

Abstract—We describe the representation of uncertain
knowledge in a conference-scheduling system, which may
include incomplete information about available
resources, conference events, and scheduling constraints.
We then explain the use of this incomplete knowledge in
the evaluation of schedule quality.

I. INTRODUCTION
HEN we work on a practical scheduling task, we
usually do not have complete knowledge of the related

resources and constraints, which means that we need to
account for uncertainty. For example, when scheduling
conference presentations, we may not know the exact
preferences of specific speakers. The need to reason under
uncertainty gives rise to several related problems, including
representation of uncertain knowledge, estimation of the
quality of candidate solutions based on this knowledge, and
efficient search for near-optimal solutions.

Although researches have long realized the importance of
uncertain information in optimization problems, the related
work has been limited [Chen and Pu, 2004; Sahinidis, 2004;
Bidot, 2005]. For example, several researchers have built
systems that ask the user to provide all missing data relevant
to the task, and support only qualitative reasoning about
uncertainty [Burke et al., 1997; Burke, 2000; Stolze and
Rjaibi, 2001; Schafer et al., 2001; Faltings et al., 2004;
McCarthy et al., 2005]. This approach is effective when a
problem includes only a few uncertain facts, but it is
impractical for problems with a large number of uncertain
variables.

Researchers have also built systems that support reasoning
with incomplete knowledge, but limit the generality of
representing uncertain facts. For instance, Chajewska et al.
[1998], Lodwick et al. [2001], Stolze and Ströbel [2001], and
Moore [2002] have allowed uncertainty only in discrete
variables. Smith et al. [2002], Wang and Boutilier [2003],
and Boutilier et al. [2005] have supported uncertain
constraints, but they have not allowed uncertain resources.

The manuscript was received on March 30, 2006. The described work was

supported by the Defense Advanced Research Projects Agency (DARPA)
under Contract No. NBCHD030010.

Averbakh [2001] and Lin et al. [2004] have developed an
uncertain representation of continuous variables that
represent resources, but they have not supported uncertainty
in utility functions.
 We have considered the problem of scheduling a
conference based on uncertain information about available
resources, conference events, and scheduling constraints and
preferences. It may involve uncertainty in resources,
constraints, and utility functions, and it may include
thousands of uncertain variables. Since the previous
techniques do not provide sufficient generality for this
problem, we have developed a novel mechanism for
representing uncertain information, and designed a search
engine that generates near-optimal schedules based on partial
world knowledge.

The work on this problem is part of the RADAR project
(www.radar.cs.cmu.edu) at Carnegie Mellon University,
which is aimed at building an intelligent system for assisting
an office manager. We have reported the results of this work
in a series of four papers, including this paper. In the other
three papers, we have described the developed scheduling
algorithms [Fink et al., 2006b], automated elicitation of
additional data that help to reduce uncertainty [Bardak et al.,
2006], and collaboration between the scheduling system and
human user [Fink et al., 2006a].
 We now describe the representation of the related
uncertain knowledge. First, we give an example of a
scheduling scenario (Section II), and explain the encoding of
available resources and scheduling constraints
(Sections III and IV). Then, we describe the representation of
uncertainty (Sections V and VI) and its use in evaluating
schedule quality (Section VII). Finally, we compare the
quality of automatically built schedules with the results of
manual scheduling (Section VIII).

II. SCHEDULING PROBLEM
We begin with an example of a conference scenario, and use
it to illustrate the representation of resources and constraints.
Suppose that we need to assign rooms to events at a small
one-day conference, which starts at 11:00am and ends at
4:30pm, and that we can use three rooms: auditorium,
classroom, and conference room (Table 1). These rooms host

Scheduling with Uncertain Resources:
Representation and Utility Function

Ulas Bardak
cyprus@cs.cmu.edu

Eugene Fink
e.fink@cs.cmu.edu

Jaime G. Carbonell
jgc@cs.cmu.edu

School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA

W

other events on the same day, and they are available for the
conference only at the following times:

 Auditorium: 11:00am–1:30pm and 3:30pm–4:30pm.
 Classroom: 11:00am–2:30pm.
 Conference room: 12:00pm–4:30pm.

