
Problem A Input File: a.in Output: to monitor 

What is the air speed velocity…  
 

…of a fully laden swallow? This fearful question was posed to the intrepid band of Grail 
searchers.  Their response of “African or European?” was partly correct. The air speed would 
most definitely depend on the sub-species of swallow. King Arthur, fearing more intense 
questioning in this vein, ordered his royal mathematicians to determine the air speed of a fully 
laden swallow – both African and European. 
 
The mathematicians called upon the royal birders to capture a number of swallows of both 
types, lade them fully, and then release them from point A and time their arrival at point B.  
Since they didn’t want to confuse their figures, the European and African swallows were each 
started from a different location, so that each group flew a different distance, but all swallows in 
the same group flew the same distance. They then asked the royal map-makers to determine 
the distance (measured in furlongs) between the two starting points and the finish point. Using 
10 swallows of each type, the royal mathematicians would then compute the average air speed 
for each group. 
 
However, the royal mathematicians were somewhat lazy. After gathering all the data, they 
decided it was MUCH too hard to do all those nasty calculations by hand. So, they quickly 
constructed a time machine and have come into the future to enlist your help: they need you to 
write a program to do the calculations, which they will then take back into the past with them. 
Thus the searchers of the Grail will be saved from certain doom, (should this dastardly question 
be posed again), and you will go down in history as a hero. (Well, maybe not history, since they 
are from the past, so maybe you’ll go down in futurory?) 
 
There’s one tricky bit (you knew it was coming): the royal mathematicians cannot agree on 
exactly how the average should be calculated. Some believe that, for each group, one should 
add up all of the times and then divide the total distance covered by all the swallows of that type 
by the total time (this is method 1). Others are of the opinion that the average speed is 
determined by computing the speed for each swallow, summing those values and then dividing 
that total by the total number of swallows (this is method 2). Your program should compute the 
average both ways, to avoid a nasty falling out among the royal mathematicians. 
 
The input provided by the royal mathematicians is somewhat disorganized – the two breeds’ 
times have been intermixed and they weren’t too careful about capitalization. But each entry is 
on a separate line and marked with an ‘A’ or ‘a’ or ‘E’ or ‘e’ to aid in identification. Each line 
begins with this single letter, followed by a single space. The final datum on the line is the 
elapsed time the swallow flew, expressed in hours. Since the time-keeping of the era wasn’t 
very accurate, this value is simply a real number (> 0) with a single level of precision, such as 
1.5 (one and a half hours), or 0.4 (four-tenths of an hour). 
 

Input 
 
The very first line of the input file will consist of 2 integers, both greater than 0, separated by a 
single space. The first integer is the distance the African swallows flew and the second integer 
is the distance the European swallows flew.  Next come the times for the swallows (20 lines 
total: 10 for African, 10 for European – NOT in this order).  Thus the input file has a total of 21 
lines. 
 



Problem A Input File: a.in Output: to monitor 

Output 
 
The format for the output should be grouped by methods, with Method 1 being displayed first. 
Each method will produce 3 lines of output:  

• Line 1: the name of the method (capitalized, with a digit identifying it), e.g. “Method 1” 
(the quotes are not part of your output.) 

• Line 2: the speed of a fully-laden African swallow (expressed in furlongs per hour), e.g.  
“African: 3.00 furlongs per hour” (the quotes are not part of your output.)  

• Line 3: the speed of a fully-laden European swallow (expressed in furlongs per hour) 
e.g.  “European: 3.00 furlongs per hour” (the quotes are not part of your output.) 

 

The format for the data for each method is as follows:  

• The full name of the breed of swallow (capitalized), beginning with African 

• A colon 

• A single space 

• The speed (to two digits of accuracy, with leading 0 for values < 1.0) 

• A single space 

• The phrase “furlongs per hour” (the quotes are not part of the output). 
 
See the Sample output section below for any clarifications you require. 
 

