
 
 

 

  

 
Abstract—We describe the representation of uncertain 
knowledge in a conference-scheduling system, which may 
include incomplete information about available 
resources, conference events, and scheduling constraints. 
We then explain the use of this incomplete knowledge in 
the evaluation of schedule quality. 

I. INTRODUCTION 
HEN we work on a practical scheduling task, we 
usually do not have complete knowledge of the related 

resources and constraints, which means that we need to 
account for uncertainty. For example, when scheduling 
conference presentations, we may not know the exact 
preferences of specific speakers. The need to reason under 
uncertainty gives rise to several related problems, including 
representation of uncertain knowledge, estimation of the 
quality of candidate solutions based on this knowledge, and 
efficient search for near-optimal solutions. 

Although researches have long realized the importance of 
uncertain information in optimization problems, the related 
work has been limited [Chen and Pu, 2004; Sahinidis, 2004; 
Bidot, 2005]. For example, several researchers have built 
systems that ask the user to provide all missing data relevant 
to the task, and support only qualitative reasoning about 
uncertainty [Burke et al., 1997; Burke, 2000; Stolze and 
Rjaibi, 2001; Schafer et al., 2001; Faltings et al., 2004; 
McCarthy et al., 2005].  This approach is effective when a 
problem includes only a few uncertain facts, but it is 
impractical for problems with a large number of uncertain 
variables. 

Researchers have also built systems that support reasoning 
with incomplete knowledge, but limit the generality of 
representing uncertain facts. For instance, Chajewska et al. 
[1998], Lodwick et al. [2001], Stolze and Ströbel [2001], and 
Moore [2002] have allowed uncertainty only in discrete 
variables. Smith et al. [2002], Wang and Boutilier [2003], 
and Boutilier et al. [2005] have supported uncertain 
constraints, but they have not allowed uncertain resources. 
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Averbakh [2001] and Lin et al. [2004] have developed an 
uncertain representation of continuous variables that 
represent resources, but they have not supported uncertainty 
in utility functions. 
 We have considered the problem of scheduling a 
conference based on uncertain information about available 
resources, conference events, and scheduling constraints and 
preferences. It may involve uncertainty in resources, 
constraints, and utility functions, and it may include 
thousands of uncertain variables. Since the previous 
techniques do not provide sufficient generality for this 
problem, we have developed a novel mechanism for 
representing uncertain information, and designed a search 
engine that generates near-optimal schedules based on partial 
world knowledge. 

The work on this problem is part of the RADAR project 
(www.radar.cs.cmu.edu) at Carnegie Mellon University, 
which is aimed at building an intelligent system for assisting 
an office manager. We have reported the results of this work 
in a series of four papers, including this paper. In the other 
three papers, we have described the developed scheduling 
algorithms [Fink et al., 2006b], automated elicitation of 
additional data that help to reduce uncertainty [Bardak et al., 
2006], and collaboration between the scheduling system and 
human user [Fink et al., 2006a]. 
 We now describe the representation of the related 
uncertain knowledge. First, we give an example of a 
scheduling scenario (Section II), and explain the encoding of 
available resources and scheduling constraints 
(Sections III and IV). Then, we describe the representation of 
uncertainty (Sections V and VI) and its use in evaluating 
schedule quality (Section VII). Finally, we compare the 
quality of automatically built schedules with the results of 
manual scheduling (Section VIII). 

II. SCHEDULING  PROBLEM 
We begin with an example of a conference scenario, and use 
it to illustrate the representation of resources and constraints. 
Suppose that we need to assign rooms to events at a small 
one-day conference, which starts at 11:00am and ends at 
4:30pm, and that we can use three rooms: auditorium, 
classroom, and conference room (Table 1). These rooms host 
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other events on the same day, and they are available for the 
conference only at the following times: 
 

 Auditorium: 11:00am–1:30pm and 3:30pm–4:30pm. 
 Classroom: 11:00am–2:30pm. 
 Conference room: 12:00pm–4:30pm. 
 