 We describe each room by a set of properties; in this
example, we consider three properties:

Size: Room area in square feet.
Mikes: Number of microphones.
Stations: Maximal number of demo stations

that can be set up in the room.

The conference includes five events: demonstration,
discussion, tutorial, workshop, and conference-committee
meeting (Table 2). For each event, the conference committee
specifies its importance, as well as constraints and
preferences on its time and room properties. We construct a
schedule by assigning a room and time slot to every event; we
give an example schedule in Figure 1.

 Auditorium Classroom Conf. room
Size 1200 700 500
Stations 10 5 5
Mikes 5 1 2

Table 1. Available rooms and their properties.

 Demo Discu-
ssion

Tuto-
rial

Com-
mittee

Work-
shop

Importance 50 30 75 10 50
Start time Any Any 11am 3pm–4pm Any
Duration ≥60 ≥30 ≥30 ≥15 ≥60
Room size ≥600 ≥200 ≥400 ≥400 ≥600
Stations ≥5 Any Any Any Any
Mikes Any ≥2 ≥1 Any ≥1

Table 2. Events and related constraints.

 Demo Discu-
ssion

Tuto-
rial

Com-
mittee

Work-
shop

Min 60 30 30 15 60
Good 120 60 45 30 75

Duration

Best 150 90 60 60 120
Min 600 200 400 400 600
Good 1000 400 600 600 800 Room

size
Best 1200 600 800 800 1000
Min 5 0
Good 10 1

Stations

Best 15

Any

2

Any

Any

Min 2 1 1
Good 3 1 1

Mikes

Best
Any

4 2

Any

 1
Table 3. Scheduling preferences; we specify preference functions
using a three-point scheme, where the “min” value of the argument
corresponds to the −5.0 quality value, “good” gives the quality
of 0.0, and “best” gives the quality of 1.0.

 Auditorium Classroom Conf. room
11:00
11:30 Tutorial Unavailable

12:00
12:30

1:00

Demo

1:30
2:00

Workshop

2:30

3:00

Unavailable

3:30
4:00

Committee
meeting

Unavailable Discussion

Fig. 1. Example schedule.

-6
-5
-4
-3
-2
-1
0
1
2

0 200 400 600 800 1000 1200 1400

Room size
Q

ua
lit

y

Fig. 2. Preference function, which shows the dependency of the
assignment quality on the room size for the demo.

We define constraints on acceptable schedules by limiting
appropriate start times, durations, and room properties for
each event. For example, we may specify that an acceptable
start time for the committee meeting is between 3:00pm and
4:00pm, an acceptable duration is 15 minutes or more, and a
minimal acceptable room size is 400 square feet. In Table 2,
we give example constraints for all five events; note that the
schedule in Figure 1 satisfies these constraints.

III. RESOURCES AND CONSTRAINTS
We now describe the representation of available resources,
scheduling requirements, and specific schedules. We use
room objects to represent resources; event objects to
represent events and constraints; and assignment objects to
represent selection of a room and time slot for each event.

Rooms: We represent a room by a name and a list of
properties, such as its size, number of microphones, and the
building containing it. The system allows the user to define an
arbitrary list of room properties, where each property is either
numeric or nominal; for example, the size of a room is a
number, whereas the building that contains the room is a
nominal value. For each room, we specify its availability,
represented by a collection of time intervals. For instance, the
auditorium in the motivating example is available for two
intervals: 11am–1:30pm and 3:30pm–4:30pm.

Events: The representation of an event includes its name,
importance, and constraints (see Table 2). The importance of
an event is a positive integer; the higher this value, the greater
the importance. The constraints are sets of acceptable values
for start time, duration, and room properties.

