately, each of these halls alone can only fit up to two
thirds of the NCPC participants, so the participants are going to
have to be divided in two groups.

This constraint calls for some thinking on behalf of the
organizing team for the conference dinner: could they come up
with some division of the participants in two parts, none of which
is larger than 2/3 of the entire group, meeting some witty division rule suitable for the
occasion, which they could tell the participants for their amusement? After all, as long
as there is some grand logic rule to which of the two dining halls you are being seated in,
you (as a mathematician) would be happy! They thought for a while and came up with
the following idea for the division: Is there a year Y and a division of the participants
in two parts such that every pair in the first part met for the first time some time before
year Y , and every pair in the second part met for the first time some time in or after
year Y ? Now this clearly qualified as an appropriate rule to all of them, but the question
was whether it would be possible?

Input specifications

The first line of input contains an integer 4 ≤ n ≤ 400, the number of participants,
and c, the number of known first encounters. The next c lines are each in the format
a b y, meaning participant a and b (1 ≤ a < b ≤ n) met for the first time in year y
(1948 ≤ y < 2008). No pair of participants will appear more than once on the list, and
every pair of participants not in the list is assumed to have meet only now (in the year
2008).

Output specifications

For each test case, either the smallest year Y such that it is possible to divide the
participants in two parts, neither of which contains more than 2n/3 people, such that
all people in the first part first met before year Y , and all people in the second part first
met in or after year Y . If there is no such year, output the string ’Impossible’.

8 NCPC 2008 Problem D: Dinner

Sample input 1 Sample output 1

4 6

1 2 1987

2 3 1987

1 3 1987

2 4 1987

1 4 1987

3 4 1987

Impossible

Sample input 2 Sample output 2

6 3

1 2 1970

3 4 1980

5 6 1990

1971

NCPC 2008 Problem E: Event Planning 9

Problem E

Event Planning

As you didn’t show up to the yearly general meeting of
the Nordic Club of Pin Collectors, you were unanimously
elected to organize this years excursion to Pin City. You
are free to choose from a number of weekends this autumn,
and have to find a suitable hotel to stay at, preferably as
cheap as possible.

You have some constraints: The total cost of the trip
must be within budget, of course. All participants must stay
at the same hotel, to avoid last years catastrophe, where
some members got lost in the city, never being seen again.

Input specifications

The first line of input consists of four integers: 1 ≤ N ≤ 200, the number of participants,
1 ≤ B ≤ 500000, the budget, 1 ≤ H ≤ 18, the number of hotels to consider, and
1 ≤ W ≤ 13, the number of weeks you can choose between. Then follow two lines for
each of the H hotels. The first gives 1 ≤ p ≤ 10000, the price for one person staying the
weekend at the hotel. The second contains W integers, 0 ≤ a ≤ 1000, giving the number
of available beds for each weekend at the hotel.

Output specifications

Output the minimum cost of the stay for your group, or “stay home” if nothing can be
found within the budget.

Sample input 1 Sample output 1

3 1000 2 3

200

0 2 2

300

27 3 20

900

Sample input 2 Sample output 2

5 2000 2 4

300

4 3 0 4

450

7 8 0 13

stay home

Almost blank page

NCPC 2008 Problem F: Fixing the Bugs 11

Problem F

Fixing the Bugs

A certain big IT company which we will not name in order
not to get sued, are preparing to launch a new version of their
flagship product. Having just been employed as a developer on
the project, you have been given a list of open bugs that should
be fixed in the new version.

Being bugs, you are not exactly certain how to fix them,
even though you have some ideas. For each bug you are able
to estimate your ability to quickly fix the bug. Of course, these
estimates may be wrong, so if you try to fix a bug and fail, you
will revise the estimate of your ability to fix this bug.

To be specific, we use the following probabilistic model for the
bug fixing process: for each bug, there is an associated fix probability p. Every hour, you
choose one bug to work on, and work on this bug for the entire hour (if you manage to fix
the bug in less then an hour, you celebrate by having coffee and taunting your coworkers
for the remaining part of the hour). The probability that you succeed in fixing the bug
during this hour is p. If you fail to resolve the bug, the fix probability for this bug is
reduced to p ·f , where f ≤ 1 is a factor indicating how much faith you lose in your ability
after a failure. The fix probabilities for the other bugs remain unchanged. The next hour,
you again choose an open bug to work on, and so on. This is repeated until the new
version is released, and you are allowed to go home and sleep.