Sample Input 
6 5 

a 1.0 

A 1.0 

E 2.0 

E 2.0 

A 1.0 

e 2.0 

a 1.0 

A 1.0 

E 2.0 

E 2.0 

A 1.0 

e 2.0 

a 1.0 

A 1.0 

E 2.0 

E 2.0 

A 1.0 

e 2.0 

e 1.0 

a 2.0 

 

Sample Output 
Method 1 

African: 5.45 furlongs per hour 

European: 2.63 furlongs per hour 

Method 2 

African: 5.70 furlongs per hour 

European: 2.75 furlongs per hour 



Problem B Input File: b.in Output: to monitor 

 

The Brave Sir Robin’s cAsE 
cOrReCtOr 

 

 

Dissatisfied with the loud and constant pronouncements of his alleged misdeeds by a trio of 
indefatigable minstrels, the brave knight Sir Robin wishes to exercise his authority by 
modifying their lyrics.  The minstrels were happy to provide printed transcripts of their songs, 
and cheerfully announced that they would not change a word of them. 

Undaunted, the brave (and crafty) Sir Robin scrutinized the documents and noticed that their 
loudest inflections were indicated by capital letters and realized that he could at least lower 
their voices.  This, he reasoned, could be accomplished by replacing upper case letters with 
lower case letters (“Case correction”, from his perspective).  These modifications could be 
forced upon the singers by insistence upon proper usage of the King’s English.  Not all letters 
can be lower case, however, as the King’s English mandates some letters must be upper 
case. 

Strangely hesitant about performing “case correction” personally, the brave, crafty (and 
managerially capable) Sir Robin humbly requests you write a program to perform a first pass 
of case correction for the songs.  There will still be some corrections required after this 
program is used. 

As your program reads the file, it must force to upper case all alphabetic characters that follow 
terminal punctuation marks (period, question mark, and exclamation point) with only white 
space or parentheses characters following.  All other alphabetic characters are to be forced to 
lower case.  Note that decimal numbers are not to be followed by an upper case character 
unless the number itself is followed by a terminal punctuation mark. 

Input 

The input file contains the text that you are converting.  Your conversions should be based on 
the rules given by Brave Sir Robin above. 

Output 

The output is to be the converted text.  All characters are transferred to the output.  Some will 
have cAsE cOrReCtiOn, others will be directly copied. 

Sample input 

The Brave Sir Robin took a short walk in a dark forest where rabbits did stalk.  a 

ray of sunlight made him jump from his own shadow with A FACE AS PALE AS CHALK. 

Sample output 

the brave sir robin took a short walk in a dark forest where rabbits did stalk.  A 

ray of sunlight made him jump from his own shadow with a face as pale as chalk. 



Problem C Input File: NONE! Output: to monitor 

   

Sir Bedavere’s Bogus Division Solutions 

 

The wise Sir Bedavere often uses non-standard logic, yet achieves positive results1.  
Well, it seems he has been at it again, this time with division.  He has determined that 
canceling the common digit of a numerator and denominator produces the correct 
answer.  Of course, Sir Bedavere only tried this on a small sample of three digit 
numbers.  An example of what he did is shown in the following division problem (in 
which he canceled the common 6): 

 

Your task is to find all three digit number combinations with the following property:   

number combinations where removing the rightmost digit from the top number 
(numerator) and the identical leftmost digit from the bottom number (denominator) 
leaves the result of the calculation unchanged.   

Omit all of the trivial cases — xxx/xxx = xx/xx (222/222 = 22/22).  The solutions are to 
be shown in increasing order of the top number (the numerator). 

The Input 

NONE!  There is no input for this problem. 

The Output 

Show the bogus division problems one to a line in the format shown below (which gives 
a sample merely to show the format) — single spaces separate the non-blank 
characters. 

217 / 775 = 21 / 75 

249 / 996 = 24 / 96 

                                                 
1
 Please see the scene “How do you know she’s a witch?” or recall the quote “…how sheep’s bladders 

may be employed to prevent earthquakes.” 



Problem D Input File: d.in Output: to monitor 

One…Two…Five! 
 