Schedule: When the system builds a schedule, it must
satisfy all hard constraints. If it violates constraints for some
event, then the overall schedule is unacceptable. For example,
we cannot schedule a 15-minute demo in the motivating
example, even if the schedule satisfies all other constraints.
To build a schedule, the system assigns a specific room and
time slot to each event. It represents this assignment by four
variables: event name, room name, start time, and duration.
Alternatively, it can decide that an event is not part of the
schedule, which is also considered an assignment. We call
such an event rejected, and represent it internally by setting
its room to NIL. Note that assignments must not overlap, that
is, the system cannot assign two events to the same room at
the same time. Also note that we can reject an event
regardless of its constraints, since a schedule with rejected
events is valid. Thus, we can always build a valid schedule by
simply rejecting all events; however, its quality would be
very poor.

IV. SCHEDULE QUALITY
We next define schedule quality, based on the notion of
preferences, which represent soft constraints. We measure
quality on the scale from −penalty to 1.0, where penalty is a
nonnegative real value that represents the penalty for the
worst possible schedule. Intuitively, the zero quality
corresponds to satisfactory assignments, negative quality
values represent poor assignments, and positive values mean
unusually good assignments.
 For each event, we specify preferences that represent the
desirable selection of a room and time slot. We represent a
specific preference by a piecewise-linear function that shows
the dependency of the assignment quality on its start time,
duration, or some room property. The domain of this function
is the set of acceptable values for the related property, and the
range is the quality values between −penalty and 1.0.
 In Figure 2, we show an example preference, which
determines the dependency of the assignment quality on the
room size; in this example, the minimal acceptable room size
is 600, and penalty is 5.0, which means that the function
range is from −5.0 to 1.0. Note that this function is
monotonically increasing, and we can specify it by three
values of the room size, which correspond to the segment
endpoints: the minimal acceptable size (600), which
corresponds to the quality of −penalty; the satisfactory size
(1000), which corresponds to the zero quality; and the
minimal value of the “perfect” size (1200), which
corresponds to the quality of 1.0. Although the system allows
arbitrary functions, we often use this three-point scheme,
which matches the human intuition. In Table 3, we give
example preferences for the conference described in
Section II; in this example, we use the three-point scheme to
describe functions with the range from −5.0 to 1.0.

For each preference, we specify its weight, which is a
positive integer that shows its relative importance compared
to other preferences. In the example, we assume that all
preferences have the same weight.

If we reject an event, then this assignment has the worst
possible quality, which is –penalty. If an event has a room and

time slot, we instantiate the respective start time, duration,
and room properties into the event’s preference functions,
and take the weighted sum of their values. If an event has k
preference functions, their values are p1,…, pk, and their
weights are w1,…, wk, then the assignment quality is

(w1 · p1 + … + wk · pk) / (w1 + … + wk).

The overall schedule quality is the weighted sum of the
quality values for individual assignments. That is, if a
schedule includes n assignments, their quality values are
Qual1,…, Qualn, and their importances are imp1,…, impn,
then the overall schedule quality is

(imp1 · Qual1 + … + impn · Qualn) / (imp1 + … + impn).

 For example, if we use the preferences in Table 3, and the
schedule is as shown in Figure 1, then the quality of the time
slot for the demo is 0.75, for the discussion is 0.75, for the
tutorial is 0.62, for the committee meeting is 1.00, and for the
workshop is −0.17, and the overall schedule quality is 0.50.

We use an optimization algorithm that inputs the
description of rooms and events, and searches for a
high-quality schedule [Fink et al., 2006b]. The algorithm is
based on hill-climbing; it does not guarantee optimality, but it
usually finds near-optimal solutions.

V. UNCERTAIN RESOUCES
When scheduling a conference, we may have incomplete data
about resources, event importances, and preferences; for
instance, we may not know the exact size of the conference
room, or the relative importance of the demo and discussion.
We represent uncertain values of room properties, event
importances, and preference weights by probability density
functions, approximated by collections of uniform
distributions. Specifically, we encode an uncertain value by a
set of disjoint intervals that may contain it, with a probability
assigned to each interval; the sum of these probabilities is 1.0.
In Figure 5(a), we summarize this encoding and give the
related constraints on probabilities and endpoints of intervals.
 For example, suppose that the exact size of the conference
room is unknown. Recent measurements suggest that it is
between 500 and 750, whereas old records show that it is
between 1000 and 1250. If we trust the measurements more
than the old records, but not completely, we may assume that
the size is between 500 and 750 with 0.75 probability, and
between 1000 and 1250 with 0.25 probability; in Figure 3, we
show the corresponding probability density function.