In addition, each bug has a severity s indicating how severe the bug is (or alternatively,
the value of fixing the bug). Clearly, it is possible that you will not manage to fix all
the bugs before the product is released. In order to make as good an impression on your
boss as possible, you would like to maximize the total severity of those bugs which you
do manage to resolve, by carefully choosing which bugs to work on. What will be the
expected value of the total severity of fixed bugs, provided that you, every hour, choose
which bug to work on in such a way that this quantity is maximized?

Input specifications

The first line of input contains three numbers B, T and f , where 0 ≤ B ≤ 10 is an integer
giving the number of open bugs, 0 ≤ T ≤ 100 is an integer giving the number of hours
left until the new version is released, and 0 ≤ f ≤ 1 is a real number as described above.

Each of the following B lines describe an open bug. Each such description contains
two numbers p and s, where 0 ≤ p ≤ 1 is a real number giving the initial fix probability
of the bug and 0 ≤ s ≤ 10 000 is an integer giving the severity of the bug.

12 NCPC 2008 Problem F: Fixing the Bugs

Output specifications

Output a line containing the expected total severity of bugs fixed, provided you work in
a way which maximizes this quantity. Any answer with either absolute or relative error
smaller than 10−6 is acceptable.

Sample input 1 Sample output 1

1 2 0.950000

0.700000 50

44.975

Sample input 2 Sample output 2

2 2 0.500000

0.750000 100

0.750000 20

95.6250000000000000000

NCPC 2008 Problem G: Getting Gold 13

Problem G

Getting Gold

We’re building an old-school back-to-basics computer game. It’s
a very simple text based adventure game where you walk around
and try to find treasure, avoiding falling into traps. The game
is played on a rectangular grid and the player gets very limited
information about her surroundings.

The game will consist of the player moving around on the grid
for as long as she likes (or until she falls into a trap). The player
can move up, down, left and right (but not diagonally). She will
pick up gold if she walks into the same square as the gold is. If
the player stands next to (i.e., immediately up, down, left, or right of) one or more traps,
she will “sense a draft” but will not know from what direction the draft comes, or how
many traps she’s near. If she tries to walk into a square containing a wall, she will notice
that there is a wall in that direction and remain in the position where she was.

For scoring purposes, we want to show the player how much gold she could have gotten
safely. That is, how much gold can a player get playing with an optimal strategy and
always being sure that the square she walked into was safe. The player does not have
access to the map and the maps are randomly generated for each game so she has no
previous knowledge of the game.

Input specifications

The first line of input contains two positive integers W and H, neither of them smaller
than 3 or larger than 50, giving the width and the height of the map, respectively. The
next H lines contain W characters each, giving the map. The symbols that may occur in
a map are as follows:

P – the player’s starting position
G – a piece of gold
T – a trap
– a wall
. – normal floor

There will be exactly one ’P’ in the map, and the border of the map will always contain
walls.

Output specifications

Output the number of pieces of gold the player can get without risking falling into a trap.

14 NCPC 2008 Problem G: Getting Gold

Sample input 1 Sample output 1

7 4

#######

#P.GTG#

#..TGG#

#######

1

Sample input 2 Sample output 2

8 6

########

#...GTG#

#..PG.G#

#...G#G#

#..TG.G#

########

4

NCPC 2008 Problem H: Hard Evidence 15

Problem H

Hard Evidence

The young reporter Janne is planning to take a photo of a secret
government installation. He needs to obtain evidence of the
many serious crimes against good sense that are being committed
there, so as to create a scandal and possibly win a Pulitzer.
Unfortunately, the base is surrounded by a high fence with high
voltage wires running around. Janne does not want to risk being
electrocuted, so he wants to take a photo from outside the fence.
He can bring a tripod as high as the fence to take a photo, so if
he wants he can stand right beside the fence and take his picture.
The secret installation is a convex polygon. The fence has a form
of a circle. Of course Janne wants to make a photo with maximal possible detail level.
The detail level of the photo depends on the view angle of the base at the point from
which the photo is taken. Therefore he wants to find a point to maximize this angle.