 
The set of integers has rarely been a domain of error in everyday conversation.  The king, 
however, is “three blind” and cannot visualize any number containing the digit ‘3’ in its base 
10 representation.  He does intuitively sense the number between 2 and 4 and compensates 
for his blindness in the following manner:  whenever he wants to state any number containing 
the digit ‘3’, he will speak a series of numbers until they can all be combined (in the order 
given) via addition, subtraction, multiplication and division to produce the desired value which 
contains the digit ‘3’.  Mathematical operators work from left to right without any other regard 
for order of precedence (i.e. 6 + 7 * 11 = 143 � a number with a ‘3’). 
 
For example, if the king says “1 2 5”, then a knight will say “3” using the following logic: 
 

1 2 5 = 1 * 2 – 5 = 2 – 5 = |2 – 5| = 3 

 
Note that there are no negative numbers in optimistic Camelot.  Every subtraction will 
produce a nonnegative result by what is called, in these enlightened times, the absolute 
value.  All division is integer division, i.e. 7/5 = 1.  Obviously, if the number zero appears as a 
divisor, then division will not be attempted. 
 
The court, however, has a problem.  Some of the computations produce more than 1 number 
containing the digit ‘3’!  You have been appointed to write a program which computes and 
displays the most frequently appearing number containing the digit ‘3’.  In the event of a tie, 
use the largest number. 
 
Input 
 
The input will consist of an unspecified number of lines.  Each line will contain at least 1 and 
at most 9 integers.  Every number will be nonnegative and less than 100.  A line with a single 
‘#’ character will be the end of input. 
 
Output 
 
For every line of input, print a line showing the number most probably meant by the king as 
described above.  If there is no such number, print “No result”. 
Sample Input 
1 2 5 

1 1 

6 5 1 

# 

Sample Output 
3 

No result 

30 

 



Problem E Input file: e.in Output: to monitor 

Taunt Exposure Estimation 

The brave knights (kə’ nig’ əts) of Camelot are constantly exposed to French taunting 
while assaulting the castle occupied by the French.  Consequently, the taunting to which 
they are exposed varies with their distance from the castle during their assault, as well 
as variations in French taunting activity.  We need to estimate the total amount of 
taunting that they are exposed to during a certain time period.  Unfortunately, we only 
have access to a set of measurements at random times — we do not have a continuous 
reading — and, because of flaws in our archaic equipment, the measurements of 
taunting occur at unpredictable intervals. 

The total amount of taunting will be given by the integral of the taunting intensity during 
the time period, as held in the observation data file.  The amount of random noise, 
though, is fairly high, so that a simple trapezoid-rule integration is all that is merited. 

0

1

2

3

4

5

6

0 50 100 150 200 250 300 350

 
The Input 

• A single number, n, specifying the number of data points in the file 

• n pairs of floating point numbers (given in increasing x order), separated by a 
comma — in other words, a CSV file that could be input for a spreadsheet 
program [the first number is the x coordinate (time specification), the second is 
the y coordinate (the radiation reading)]1 

The Output 

A single line of text giving the first and last x values (with two digits to the right of the 
decimal point), and the computed integral (with four digits to the right of the decimal 
point), in the fashion shown below (which reflects the data shown in the graph): 

0.00 to 365.25: 2099.8021 

[A reasonable value for the given input, (shown in the graph above), since the values 
range around 5 ¾, and 365.25 * 5.75 gives 2100.1875.] 
                                                 
1
 Sample input and output on the following page (according to Ralph The Wonder Llama) 



Sample Input2 

9 

 0.0000, 0.5176 

 0.9869,  1.000 

  1.596,  1.114 

  2.370,  1.006 

  2.904, 0.8481 

  3.506, 0.5760 

  3.996, 0.4775 

  5.004, 0.3945 

  6.283,  1.004 

Sample Output3 

0.00 to 6.28: 4.7288 

 

                                                 
2 A Møøse once bit my sister... 

 
3 We apologise for the fault in the footnotes. Those responsible have been 

sacked. 

 



Problem F Input file: f.in   Output: to monitor 

Ye Holy Hand Grenades! 
 

