
Problem A: Find the Winning Move
Source file: win.{c, cpp, java, pas}
Input file: win.in

Output file: win.out

4x4 tic-tac-toe is played on a board with four rows (numbered 0 to 3 from top to bottom) and four
columns (numbered 0 to 3 from left to right). There are two players, x and o, who move alternately with x
always going first. The game is won by the first player to get four of his or her pieces on the same row,
column, or diagonal. If the board is full and neither player has won then the game is a draw.

Assuming that it is x's turn to move, x is said to have a forced win if x can make a move such that no
matter what moves o makes for the rest of the game, x can win. This does not necessarily mean that x
will win on the very next move, although that is a possibility. It means that x has a winning strategy that
will guarantee an eventual victory regardless of what o does.

Your job is to write a program that, given a partially-completed game with x to move next, will
determine whether x has a forced win. You can assume that each player has made at least two moves,
that the game has not already been won by either player, and that the board is not full.

The input file contains one or more test cases, followed by a line beginning with a dollar sign that signals
the end of the file. Each test case begins with a line containing a question mark and is followed by four
lines representing the board; formatting is exactly as shown in the example. The characters used in a
board description are the period (representing an empty space), lowercase x, and lowercase o. For each
test case, output a line containing the (row, column) position of the first forced win for x, or '#####' if
there is no forced win. Format the output exactly as shown in the example.

For this problem, the first forced win is determined by board position, not the number of moves required
for victory. Search for a forced win by examining positions (0, 0), (0, 1), (0, 2), (0, 3), (1, 0), (1, 1), ...,
(3, 2), (3, 3), in that order, and output the first forced win you find. In the second test case below, note
that x could win immediately by playing at (0, 3) or (2, 0), but playing at (0, 1) will still ensure victory
(although it unnecessarily delays it), and position (0, 1) comes first.

Example input:
?
....
.xo.
.ox.
....
?
o...
.ox.
.xxx
xooo
$

Problem A: Find the Winning Move

http://www.cs.smsu.edu/~rcjudge/1999/win.html (1 of 2) [2/23/2000 11:45:01 PM]

Example output:
#####
(0,1)

Problem A: Find the Winning Move

http://www.cs.smsu.edu/~rcjudge/1999/win.html (2 of 2) [2/23/2000 11:45:01 PM]

Problem B: Myacm Triangles
Source file: triangle.{c, cpp, java, pas}
Input file: triangle.in

Output file: triangle.out

There has been considerable archeological work on the ancient Myacm culture. Many artifacts have been
found in what have been called power fields: a fairly small area, less than 100 meters square where there
are from four to fifteen tall monuments with crystals on top. Such an area is mapped out above. Most of
the artifacts discovered have come from inside a triangular area between just three of the monuments,
now called the power triangle. After considerable analysis archeologists agree how this triangle is
selected from all the triangles with three monuments as vertices: it is the triangle with the largest possible
area that does not contain any other monuments inside the triangle or on an edge of the triangle. Each
field contains only one such triangle.

Archeological teams are continuing to find more power fields. They would like to automate the task of
locating the power triangles in power fields. Write a program that takes the positions of the monuments
in any number of power fields as input and determines the power triangle for each power field.

A useful formula: the area of a triangle with vertices (x1, y1), (x2, y2), and (x3, y3) is the absolute value of

0.5 × [(y3 − y1)(x2 − x1) − (y2 − y1)(x3 − x1)].

For each power field there are several lines of data. The first line is the number of monuments: at least 4,
and at most 15. For each monument there is a data line that starts with a one character label for the
monument and is followed by the coordinates of the monument, which are nonnegative integers less than
100. The first label is A, and the next is B, and so on.

There is at least one such power field described. The end of input is indicated by a 0 for the number of
monuments. The first sample data below corresponds to the diagram in the problem.

For each power field there is one line of output. It contains the three labels of the vertices of the power
triangle, listed in increasing alphabetical order, with no spaces.

Example input:

6

Problem B: Myacm Triangles

http://www.cs.smsu.edu/~rcjudge/1999/triangle.html (1 of 2) [2/23/2000 11:45:02 PM]

A 1 0
B 4 0
C 0 3
D 1 3
E 4 4
F 0 6
4
A 0 0
B 1 0
C 99 0
D 99 99
0

Example output:

BEF
BCD

Problem B: Myacm Triangles

http://www.cs.smsu.edu/~rcjudge/1999/triangle.html (2 of 2) [2/23/2000 11:45:02 PM]

Problem C: Exchange Rates
Source file: exchange.{c, cpp, java, pas}
Input file: exchange.in

Output file: exchange.out

Using money to pay for goods and services usually makes life easier, but sometimes people prefer to
trade items directly without any money changing hands. In order to ensure a consistent "price", traders
set an exchange rate between items. The exchange rate between two items A and B is expressed as two
positive integers m and n, and says that m of item A is worth n of item B. For example, 2 stoves might be
worth 3 refrigerators. (Mathematically, 1 stove is worth 1.5 refrigerators, but since it's hard to find half a
refrigerator, exchange rates are always expressed using integers.)