Input specifications

The first line of the input file contains two integer numbers: n and r — the number of
vertices of the polygon and the radius of the fence (3 ≤ n ≤ 200, 1 ≤ r ≤ 1000). The
following n lines contain two real numbers each — the coordinates of the vertices of the
polygon listed in counterclockwise order. It is guaranteed that all vertices of the polygon
are strictly inside the fence circle, and that the polygon is convex. The center of the fence
circle is located at the origin, (0, 0).

Output specifications

Output the maximal view angle a for the photo (0 ≤ a < 2π). Any answer with either
absolute or relative error smaller than 10−6 is acceptable.

Sample input 1 Sample output 1

4 2

-1.0 -1.0

1.0 -1.0

1.0 1.0

-1.0 1.0

1.5707963268

Almost blank page

NCPC 2008 Problem I: Introspective Caching 17

Problem I

Introspective Caching

In a distributed system, data is never where you need it, and
fetching data over a network takes time and consumes bandwidth.
The problem can be mitigated by adding a cache, where a node
stores some resources locally and if those resources need to be
used again, it can simply take them from its cache rather than
asking someone else for them.

However, caches have a nasty tendency to fill up, so at some
point, objects must be evicted from the cache to make room for
new objects. Choosing what object to remove from the cache is not easy and there are
several different algorithms to choose from.

The marvelous Apes in Computing Machinery have come up with a fantastic new
algorithm, the Introspective Caching Algorithm, named after a city of Peru. It consists of
some extra hardware (a very small, precognitive monkey) which helps making decisions.
Since the monkey can see into the future, she knows exactly what objects will be accessed
and in what order, and using this information she will make optimal decisions on what
objects to remove from the cache. Optimality here means that she will minimize the
number of times an object is read into the cache.

All object accesses go through the cache, so every time an object is accessed, it must
be inserted into the cache if it was not already there. All objects are of equal size, and no
writes occur in the system, so a cached object is always valid. When the system starts,
the cache is empty.

You have been tasked with evaluating the monkey’s performance, and feeding her the
occasional banana.

Input specifications

The first line of input contains three integers, separated by single spaces, telling you how
many objects fit in the cache, 0 < c ≤ 10000, how many different objects are in the
system, c ≤ n ≤ 100000, and how many accesses, 0 ≤ a ≤ 100000, will occur. The
following a lines contain a single integer between 0 and n− 1 (inclusive) indicating what
object is accessed. The first line corresponds to the first object accessed access and the
last line to the last.

Output specifications

Output the least number of times an object must be read into the cache to handle the
accesses listed in the input.

18 NCPC 2008 Problem I: Introspective Caching

Sample input 1 Sample output 1

1 2 3

0

0

1

2

Sample input 2 Sample output 2

3 4 8

0

1

2

3

3

2

1

0

5

NCPC 2008 Problem J: Just A Few More Triangles! 19

Problem J

Just A Few More Triangles!

Simon Haples is a somewhat peculiar person. Not quite hip,
not quite square, he is more of a triangular nature: ever
since childhood, he has had an almost unhealthy obsession with
triangles. Because of his discrete nature, Simon’s favorite kind of
triangles are the Pythagorean ones, in which the side lengths are
three positive integers a, b, and c such that a ≤ b and a2+b2 = c2.

Recently, Simon has discovered the fantastic world of counting
modulo some integer n. As you may imagine, he quickly realizes that there are multitudes
of Pythagorean triples to which he has previously been oblivious! Simon therefore sets
out to find all Pythagorean triples modulo n, i.e., all triples of integers a, b and c between
1 and n− 1 such that a ≤ b and a2 + b2 ≡ c2 (mod n).

As Simon’s best friend, you realize that there is not much hope in deterring Simon
from his crazy plans, so you decide to help him by computing how many such triples there
are, so that Simon will know when his work is done.

Input specifications

The input consists of a single integer n, satisfying 2 ≤ n ≤ 500 000.

Output specifications

Output the number of Pythagorean triples modulo n.

Sample input 1 Sample output 1

7 18

Sample input 2 Sample output 2

15 64