Holy Hand Grenades have found multiple uses throughout history.  Most notably, King Arthur did use a Holy Hand 
Grenade (HHG) to dispatch a vicious rabbit which was guarding the entrance to a cave. The instructions for its use are in 
the Book of Armaments (Chapter 2, verses 9-21), and are read as follows:  
 

5Y|Üáà á{tÄà à{Éâ àt~x Éâà à{x [ÉÄç c|ÇA g{xÇ? á{tÄà à{Éâ vÉâÇà àÉ 

à{ÜxxA aÉ ÅÉÜx? ÇÉ ÄxááA g{Üxx á{tÄÄ ux à{x ÇâÅuxÜ à{Éâ á{tÄà vÉâÇà? tÇw 
à{x ÇâÅuxÜ Éy à{x vÉâÇà|Çz á{tÄÄ ux à{ÜxxA YÉâÜ á{tÄà à{Éâ ÇÉà vÉâÇà? 
Çx|à{xÜ vÉâÇà à{Éâ àãÉ? xåvxÑà|Çz à{tà à{Éâ à{xÇ ÑÜÉvxxw àÉ à{ÜxxA Y|äx |á 
Ü|z{à ÉâàA bÇvx à{x ÇâÅuxÜ à{Üxx? ux|Çz à{x à{|Üw ÇâÅuxÜ? ux Üxtv{xw? 
à{xÇ ÄÉuuxáà à{Éâ à{ç [ÉÄç [tÇw ZÜxÇtwx Éy TÇà|Év{ àÉãtÜwá à{ç yÉx? 
ã{É? ux|Çz Çtâz{àç |Ç `ç á|z{à? á{tÄÄ áÇâyy |àA5 TÅxÇA      
 
Unfortunately, the Book of Armaments faileth to mention that the HHG 
must come to a complete stop (i.e. rest stably) before it can explodeth 
and blow a rabbit to tiny bits.  As long as it rolleth or wobbeleth, it 
refuseth to explodeth.  Unknown is the reason why the authors of the Book of Armaments neglected to mention this 
pertinent fact.  Further complicating matters, different HHGs have different radii of destruction (RD).  Once a HHG resteth 
stably, and explodeth, everything within or equal to its RD shalt be snuffed out.  Presumably, this is what happened to the 
rabbit with big, pointy teeth; however, there remaineth some controversy over this matter. Because of this controversy, the 
king hath decreed a simulation to be run that may possibly answer this question. 

• Your task is to determine the result of the grenade’s explosion.  

• The grenade must always be at rest in order to detonate. All HHGs have a radius R=1 and a variable radius of 
destruction (RD). At the instant of detonation, the rabbit could be mid-leap, on the ground, or underground.   

• For each simulation the terrain remaineth unchanged. It consisteth of two intersecting curves, y = e 
-x

 and y = ln(x) as 
we have revealed unto you in the illustrious illustration.  The curves reside in the plane formed by the rabbit, the 
grenade, and the center of the earth.  The terrain is impervious to detonations, and changeth not between tests. 

• If a bunny’s center of mass is strictly below the ground level (as denoted by the intersecting curves) when a HHG 
explodeth, that bunny shalt remaineth un-snuffedeth and thus shalt live to bite another day.  

• If the bunny resideth strictly outside of the range of a stably resting HHG’s radius of destruction, that bunny shalt also 
remain un-snuffedeth out. 

• Each result shalt be dependent upon computations accurate even unto 8 significant figures.  

• There shalt not be an input value smaller even than 1.0E-15 or greater even than 1.0E+15.  

• Because the bunny’s center of mass doth be its location, a bunny might possibly end up inside both the RD and the R=1 
of a HHG.  This simply means the bunny is curled around the grenade. If the center of mass of such a bunny be strictly 
inside the RD it shall most surely be snufféd out. Amen. 

 
Input 
The first line of input doth contain yea verily a single integer indicating the number of holy hand grenades in the data 
file. Each line of the file doth contain the radius of destruction of this particular holy hand grenade, and finally doth contain 
the rabbit’s x coordinate (xb) and y coordinate (yb) during this particular test run. 
 
Output 
For each test run, thy program shalt print out the words “Bunny Bits” (if the rabbit is blown to bits by the grenade) or 
“Bunny Biteth Knights” (if the rabbit liveth to fight on another day anon). 
 