Your job is to write a program that, given a list of exchange rates, calculates the exchange rate between
any two items.

The input file contains one or more commands, followed by a line beginning with a period that signals
the end of the file. Each command is on a line by itself and is either an assertion or a query. An assertion
begins with an exclamation point and has the format

! m itema = n itemb

where itema and itemb are distinct item names and m and n are both positive integers less than 100. This
command says that m of itema are worth n of itemb. A query begins with a question mark, is of the form

? itema = itemb

and asks for the exchange rate between itema and itemb, where itema and itemb are distinct items that
have both appeared in previous assertions (although not necessarily the same assertion). For each query,
output the exchange rate between itema and itemb based on all the assertions made up to that point.
Exchange rates must be in integers and must be reduced to lowest terms. If no exchange rate can be
determined at that point, use question marks instead of integers. Format all output exactly as shown in
the example.

Note:

Item names will have length at most 20 and will contain only lowercase letters.●

Only the singular form of an item name will be used (no plurals).●

There will be at most 60 distinct items.●

There will be at most one assertion for any pair of distinct items.●

There will be no contradictory assertions. For example, "2 pig = 1 cow", "2 cow = 1 horse", and "2
horse = 3 pig" are contradictory.

●

Assertions are not necessarily in lowest terms, but output must be.●

Although assertions use numbers less than 100, queries may result in larger numbers that will not
exceed 10000 when reduced to lowest terms.

●

Example input:

Problem C: Exchange Rates

http://www.cs.smsu.edu/~rcjudge/1999/exchange.html (1 of 2) [2/23/2000 11:45:05 PM]

! 6 shirt = 15 sock
! 47 underwear = 9 pant
? sock = shirt
? shirt = pant
! 2 sock = 1 underwear
? pant = shirt
.

Example output:
5 sock = 2 shirt
? shirt = ? pant
45 pant = 188 shirt

Problem C: Exchange Rates

http://www.cs.smsu.edu/~rcjudge/1999/exchange.html (2 of 2) [2/23/2000 11:45:05 PM]

Problem E: Automatic Editing
Source file: autoedit.{c, cpp, java, pas}
Input file: autoedit.in

Output file: autoedit.out

Text-processing tools like awk and sed allow you to automatically perform a sequence of editing
operations based on a script. For this problem we consider the specific case in which we want to perform
a series of string replacements, within a single line of text, based on a fixed set of rules. Each rule
specifies the string to find, and the string to replace it with, as shown below.

Rule Find Replace-by
1. ban bab

2. baba be
3. ana any

4. ba b hind the g

To perform the edits for a given line of text, start with the first rule. Replace the first occurrence of the
find string within the text by the replace-by string, then try to perform the same replacement again on the
new text. Continue until the find string no longer occurs within the text, and then move on to the next
rule. Continue until all the rules have been considered. Note that (1) when searching for a find string, you
always start searching at the beginning of the text, (2) once you have finished using a rule (because the
find string no longer occurs) you never use that rule again, and (3) case is significant.

For example, suppose we start with the line

banana boat

and apply these rules. The sequence of transformations is shown below, where occurrences of a find
string are underlined and replacements are boldfaced. Note that rule 1 was used twice, then rule 2 was
used once, then rule 3 was used zero times, and then rule 4 was used once.

Before After
banana boat babana boat

babana boat bababa boat

bababa boat beba boat

beba boat behind the goat

The input contains one or more test cases, followed by a line containing only 0 (zero) that signals the end
of the file. Each test case begins with a line containing the number of rules, which will be between 1 and
10. Each rule is specified by a pair of lines, where the first line is the find string and the second line is the
replace-by string. Following all the rules is a line containing the text to edit. For each test case, output a
line containing the final edited text.

Both find and replace-by strings will be at most 80 characters long. Find strings will contain at least one
character, but replace-by strings may be empty (indicated in the input file by an empty line). During the

Problem E: Automatic Editing

http://www.cs.smsu.edu/~rcjudge/1999/autoedit.html (1 of 2) [2/23/2000 11:45:06 PM]

edit process the text may grow as large as 255 characters, but the final output text will be less than 80
characters long.

The first test case in the sample input below corresponds to the example shown above.

Example input:

4
ban
bab
baba
be
ana
any
ba b
hind the g
banana boat
1
t
sh
toe or top
0

Example output:

behind the goat
shoe or shop

Problem E: Automatic Editing

http://www.cs.smsu.edu/~rcjudge/1999/autoedit.html (2 of 2) [2/23/2000 11:45:06 PM]

	The 1999 ACM Mid-Central USA Problems
	Problem A: Find the Winning Move
	Problem B: Myacm Triangles
	Problem C: Exchange Rates
	Problem E: Automatic Editing