VI. UNCERTAIN PREFERENCES
The representation of uncertain preferences is based on the
combination of piecewise-linear functions (Section IV) with
uncertain values (Section V). Specifically, we represent a
preference by a piecewise-linear function that may have
uncertain y-coordinates.

0

0.001

0.002

0.003

0.004

0 250 500 750 1000 1250

Room size

Pr
ob

ab
ili

ty

Fig. 3. Probability density function for uncertain room size, which is
between 500 and 750 with 0.75 probability, and between 1000 and
1250 with 0.25 probability.

-6
-5
-4
-3
-2
-1
0
1
2

0 200 400 600 800 1000 1200 1400

Room size

Q
ua

lit
y

(a) Piecewise-linear function with uncertain y-values.

0.75 probability

-6
-5
-4
-3
-2
-1
0
1
2

0 200 400 600 800 1000 1200 1400

Room size

Q
ua

lit
y

0.25 probability

-6
-5
-4
-3
-2
-1
0
1
2

0 200 400 600 800 1000 1200 1400

Room size

Q
ua

lit
y

(b) Two piecewise-linear functions and their probabilities.

Fig. 4: Examples of uncertain preference functions; the first function
includes uncertain quality values, whereas the second is encoded by
two different functions, with probabilities of 0.75 and 0.25.

(a) Representation of an uncertain value.

prob1: from min1 to max1
prob2: from min2 to max2

…
probm: from minm to maxm

We describe an uncertain value by multiple intervals and respective
probabilities, and we specify each interval by its minimal and
maximal value. The intervals do not overlap, and the sum of the
probabilities is 1.0, which means that we impose the following
constraints on the related values:

 min1 ≤ max1 ≤ min2 ≤ max2 ≤ …≤ minm ≤ maxm
 prob1 + prob2 + … + probm = 1.0

(b) Representation of an uncertain function.

prob1: (x11, y11), (x12, y12), …
prob2: (x21, y21), (x22, y22), …

…
probm: (xm1, ym1), (xm2, ym2), …

We describe an uncertain function by multiple piecewise-linear
functions and respective probabilities. The description of each
piecewise-linear function is a list of segment endpoints sorted by
x-coordinate. The x-coordinate of a point must be a specific number,
whereas its y-coordinate may be either a number or an uncertain
value. For each piecewise-linear function, the x-coordinates of its
endpoints are distinct:

 x11 < x12 < …
 x21 < x22 < …
 …
 xm1 < xm2 < …

Furthermore, the probabilities that correspond to different
piecewise-linear functions sum to 1.0:

 prob1 + prob2 + … + probm = 1.0

Fig. 5: Encoding of uncertain values and functions. We use
uncertain values to represent room properties, event importances,
and preference weights, and uncertain functions to represent
preferences.

The algorithm inputs an uncertain value, represented by the vectors
prob1…probm, min1…minm, and max1…maxm, as shown in Fig. 5(a).

It returns the mathematical expectation of this uncertain value.

EXPECTED-UNCERTAIN-VALUE (prob, min, max, m)
mean = 0
for i = 1 to m do
 mean = mean + probi · (mini + maxi) / 2
return mean

Fig. 6: Computing the mathematical expectation of an uncertain
value, represented by a collection of uniform distributions and their
probabilities.

For example, suppose that we need to encode a preference
for a room size. Suppose further that the minimal allowed size
is 600, and that 1200 is definitely enough, but we are
uncertain about sizes between 600 and 1200. We believe that
800 may be an acceptable size, but there is a risk that it would
be barely enough. We also believe that the size of 1000
should make the attendees perfectly happy, but there is a
chance that some attendees would prefer a larger room. We
may represent it by the function in Figure 4(a), where the
quality for the size of 800 is an uncertain value between −5.0
and 0.0, and the quality for the size of 1000 is an uncertain
value between 0.0 and 1.0.