 We describe each room by a set of properties; in this 
example, we consider three properties: 
 

Size: Room area in square feet. 
Mikes: Number of microphones. 
Stations: Maximal number of demo stations 

that can be set up in the room. 
 

The conference includes five events: demonstration, 
discussion, tutorial, workshop, and conference-committee 
meeting (Table 2). For each event, the conference committee 
specifies its importance, as well as constraints and 
preferences on its time and room properties. We construct a 
schedule by assigning a room and time slot to every event; we 
give an example schedule in Figure 1.  
 
 

 Auditorium Classroom Conf. room 
Size 1200     700     500     
Stations 10     5     5     
Mikes 5     1     2     

Table 1. Available rooms and their properties. 
 

 Demo Discu- 
ssion 

Tuto- 
rial 

Com- 
mittee 

Work-
shop 

Importance 50 30 75 10 50 
Start time Any Any 11am  3pm–4pm Any 
Duration ≥60 ≥30 ≥30 ≥15 ≥60 
Room size ≥600 ≥200 ≥400 ≥400 ≥600 
Stations ≥5 Any Any Any Any 
Mikes Any ≥2 ≥1 Any ≥1 

Table 2. Events and related constraints. 
 

 Demo Discu- 
ssion 

Tuto- 
rial 

Com-
mittee 

Work-
shop 

Min 60  30 30 15 60 
Good 120  60 45 30 75 

 
Duration 

Best 150 90 60 60 120 
Min 600 200 400 400 600 
Good 1000 400 600 600 800 Room 

size 
Best 1200 600 800 800 1000 
Min 5 0 
Good 10 1 

 
Stations 

Best 15 

 
Any 

2 

 
Any 

 
Any 

Min 2 1 1 
Good 3 1 1 

 
Mikes 

Best 
Any 

4 2 

 
Any 

 1 
Table 3. Scheduling preferences; we specify preference functions 
using a three-point scheme, where the “min” value of the argument 
corresponds to the −5.0 quality value, “good” gives the quality 
of 0.0, and “best” gives the quality of 1.0. 

 

 Auditorium Classroom Conf. room 
11:00 
11:30 Tutorial Unavailable 

12:00  
12:30 

1:00 

Demo 

1:30 
2:00 

 
Workshop 

 

2:30 

 

3:00 

Unavailable 

3:30 
4:00 

Committee 
meeting 

Unavailable Discussion 

Fig. 1.  Example schedule. 

-6
-5
-4
-3
-2
-1
0
1
2

0 200 400 600 800 1000 1200 1400

Room size
Q

ua
lit

y
 

Fig. 2.  Preference function, which shows the dependency of the 
assignment quality on the room size for the demo. 
 

We define constraints on acceptable schedules by limiting 
appropriate start times, durations, and room properties for 
each event. For example, we may specify that an acceptable 
start time for the committee meeting is between 3:00pm and 
4:00pm, an acceptable duration is 15 minutes or more, and a 
minimal acceptable room size is 400 square feet. In Table 2, 
we give example constraints for all five events; note that the 
schedule in Figure 1 satisfies these constraints. 

III. RESOURCES AND CONSTRAINTS 
We now describe the representation of available resources, 
scheduling requirements, and specific schedules. We use 
room objects to represent resources; event objects to 
represent events and constraints; and assignment objects to 
represent selection of a room and time slot for each event.  

Rooms: We represent a room by a name and a list of 
properties, such as its size, number of microphones, and the 
building containing it. The system allows the user to define an 
arbitrary list of room properties, where each property is either 
numeric or nominal; for example, the size of a room is a 
number, whereas the building that contains the room is a 
nominal value. For each room, we specify its availability, 
represented by a collection of time intervals. For instance, the 
auditorium in the motivating example is available for two 
intervals: 11am–1:30pm and 3:30pm–4:30pm. 

Events: The representation of an event includes its name, 
importance, and constraints (see Table 2). The importance of 
an event is a positive integer; the higher this value, the greater 
the importance. The constraints are sets of acceptable values 
for start time, duration, and room properties. 