Sample Input 

2 

1.5 3.0 3.0 

5.5 3.0 3.0  

Sample Output 

Bunny Biteth Knights 

Bunny Bits 

 



Problem G Input file: g.in Output: to monitor 

Nested Shrubbery Boxes 

 
 
After each commission to install a shrubbery, Roger the Shrubber has to transport many 
empty planting boxes with a drawn cart.  In this instance, a planting box is a wooden box with 
one open side. 
 
Given a set of n planting boxes, compute the largest number of boxes that can be nested.  
Specifically, report the number of the largest subset of boxes which may be nested such that 
the smallest box of the subset fits within the second smallest, the second smallest of the 
subset fits within the third smallest, the third smallest of the subset fits within the fourth 
smallest, and so forth. 
 
A box i (bi) fits into box j (bj) if there exists some rotation of bi such that each dimension of bi 
is less than the corresponding dimension of bj.  Any box can be rotated to nest inside another 
box. 
 
Input 
 
The input will consist of an unspecified number of box sets.  Each set will begin with a line 
containing n, 0 ≤ n ≤ 500, the number of boxes in the set.  Each box will be described on its 
own line by three positive integers representing length, width and height (Each value will not 
exceed 1000).  The first two numbers of each box description will be followed by a space, the 
letter ‘x’, and a space.  The end of input occurs when n = -1. 
 
Output 
 
For each set of boxes, print a line containing the largest number of boxes that can be 
selected from the original set to form a fully nesting subset of boxes. 
 
Sample Input 
5 

145 x 472 x 812 

827 x 133 x 549 

381 x 371 x 900 

271 x 389 x 128 

718 x 217 x 491 

4 

432 x 123 x 139 

942 x 844 x 783 

481 x 487 x 577 

677 x 581 x 701 

-1 

Sample Output 
2 

4 

 

 



Problem H Input file: h.in Output: to monitor 

Page 1 of 3 

And Now For Something Completely Different! 

Bart and Lisa Simpson have many chores, but they don't always do them well. So their 
father began keeping score, giving them credit only if a chore was done right.  After a 
month, he showed them his record keeping.   

Assigned chores for first month 
Chores 
done 

correctly 

Bart Bart Bart Lisa Lisa Lisa Bart Bart Lisa 

1 0 1 0 1 1 1 

  

75.00 
% 

66.67 
% 

This showed that Bart had done 3 out of 4 chores correctly and Lisa had done 2 out of 3 
chores correctly.  Then for a second month, Bart and Lisa did chores and the record 
keeping looked like this:   

Assigned chores for second month 
Chores 
done 

correctly 

Bart Bart Lisa Lisa Lisa Lisa Lisa Lisa Lisa Bart Lisa 

0 1 0 1 1 0 1 0 0 

  

50.00 
% 

42.86 
% 

The father made the following chart to support the hypothesis that Bart was doing the 
most chores:   

  
Month 

1 
Month 

2 
Computation 

Total 

Bart 
75.00 

% 
50.00 

% 
125.00 / 
234.53 

53.30 
% 

Lisa 
66.67 

% 
42.86 

% 
109.53 / 
234.53 

46.70 
% 

Lisa looked at the tables then said "No no no, that's not right, I've done more."  Bart 
pointed at the statistics and said, "Numbers don't lie."  Lisa said, "But look, I've done 5 
chores and you've only done 4.  You just look good because you always run away 
before somebody asks you to do something.  The total should give me 55% of the total 
chores done right."  Bart laughed and ran away.  Now Lisa needs your help to show the 
unfairness of these chore evaluations.  She wants a program which computes the 
averages over the entire dataset and displays where the before and after averages 
support the opposite hypothesis than would be indicated by considering the total 
dataset.  To be fair, she only wants to consider record keeping times when both she and 
Bart have chores assigned both before and after the record keeping. 



Problem H Input file: h.in Output: to monitor 

Page 2 of 3 

Input 

The first line of each test case contains one integer N (2 <= N <= 50000) the number of 
chore records.  Each of the next N lines in each test case contains either "Bart" or "Lisa" 
followed by an integer, 0 or 1.  The name shows who was assigned a chore, and the 
integer is a value of 1 if it was done correctly, or a 0 if it was not.  Both Bart and Lisa will 
have chores assigned to them in each dataset.  Input ends when N = 0. 