We also allow specifying an uncertain preference by
multiple functions and their probabilities. For example,
suppose that some conference event requires at least 600
square feet, and the description of the event indicates that the
optimal room size is 800, but a member of the conference
committee has told us that the appropriate size is 1200. If we
trust the committee member more than the description, but
not completely, we may assume that the description is correct
with probability 0.25. We then represent the size preference
by two different piecewise-linear functions, with the
probabilities of 0.75 and 0.25, as shown in Figure 4(b).

The developed system allows the use of uncertain quality
values and multiple piecewise-linear functions at the same
time; that is, we may specify several piecewise-linear
functions with their probabilities, and use uncertain
y-coordinates in each function. In Figure 5(b), we summarize
the representation of uncertain preferences.

VII. UTILITY FUNCTION
If the description of rooms and events includes uncertainty,
the schedule utility depends on the mathematical expectation
of the quality and on the standard deviation of the expected
quality. When the system constructs a near-optimal schedule,
it keeps track of the expected quality of candidate schedules.
The quality computation is based on the assumption that all
probability distributions are independent. If some of them are
dependent, the computation does not give the exact expected
quality, but it usually provides a good approximation.

If a schedule violates some hard constraint with a nonzero
probability, the overall schedule quality is −penalty
regardless of the other constraints. If the schedule satisfies all
hard constraints, the system computes the expected quality of
each assignment. To estimate the assignment quality for a
specific event, it determines the expected values of the related
preference functions, E(p1),…, E(pk), as well as the expected
values of their weights, E(w1),…, E(wk), and uses them to
compute the expected quality of the assignment, which is

(E(w1) · E(p1) + … + E(wk) · E(pk)) / ((E(w1) + … + E(wk)).

We give algorithms for computing the expected values of
uncertain preferences and their weights in Figures 6–8. The
procedure in Figure 6 finds the mean of a probability-density
function represented by a collection of uniform distributions.
We use it to determine the expected values of uncertain
preference weights, E(w1),…, E(wk). The procedure in

Figure 7 gives the expected value of a fully certain preference
function applied to an uncertain argument, and the procedure
in Figure 8 determines the expected value of an uncertain
preference function. We use these procedures to compute the
expected preference values, E(p1),…, E(pk).

The system uses the expected quality of assignments, along
with the expected values of event importances, to compute
the expected quality of the overall schedule, which is

(E(imp1) · E(Qual1) + … + E(impn) · E(Qualn)) /
(E(imp1) + … + E(impn)).

It also determines the standard deviation of the schedule
quality, which shows the accuracy of the quality estimate.

For instance, consider the example in Section II, and
suppose that the conference-room size is represented by the
uncertain value in Figure 3, the room-size preference for the
demo is the uncertain function in Figure 4(a), and all other
resources and preferences are fully certain, as shown in
Tables 1–3. Then, the expected quality of the schedule in
Figure 1 is 0.54, and its standard deviation is 0.08.

The purpose of scheduling is to increase the expected
quality and reduce its standard deviation. Thus, the schedule
utility monotonically increases with an increase of the
expected quality, and monotonically decreases with an
increase of its deviation. The developed system allows the use
of an arbitrary utility function that satisfies these two
conditions; it inputs a given utility function, and uses
hill-climbing to construct a schedule that maximizes this
function. The search algorithm begins with the empty
schedule and gradually improves it; at each step, it either
assigns a slot to some event that is not yet in the schedule, or
moves some scheduled event to a new slot. The system
continues the search until it either cannot find further
improvements or reaches a time limit. We have presented
more details of this algorithm in the paper on the optimization
with uncertain knowledge [Fink et al., 2006b].

VIII. EXPERIMENTS
We have applied the developed system to several scheduling
problems, and compared its performance with the results of
manual scheduling. Every room in these problems has fifteen
properties, and every event has seventeen preference
functions. We have experimented with both fully certain and
uncertain world knowledge, and we have varied the number
of rooms and events. We have used a 2.4-GHz Xeon
computer with 400-MHz bus and 1,024-MByte memory, and
set the time limit for generating schedules to 10 seconds.

