Geometry for Programming Competitions

Eugene Fink (www.cs.cmu.edu/~eugene)

Available online:

- Word version: www.cs.cmu.edu/~eugene/research/talks/compete-geom.doc
- PDF version: www.cs.cmu.edu/~eugene/research/talks/compete-geom.pdf

Let no one who is ignorant of geometry enter here.

— Inscription on the entrance to Plato's academy

We humans are good at visual reasoning, but computers are not; intuitive visual operations are often hard to program.

Overview

- Basic geometry: points and lines, triangle, circle, polygon area
- Convex hull: gift wrapping, Graham scan

Readings:

- Steven S. Skiena and Miguel A. Revilla. Programming Challenges
- Joseph O'Rourke. Computational geometry in C
- Wikipedia (wikipedia.org)
- Wolfram MathWorld (*mathworld.wolfram.com*)

Points and lines

Representation in Cartesian coordinates:

- Point: (x_1, y_1)
- Line:
 - \circ $y = m \cdot x + b$ (more intuitive but does not include vertical lines)
 - o $a \cdot x + b \cdot y + c = 0$ (more general but non-unique and less intuitive)
- Line segment: two endpoints

Yes/No tests:

- Point (x_1, y_1) is on line (m, b) iff $y_1 = m \cdot x_1 + b$ (available in Java)
- Lines (m_1, b_1) and (m_2, b_2) are...
 - o identical iff $m_1 = m_2$ and $b_1 = b_2$
 - o parallel iff $m_1 = m_2$
 - o orthogonal iff $m_1 = -1 / m_2$
- Counterclockwise predicate *ccw* (available in Java):

```
Consider points (x_1, y_1), (x_2, y_2), and (x_3, y_3),
```

```
and let A = x_1 \cdot y_2 + x_2 \cdot y_3 + x_3 \cdot y_1 - y_1 \cdot x_2 - y_2 \cdot x_3 - y_3 \cdot x_1.
```

- o If A > 0, the points are in a counterclockwise order
- o If A < 0, the points are in a clockwise order
- o If A = 0, the points are collinear

Basic computations:

- Distance between (x_1, y_1) and (x_2, y_2) : $\sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$
- Line through points (x_1, y_1) and (x_2, y_2) : $m = (y_1 - y_2) / (x_1 - x_2)$ $b = y_1 - m \cdot x_1$
- Intersection of (m_1, b_1) and (m_2, b_2) , where $m_1 \neq m_2$: $x_1 = (b_2 - b_1) / (m_1 - m_2)$ $y_1 = m_1 \cdot x_1 + b_1$
- Angle between (m_1, b_1) and (m_2, b_2) : arctan $((m_2 m_1) / (m_1 \cdot m_2 + 1))$

Other useful operations:

- Intersection of two segments (available in Java)
- Distance from a point to a line or a segment (available in Java)
- Point on a line closest to a given point

Triangle

A triangle specification may include three sides and three angles. Given three of these six values, we can find the other three.

- $\alpha + \beta + \gamma = \pi \text{ (or } 180^\circ\text{)}$
- Law of sines: $a / \sin \alpha = b / \sin \beta = c / \sin \gamma$
- Law of cosines (generalized Pythagorean theorem): $c^2 = a^2 + b^2 - 2 \cdot a \cdot b \cdot \cos \gamma$
- Law of tangents (less useful): $(a-b)/(a+b) = \tan((\alpha-\beta)/2)/\tan((\alpha+\beta)/2)$

Area:

- $Area = a \cdot b \cdot \sin \gamma / 2$
- $Area = |x_1 \cdot y_2 + x_2 \cdot y_3 + x_3 \cdot y_1 y_1 \cdot x_2 y_2 \cdot x_3 y_3 \cdot x_1|/2$
- Heron's formula:

Let
$$s = (a+b+c)/2$$
; then $Area = \sqrt{s \cdot (s-a) \cdot (s-b) \cdot (s-c)}$

• Less useful: $Area = r \cdot s = a \cdot b \cdot c / (4 \cdot R)$, where r is inradius and R is circumradius

Other useful operations:

Centers of inscribed and circumscribed circles

Circle

- A circle is the set of points located at a given distance from a given center.
- A disk is the set of points located no further than a given distance from a given center.

Representation:

Let r be the radius and (x_c, y_c) by the center.

- Circle: $(x x_c)^2 + (y y_c)^2 = r^2$ Disk: $(x x_c)^2 + (y y_c)^2 \le r^2$

Basic computations:

- Circumference: $2 \cdot \pi \cdot r$
- Area: $\pi \cdot r^2$
- Point (x_1, y_1) is inside the circle iff $(x_1 x_c)^2 + (y_1 y_c)^2 \le r^2$

Other useful operations:

- Intersection of a circle and a line
- Intersection of two circles
- Tangent to a circle through a given point

Polygon area

Based on vertex coordinates:

$$|x_1 \cdot y_2 + x_2 \cdot y_3 + ... + x_n \cdot y_1 - y_1 \cdot x_2 - y_2 \cdot x_3 - ... - y_n \cdot x_1| / 2$$

• Pick's formula for a polygon on a lattice: If a polygon has i lettice points inside and b lettice points on the boundary, its area is i + b/2 - 1

Convex hull

The *convex hull* of a geometric object is the minimal convex set containing the object. Intuitively, it is a rubber band pulled taut around the object.

- The hull of a finite point set is a convex polygon.
- The hull of a set of polygons is identical to the hull of their vertices.
- A polygon is convex (i.e. identical to its hull) iff all its angles are at most π (180°).

Gift wrapping (a.k.a. Jarvis march)

Intuitively, wrap a string around nails; simple but slow. Time complexity is $O(n \cdot h)$, where n is the number of points and h is the number of hull vertices.

- Select the smallest-y point as the first hull vertex; if several, choose the largest-x point among them
- At each step, select the next hull vertex, which is the "rightmost" as seen from the previously selected vertex

Graham scan

Efficient version of the gift wrapping. Time complexity is $O(n \cdot \lg n)$.

- Select the smallest-y point as the first hull vertex; if several, choose the largest-x point among them
- Sort the other points right-to-left, as seen from the selected vertex
- Walk through the points in the sorted order; when making the "right turn," prune the respective point
- The remaining points are the hull vertices

Detailed description in Wikipedia: en.wikipedia.org/wiki/Graham_scan