Output 

Write on the first line of the output for each test case, the test case number, and the 
number of chores correctly performed by Bart (CB) and Lisa (CL) in the following 
format: 

        Case <case number>: Bart did <CB> and Lisa did <CL> 

If Bart and Lisa do the same number of chores over the entire dataset, there is no trend 
to oppose.  In that case, print "Bart and Lisa accomplished same number of chores".  

If Bart and Lisa do a different number of chores over the entire dataset, determine if 
there are any places in the dataset where taking the averages of all results before and 
after a record keeping break would produce results which would indicate a trend 
opposing the trend over the entire dataset.  If there are no such cases, print on the next 
line, "Simpson's paradox not detected".  Otherwise, print on the next line "Trend 
measured in 2 parts is reversed" and on every following line print the following: 

   After chore <chore number>: <BBefore>% <LBefore>% <BAfter>% <LAfter>% 

where BBefore is Bart's correctly performed chore percentage before the record keeping, 
LBefore is Lisa's correctly performed chore percentage before the recordkeeping, BAfter is 
Bart's correctly performed chore percentage after the first record keeping until the end 
of the dataset, and LAfter is Lisa's correctly performed chore percentage after the first 
record keeping until the end of the dataset.  Note that chores are numbered from 1 to N 
in order of appearance in the dataset.  All percentages must be rounded to the nearest 
.0001.  Print a blank line between the outputs for two consecutive test cases. 

Clarification:  Because Lisa wants a program which “displays where the before and after 
averages support the opposite hypothesis than would be indicated by considering the 
total dataset”, then any averages which, after rounding, are printed as equal must be 
disregarded. 



Problem H Input file: h.in Output: to monitor 

Page 3 of 3 

 

Sample Input 

16 

Bart 1 

Bart 0 

Bart 1 

Lisa 0 

Lisa 1 

Lisa 1 

Bart 1 

Bart 0 

Bart 1 

Lisa 0 

Lisa 1 

Lisa 1 

Lisa 0 

Lisa 1 

Lisa 0 

Lisa 0 

2 

Lisa 1 

Bart 1 

2 

Lisa 0 

Bart 1 

0 

Sample Output 

Case 1: Bart did 4 and Lisa did 5 

Trend measured in 2 parts is reversed 

After chore 4: 66.6667% 0.0000% 66.6667% 55.5556% 

After chore 5: 66.6667% 50.0000% 66.6667% 50.0000% 

After chore 7: 75.0000% 66.6667% 50.0000% 42.8571% 

 

Case 2: Bart did 1 and Lisa did 1 

Bart and Lisa accomplished same number of chores 

 

Case 3: Bart did 1 and Lisa did 0 

Simpson's paradox not detected 



Problem I Input file: i.in Output: to monitor 

Taunt Generation Simulator 

In all the annals of knighthood, no personality trait has been in more dire need than the fortitude 
to withstand the diplomatically deleterious effects of a vicious, relentless taunting.  Tasked with 
strengthening the mental endurance of Camelot’s knights, King Arthur's court decided that 
instructional taunting must be applied, yet it could not be delivered by the chivalrous 
administration.  Thus, Sir Lancelot commanded a local anarcho-syndicalist peasant to write a 
program that generates taunts (a.k.a. mudslinging) thereby producing a script to test the 
patience of knights in a training environment.  To prevent unbridled creativity in taunting from 
spoiling the otherwise stately proceedings of a nobleman’s education, the following rules 
designed by committee (The Round Table) must be adhered to:  

<taunt> ::= <sentence> | <taunt> <sentence> | <noun>! | <sentence> 

<sentence> ::= <past-rel> <noun-phrase> | <present-rel> <noun-phrase> | <past-rel> <article> <noun> 

<noun-phrase> ::= <article> <modified-noun> 

<modified-noun> ::= <noun> | <modifier> <noun> 

<modifier> ::= <adjective> | <adverb> <adjective> 

<present-rel> ::= your <present-person> <present-verb> 

<past-rel> ::= your <past-person> <past-verb> 

<present-person> ::= steed | king | first-born 

<past-person> ::= mother | father | grandmother | grandfather | godfather 

<noun> ::= hamster | coconut | duck | herring | newt | peril | chicken | vole | parrot | mouse | twit 

<present-verb> ::= is | “masquerades as” 

<past-verb> ::= was | personified 

<article> ::= a 

<adjective> ::= silly | wicked | sordid | naughty | repulsive | malodorous | ill-tempered 

<adverb> ::= conspicuously | categorically | positively | cruelly | incontrovertibly 

Note that all phrases in double quotes are to be treated as one word for taunt simulation output. 