 In the manual-scheduling experiments, we have
provided the users with a graphical interface for building a
schedule, which shows room properties, event importances,
constraints, and preferences [Fink et al., 2006a]. It allows
construction of a schedule by dragging and dropping events,
and it provides feedback on the schedule quality. We have not
imposed any time limit on manual scheduling; most users
have spent five to ten minutes on small scheduling problems,
and ten to twenty minutes on large problems.

The algorithm inputs a fully certain preference function, represented
by the coordinates of its endpoints, x1…xl and y1…yl; and an
uncertain value, represented by vectors prob1…probm, min1…minm,
and max1…maxm, as shown in Fig. 5(a).

It returns the mathematical expectation of applying the certain
preference function to the uncertain value.

We assume that all intervals of the uncertain value are in the domain
of the preference function, that is, x1 ≤ min1 ≤ maxm ≤ xl. If the
uncertain value does not satisfy this assumption, then it violates the
related hard constraint, and the system does not apply the preference
function to this value.

The algorithm consists of three procedures:
• PREF-FOR-CERTAIN: Determine the value of a piecewise-linear

function for a fully certain argument.
• PREF-FOR-UNIFORM: Determine the expected value of a piecewise-

linear function for an uncertain argument represented by a single
uniform distribution.

• EXPECTED-CERTAIN-PREF: Determine the expected value of a
piecewise-linear function for an uncertain argument represented
by multiple uniform distributions and their probabilities.

Input: A piecewise-linear function, represented by vectors x1…xl
and y1…yl, and a fully certain argument arg.

Output: The value of the function for this argument.

PREF-FOR-CERTAIN (x, y, l; arg)
Find index a such that either arg = xa or xa−1 < arg < xa
if arg = xa then return ya
return (ya · arg − ya−1 · arg + ya−1 · xa − ya · xa−1) / (xa − xa−1)

Input: A piecewise-linear function, represented by vectors x1…xl
and y1…yl, and a uniform-distribution argument, represented by the
endpoints of the distribution, min-arg and max-arg.

Output: Expected value of the function for this uncertain argument.

PREF-FOR-UNIFORM (x, y, l; min-arg, max-arg)
if min-arg=max-arg then return PREF-FOR-CERTAIN(x, y, l; min-arg)
Find index a such that either min-arg = xa or xa < min-arg < xa+1
Find index b such that either max-arg = xb or xb−1 < max-arg < xb
min-y = PREF-FOR-CERTAIN (x, y, l; min-arg)
max-y = PREF-FOR-CERTAIN (x, y, l; max-arg)
if a = b − 1 then return (min-y + max-y) / 2
sum = (xa+1 − min-arg) · (min-y + ya+1) / 2
for j = a + 1 to b − 2 do
 sum = sum + (xj+1 − xj) · (yj + yj+1) / 2
sum = sum + (max-arg − xb−1) · (yb−1 + max-y) / 2
return sum / (max-arg − min-arg)

Input: A piecewise-linear function, represented by vectors x1…xl
and y1…yl, and an uncertain argument, represented by vectors
prob1…probm, min1…minm, and max1…maxm, as shown in Fig. 5(a).

Output: Expected value of the function for the uncertain argument.

EXPECTED-CERTAIN-PREF (x, y, l; prob, min, max, m)
mean = 0
for i = 1 to m do
 mean = mean + probi · PREF-FOR-UNIFORM (x, y, l; mini, maxi)
return mean

Fig. 7: Computing the mathematical expectation of a fully certain
piecewise-linear function applied to an uncertain property value.

The algorithm inputs an uncertain preference function, represented
by a collection of functions, pref1…prefm, and their probabilities,
prob1…probm. Every prefi is a piecewise-linear function, which may
include uncertain y-coordinates, as shown in Fig. 5(b).

It also inputs an uncertain value val, represented by a collection of
intervals and their probabilities, as shown in Fig. 5(a).

It returns the expected value of applying the uncertain preference
function to the uncertain value.

