Geometry for Programming Competitions

Eugene Fink (www.cs.cmu.edu/~eugene)

Available online:

- Word version: www.cs.cmu.edu/~eugene/research/talks/compete-geom.doc
- PDF version: www.cs.cmu.edu/~eugene/research/talks/compete-geom.pdf

Let no one who is ignorant of geometry enter here.

- Inscription on the entrance to Plato's academy

We humans are good at visual reasoning, but computers are not; intuitive visual operations are often hard to program.

Overview

- Basic geometry: points and lines, triangle, circle, polygon area
- Convex hull: gift wrapping, Graham scan

Readings:

- Steven S. Skiena and Miguel A. Revilla. Programming Challenges
- Joseph O'Rourke. Computational geometry in C
- Wikipedia (wikipedia.org)
- Wolfram MathWorld (mathworld.wolfram.com)

Points and lines

Representation in Cartesian coordinates:

- Point: $\left(x_{1}, y_{1}\right)$
- Line:
o $y=m \cdot x+b$ (more intuitive but does not include vertical lines)
o $a \cdot x+b \cdot y+c=0$ (more general but non-unique and less intuitive)
- Line segment: two endpoints

Yes/No tests:

- Point $\left(x_{1}, y_{1}\right)$ is on line (m, b) iff $y_{1}=m \cdot x_{1}+b$ (available in Java)
- Lines $\left(m_{1}, b_{1}\right)$ and $\left(m_{2}, b_{2}\right)$ are \ldots

0 identical iff $m_{1}=m_{2}$ and $b_{1}=b_{2}$
0 parallel iff $m_{1}=m_{2}$
o orthogonal iff $m_{1}=-1 / m_{2}$

- Counterclockwise predicate ccw (available in Java):

Consider points $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$, and $\left(x_{3}, y_{3}\right)$, and let $A=x_{1} \cdot y_{2}+x_{2} \cdot y_{3}+x_{3} \cdot y_{1}-y_{1} \cdot x_{2}-y_{2} \cdot x_{3}-y_{3} \cdot x_{1}$.
0 If $A>0$, the points are in a counterclockwise order
o If $A<0$, the points are in a clockwise order
o If $A=0$, the points are collinear

Basic computations:

- Distance between $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$:

$$
\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}}
$$

- Line through points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$:

$$
\begin{aligned}
& m=\left(y_{1}-y_{2}\right) /\left(x_{1}-x_{2}\right) \\
& b=y_{1}-m \cdot x_{1}
\end{aligned}
$$

- Intersection of $\left(m_{1}, b_{1}\right)$ and $\left(m_{2}, b_{2}\right)$, where $m_{1} \neq m_{2}$:

$$
\begin{aligned}
& x_{1}=\left(b_{2}-b_{1}\right) /\left(m_{1}-m_{2}\right) \\
& y_{1}=m_{1} \cdot x_{1}+b_{1}
\end{aligned}
$$

- Angle between $\left(m_{1}, b_{1}\right)$ and $\left(m_{2}, b_{2}\right)$:
$\arctan \left(\left(m_{2}-m_{1}\right) /\left(m_{1} \cdot m_{2}+1\right)\right)$
Other useful operations:
- Intersection of two segments (available in Java)
- Distance from a point to a line or a segment (available in Java)
- Point on a line closest to a given point

Triangle

A triangle specification may include three sides and three angles.
Given three of these six values, we can find the other three.

- $\alpha+\beta+\gamma=\pi$ (or 180°)
- Law of sines:
$a / \sin \alpha=b / \sin \beta=c / \sin \gamma$
- Law of cosines (generalized Pythagorean theorem): $c^{2}=a^{2}+b^{2}-2 \cdot a \cdot b \cdot \cos \gamma$
- Law of tangents (less useful):
$(a-b) /(a+b)=\tan ((\alpha-\beta) / 2) / \tan ((\alpha+\beta) / 2)$

Area:

- Area $=a \cdot b \cdot \sin \gamma / 2$
- Area $=\left|x_{1} \cdot y_{2}+x_{2} \cdot y_{3}+x_{3} \cdot y_{1}-y_{1} \cdot x_{2}-y_{2} \cdot x_{3}-y_{3} \cdot x_{1}\right| / 2$
- Heron's formula:

Let $s=(a+b+c) / 2$; then Area $=\sqrt{s \cdot(s-a) \cdot(s-b) \cdot(s-c)}$

- Less useful:

Area $=r \cdot s=a \cdot b \cdot c /(4 \cdot R)$, where r is inradius and R is circumradius
Other useful operations:

- Centers of inscribed and circumscribed circles

Circle

- A circle is the set of points located at a given distance from a given center.
- A disk is the set of points located no further than a given distance from a given center.

Representation:

Let r be the radius and $\left(x_{c}, y_{c}\right)$ by the center.

- Circle: $\left(x-x_{c}\right)^{2}+\left(y-y_{c}\right)^{2}=r^{2}$
- Disk: $\left(x-x_{c}\right)^{2}+\left(y-y_{c}\right)^{2} \leq r^{2}$

Basic computations:

- Circumference: $2 \cdot \pi \cdot r$
- Area: $\pi \cdot r^{2}$
- Point $\left(x_{1}, y_{1}\right)$ is inside the circle iff $\left(x_{1}-x_{c}\right)^{2}+\left(y_{1}-y_{c}\right)^{2} \leq r^{2}$

Other useful operations:

- Intersection of a circle and a line
- Intersection of two circles
- Tangent to a circle through a given point

Polygon area

- Based on vertex coordinates:
$\left|x_{1} \cdot y_{2}+x_{2} \cdot y_{3}+\ldots+x_{n} \cdot y_{1}-y_{1} \cdot x_{2}-y_{2} \cdot x_{3}-\ldots-y_{n} \cdot x_{1}\right| / 2$
- Pick's formula for a polygon on a lattice:

If a polygon has i lettice points inside and b lettice points on the boundary, its area is $i+b / 2-1$

Convex hull

The convex hull of a geometric object is the minimal convex set containing the object.
Intuitively, it is a rubber band pulled taut around the object.

- The hull of a finite point set is a convex polygon.
- The hull of a set of polygons is identical to the hull of their vertices.
- A polygon is convex (i.e. identical to its hull) iff all its angles are at most $\pi\left(180^{\circ}\right)$.

Gift wrapping (a.k.a. Jarvis march)

Intuitively, wrap a string around nails; simple but slow. Time complexity is $\mathrm{O}(n \cdot h)$, where n is the number of points and h is the number of hull vertices.

- Select the smallest- y point as the first hull vertex; if several, choose the largest- x point among them
- At each step, select the next hull vertex, which is the "rightmost" as seen from the previously selected vertex

Detailed description in Wikipedia: en.wikipedia.org/wiki/Gift_wrapping_algorithm

Graham scan

Efficient version of the gift wrapping.
Time complexity is $\mathrm{O}(n \cdot \lg n)$.

- Select the smallest- y point as the first hull vertex; if several, choose the largest- x point among them
- Sort the other points right-to-left, as seen from the selected vertex
- Walk through the points in the sorted order; when making the "right turn," prune the respective point
- The remaining points are the hull vertices

Detailed description in Wikipedia: en.wikipedia.org/wiki/Graham_scan