The number of taunts elicited at any given time is derived from the number of words spoken by 
the knight.  For every three words (or fraction thereof) delivered by the knight, the generator 
produces one or more taunts in a theater-style script format.  In the event that 2 taunts must be 
produced on a single line, they will be counted as 2 taunts towards the total required.  By a 
mandate from the masses, a word will always contain at least one alphabetic character, and will 
be separated from other words by at least 1 space. 

In exception to the above rules, whenever the program finds the holy grail, which is to say, the 
letters t-h-e-h-o-l-y-g-r-a-i-l (case insensitive) in that order in a line of input, then the first taunt 
generated will be displayed by the program as “(A childish hand gesture)”. 

To ensure all royal quality assurance criteria are met, the program must be demonstrated by a 
simulation showing the taunts produced from a series of inputs.  Each taunt is generated by 
applying the taunt generation rules until all of the <...> have been replaced with appropriate 
words.  In most cases, you will face a choice of alternate rules for expanding a phrase name. In 
these cases, you should make a choice as follows: Suppose that this is the kth such choice that 
you have faced for that rule since the start of program execution, and that you must choose one 
of n rules for expanding a given kind of phrase.  Let the rules for that phrase be numbered from 
1…n in the order of appearance above, and then choose rule number ((k-1) mod n) + 1. 

Well, get on with it! 

 



Problem I Input file: i.in Output: to monitor 

Input 

The input will consist of an unspecified number of lines. Each line will contain a statement 
uttered by a knight consisting of letters, digits, the characters ",.-!?" and whitespace.  Each line 
of input will be more than 1 character and less than 72 characters in length.  All words will be 
separated by whitespace. Each statement will contain at least one word. 

Output 

For every line of input, print a block of output containing the following: 

• A single line containing "Knight:", a space, and the input.  Any appearance of whitespace 
inside the input will be replaced by a single space. 

• All taunts (as explained in the above rules) prefaced by "Taunter:" and a space, the taunt, 
and a period.  Each word should be separated from neighboring words by a single space. 

• A blank line 

Each taunt should begin with a capital letter, and no extra characters should be added. 

Sample Input 

Hello! 

Are you feeling alright? 

Is there someone else I could talk to? 

Anyone at    all? 

We seek the holy grail . . . 

Sample Output 

Knight: Hello! 

Taunter: Your mother was a hamster. 

 

Knight: Are you feeling alright? 

Taunter: Coconut! Your steed is a silly duck. 

 

Knight: Is there someone else I could talk to? 

Taunter: Your father personified a herring. 

Taunter: Your grandmother was a newt. 

Taunter: Peril! Your king masquerades as a conspicuously wicked chicken. 

 

Knight: Anyone at all? 

Taunter: Your grandfather personified a vole. 

 

Knight: We seek the holy grail . . . 

Taunter: (A childish hand gesture). 

Taunter: Your godfather was a parrot. 
 



Problem J Input file: j.in Output: to monitor 

No Left Turns 

 
ALL HEADS:  You're a Knight of the Round Table?  
ROBIN:  I am.  
LEFT HEAD:  In that case I shall have to kill you.  
MIDDLE HEAD:  Shall I? 
RIGHT HEAD:  Oh, I don't think so. 
MIDDLE HEAD:  Well, what do I think?   
LEFT HEAD:  I think kill him. 
RIGHT HEAD:  Well let's be nice to him. 
MIDDLE HEAD:  Oh shut up.  
 

As the story goes, the Knight scarpers off.  Right Head has taken it upon himself to search the 
grounds for the knight so he, Left, and Middle can go extinguish him (and then have tea and 
biscuits.) 
 