EXPECTED-UNCERTAIN-PREF (prob, pref, m; val)
mean = 0
for i = 1 to m do
 for every uncertain y-coordinate in the representation of prefi do

Call EXPECTED-UNCERTAIN-VALUE (see Fig. 6)
to find the expected value of the uncertain y

 Replace the uncertain y in prefi with its expected value
 Call EXPECTED-CERTAIN-PREF (see Fig. 7) to find E(prefi(val)),

which is the expected value of applying the resulting
fully certain function prefi to the uncertain value val

 mean = mean + probi · E(prefi(val))
return mean

Fig. 8: Computing the mathematical expectation of an uncertain
preference function applied to an uncertain property value.

Problem size Schedule quality

Number
of rooms

Number
of events

Manual
scheduling

Automatic
scheduling

Experiments with fully certain world knowledge
5 32 0.92 0.94
9 62 0.83 0.94

13 84 0.61 0.93
Experiments with uncertain world knowledge

5 32 0.78 0.80
9 62 0.72 0.83

13 84 0.63 0.83
Table 4: Comparison of automatic and manual scheduling.

In Table 4, we summarize the results of these experiments,

which show that the system constructs better schedules than
the human users, and that the difference becomes greater with
an increase of the problem size.

IX. CONCLUSIONS
We have proposed a representation of incomplete knowledge
in scheduling problems, which allows fast computation of
expected schedule quality, and thus supports efficient search
for near-optimal schedules. The proposed approach is based
on representing uncertain values as probability density
functions, approximated by collections of uniform
distributions. We have applied it to scheduling conferences;
however, it does not rely on any specific features of this task,
and it is applicable to a variety of optimization problems.

The developed system has two main limitations. First, it
does not support uncertainty in hard constraints; if these
constraints include uncertainty, the system ensures that the
probability of their violation is zero, which means that it
internally replaces uncertain hard constraints with the
respective worst-case constraints. Second, the system

assumes that the probability distributions of uncertain
variables are independent, and it does not include a
mechanism for representing dependencies among variables.
We are currently working on removing these limitations.

ACKNOWLEDGMENTS
We are grateful to Stephen F. Smith, P. Matthew Jennings,
Jean Oh, Konstantin Salomatin, Greg Jorstad, and Daniel
Cheng for their help in developing the described
representation and search engine. We thank Chris R. Martens,
Jason Knichel, Vijay Prakash, and Sung-joo Lim for their
work on testing and evaluating the scheduling system. We
also thank Aaron Steinfeld and Matt Lahut for their help in
applying the system to real-world scheduling problems.

REFERENCES
[Averbakh, 2001] Igor C. Averbakh. On the complexity of a

class of combinatorial optimization problems with
uncertainty. Mathematical Programming, 90(2), pages
263–272, 2001.

[Bardak et al., 2006] Ulas Bardak, Eugene Fink, Chris R.
Martens, and Jaime G. Carbonell. Scheduling with
uncertain resources: Elicitation of additional data. In
Proceedings of the IEEE International Conference on
Systems, Man, and Cybernetics, 2006.

[Bidot, 2005] Julien Bidot. A general framework integrating
techniques for scheduling under uncertainty. PhD Thesis,
Institut National Polytechnique de Toulouse, 2005.

[Boutilier et al., 2004] Craig Boutilier, Tuomas Sandholm,
and Rob Shields. Eliciting bid taker non-price preferences
in (combinatorial) auctions. In Proceedings of the
Nineteenth National Conference on Artificial Intelligence,
pages 204−211, 2004.

[Boutilier et al., 2005] Craig Boutilier, Relu Patrascu, Pascal
Poupart, and Dale Schuurmans. Regret-based utility
elicitation in constraint-based decision problems. In
Proceedings of the International Joint Conference on
Artificial Intelligence, pages 929−934, 2005.

[Burke, 2000] Robin D. Burke. Knowledge-based
recommender systems. In Allen Kent, editor,
Encyclopedia of Library and Information Systems, 69,
Supplement 32. CRC Press, New York, NY, 2000.