Consider the following 8 by 12 maze, where shaded squares are walls that can’t be entered.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The shortest path between the Right Head (denoted by the S, for start) and the knight (denoted by 
the F, for finish) is of length 3, as illustrated above.  But! Right Head can’t turn left or make U-
Turns.  He can only move forward and turn right.  That means the shortest path that Right Head 
can find is significantly longer: at 29! 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 

S 

F 

 

S 

F 



Problem J Input file: j.in Output: to monitor 

 
Input 
 
The input file will consist of a single integer N (N > 0) specifying the number of mazes in the file.  
Following this, on a maze by maze basis will be the number of rows, r (3 < r ≤ 20), a space, then 
the number of columns, c (3 < c ≤ 20).  After this will follow r lines of c characters, representing a 
map of the maze: 
 

XXXXXXXXXXXXXX 

X          XXX 

X XFXXXXX    X 

XXX   XX  XX X 

X S          X 

XX  XXXXXX X X 

X        X X X 

X X      X X X 

XXX XX       X 

XXXXXXXXXXXXXX 
 

X’s mark those locations that are walls and can’t be occupied.  S marks the start location, and F 
marks the Knight.  Blanks are locations that can be freely traveled. 
 
Output 
 
The output is the length of the shortest path between the start and finish locations.  Based on the 
above maze, your program would output the minimum no-left-turns path length of 29. 

 

Additional Constraints/Information: 

• Right Head is capable of moving from the start position in any of the four primary compass 
directions.  After that, he’s constrained to either step forward or right. 

• The start and end locations will never be the same. 

• The maze is always surrounded by four walls. 

• You can assume that a path between the start and final locations always exists. 
 
 
 

Sample Input 
1 

10 14 

XXXXXXXXXXXXXX 

X          XXX 

X XFXXXXX    X 

XXX   XX  XX X 

X S          X 

XX  XXXXXX X X 

X        X X X 

X X      X X X 

XXX XX       X 

XXXXXXXXXXXXXX 

Sample Output 
29 

 

 



Problem K Input file: k.in Output: to monitor 

Coconuts 
 
A group of n castle guards are voting to determine whether African swallows can carry 
coconuts.  While each guard has his own personal opinion on the matter, a guard will often vote 
contrary to his beliefs in order to avoid disagreeing with the votes of his friends. 
 
You are given a list of guards who either do or do not believe in the coconut-carrying capacity of 
African swallows, and a list of all pairs of guards who are friends.  Your task is to determine how 
each guard must vote in order to minimize the sum of the total number of disagreements 
between friends and the total number of guards who must vote against their own beliefs. 
 
Input 
 
The input to this problem will contain multiple test cases.  Each test case begins with a single 
line containing an integer n (where 2 ≤ n ≤ 300), the number of guards, and an integer m (where 
1 ≤ m ≤ n(n-1)/2), the number of pairs of guards who are friends.  The second line of the test 
case contains n integers, where the ith integer is 1 if the ith guard believes in the ability of 
African swallows to carry coconuts, and 0 otherwise.  Finally, the next m lines of the test case 
each contain two distinct integers i and j (where 1 ≤ i, j ≤ n), indicating that guards i and j are 
friends.  Guards within each pair of friends may be listed in any order, but no pair of guards will 
be repeated. The input is terminated by an invalid test case with n = m = 0, which should not be 
processed.   
 
Output 
 
For each input test case, print a single line containing the minimum possible sum of the total 
number of disagreements between all friends plus the total number of guards who must vote 
against their own beliefs.   
 
Sample Input 
3 3 

1 0 0 

1 2 

1 3 

3 2 

6 6 

1 1 1 0 0 0 

1 2 

2 3 

4 2 

3 5 

4 5 

5 6 

0 0 

Sample Output 
1 

2 

 

 
Notes: 
In the first test case, the best result is achieved when all guards vote that African swallows 
cannot carry coconuts.  Here, there is only a penalty of 1 for the first guard voting against his 
beliefs. 
 
In the second test case, the best result is achieved when each guard votes for his beliefs.  The 
penalty of 2 arises from the disagreements between guards 2 and 4, and guards 3 and 5. 