[Burke et al., 1997] Robin D. Burke, Kristian J. Hammond,
and Benjamin C. Young. The FindMe approach to
assisted browsing. IEEE Expert, 12(4), pages 32−40, 1997.

[Chajewska et al., 1998] Urszula Chajewska, Lise Getoor,
Joseph Normal, and Yuval Shahar. Utility elicitation as a
classification problem. In Fourteenth Conference on
Uncertainty in Artificial Intelligence, pages 79−88, 1998.

[Chen and Pu, 2004] Li Chen and Pearl Pu. Survey of
preference elicitation methods. In Technical Report
IC/200467, pages 1−23. Swiss Federal Institute of
Technology in Lausanne, 2004.

[Faltings et al., 2004] Boi Faltings, Pearl Pu, Marc Torrens,
and Paolo Viappiani. Designing example-critiquing

interaction. In Proceedings of the Ninth International
Conference on Intelligent Interfaces, pages 22−29, 2004.

[Fink et al., 2006a] Eugene Fink, Ulas Bardak, Brandon
Rothrock, and Jaime G. Carbonell. Scheduling with
uncertain resources: Collaboration with the user. In
Proceedings of the IEEE International Conference on
Systems, Man, and Cybernetics, 2006.

[Fink et al., 2006b] Eugene Fink, P. Matthew Jennings, Ulas
Bardak, Jean Oh, Stephen F. Smith, and Jaime G.
Carbonell. Scheduling with uncertain resources: Search
for a near-optimal solution. In Proceedings of the IEEE
International Conference on Systems, Man, and
Cybernetics, 2006.

[Lin et al., 2004] Xiaoxia Lin, Stacy L. Janak, and
Christodoulos A. Floudas. A new robust optimization
approach for scheduling under uncertainty: Bounded
uncertainty. Computers and Chemical Engineering, 28(6),
pages 1069–1085, 2004.

[Lodwick et al., 2001] Weldon A. Lodwick, Arnold
Neumaier, and Francis Newman. Optimization under
uncertainty: Methods and applications in radiation
therapy. In Proceedings of the Tenth IEEE International
Conference on Fuzzy Systems, pages 1219–1222, 2001.

[McCarthy et al., 2005] Kevin McCarthy, James Reilly,
Lorraine McGinty, and Barry Smyth. Experiments in
dynamic critiquing. In Proceedings of the Tenth
International Conference on Intelligent User Interfaces,
pages 175−182, 2005.

[Moore, 2002] Frank W. Moore. A methodology for missile
countermeasures optimization under uncertainty.
Evolutionary Computation, 10(2), pages 129–149, 2002.

[Sahinidis, 2004] Nikolaos V. Sahinidis. Optimization under
uncertainty: State-of-the-art and opportunities.
Computers and Chemical Engineering, 28(6), pages
971–983, 2004.

[Schafer et al., 2001] Ben J. Schafer, Joseph A. Konstan, and
John Riedl. E-commerce recommender applications. Data
Mining and Knowledge Discovery, 5(1/2), pages
115–153, 2001.

[Smith et al., 2002] Trey Smith, Tuomas Sandholm, and Reid
Simmons. Constructing and clearing combinatorial
exchanges using preference elicitation. In Proceedings of
the AAAI Workshop on Preferences in AI and CP: Symbolic
Approaches, pages 87−93, 2002.

[Stolze and Rjaibi, 2001] Markus Stolze and Walid Rjaibi.
Towards scalable scoring for preference-based item
recommendation. IEEE Data Engineering Bulletin, 24(3),
pages 42−49, 2001.

[Stolze and Ströbel, 2001] Markus Stolze and Michael
Ströbel. Utility-based decision tree optimization: A
framework for adaptive interviewing. In Proceedings of
the Eighth International Conference on User Modeling,
pages 105−116, 2001.

[Wang and Boutilier, 2003] Tianhan Wang and Craig
Boutilier. Incremental utility elicitation with the minimax
regret decision criterion. In Proceedings of the Eighteenth
International Joint Conference on Artificial Intelligence,
pages 309–316, 2003.