 
 

 

Schedule: When the system builds a schedule, it must 
satisfy all hard constraints. If it violates constraints for some 
event, then the overall schedule is unacceptable. For example, 
we cannot schedule a 15-minute demo in the motivating 
example, even if the schedule satisfies all other constraints. 
To build a schedule, the system assigns a specific room and 
time slot to each event. It represents this assignment by four 
variables: event name, room name, start time, and duration. 
Alternatively, it can decide that an event is not part of the 
schedule, which is also considered an assignment.  We call 
such an event rejected, and represent it internally by setting 
its room to NIL. Note that assignments must not overlap, that 
is, the system cannot assign two events to the same room at 
the same time. Also note that we can reject an event 
regardless of its constraints, since a schedule with rejected 
events is valid. Thus, we can always build a valid schedule by 
simply rejecting all events; however, its quality would be 
very poor.  

IV. SCHEDULE QUALITY 
We next define schedule quality, based on the notion of 
preferences, which represent soft constraints. We measure 
quality on the scale from −penalty to 1.0, where penalty is a 
nonnegative real value that represents the penalty for the 
worst possible schedule. Intuitively, the zero quality 
corresponds to satisfactory assignments, negative quality 
values represent poor assignments, and positive values mean 
unusually good assignments. 
 For each event, we specify preferences that represent the 
desirable selection of a room and time slot. We represent a 
specific preference by a piecewise-linear function that shows 
the dependency of the assignment quality on its start time, 
duration, or some room property. The domain of this function 
is the set of acceptable values for the related property, and the 
range is the quality values between −penalty and 1.0. 
 In Figure 2, we show an example preference, which 
determines the dependency of the assignment quality on the 
room size; in this example, the minimal acceptable room size 
is 600, and penalty is 5.0, which means that the function 
range is from −5.0 to 1.0. Note that this function is 
monotonically increasing, and we can specify it by three 
values of the room size, which correspond to the segment 
endpoints: the minimal acceptable size (600), which 
corresponds to the quality of −penalty; the satisfactory size 
(1000), which corresponds to the zero quality; and the 
minimal value of the “perfect” size (1200), which 
corresponds to the quality of 1.0. Although the system allows 
arbitrary functions, we often use this three-point scheme, 
which matches the human intuition. In Table 3, we give 
example preferences for the conference described in 
Section II; in this example, we use the three-point scheme to 
describe functions with the range from −5.0 to 1.0. 

For each preference, we specify its weight, which is a 
positive integer that shows its relative importance compared 
to other preferences.  In the example, we assume that all 
preferences have the same weight. 

If we reject an event, then this assignment has the worst 
possible quality, which is –penalty. If an event has a room and 

time slot, we instantiate the respective start time, duration, 
and room properties into the event’s preference functions, 
and take the weighted sum of their values. If an event has k 
preference functions, their values are p1,…, pk, and their 
weights are  w1,…, wk, then the assignment quality is 

 

(w1 · p1 + … + wk · pk) / (w1 + … + wk). 
 

The overall schedule quality is the weighted sum of the 
quality values for individual assignments. That is, if a 
schedule includes n assignments, their quality values are 
Qual1,…, Qualn, and their importances are imp1,…, impn, 
then the overall schedule quality is 

 

(imp1 · Qual1 + … + impn · Qualn) / (imp1 + … + impn). 
 

 For example, if we use the preferences in Table 3, and the 
schedule is as shown in Figure 1, then the quality of the time 
slot for the demo is 0.75, for the discussion is 0.75, for the 
tutorial is 0.62, for the committee meeting is 1.00, and for the 
workshop is −0.17, and the overall schedule quality is 0.50. 

We use an optimization algorithm that inputs the 
description of rooms and events, and searches for a 
high-quality schedule [Fink et al., 2006b]. The algorithm is 
based on hill-climbing; it does not guarantee optimality, but it 
usually finds near-optimal solutions. 

V. UNCERTAIN RESOUCES 
When scheduling a conference, we may have incomplete data 
about resources, event importances, and preferences; for 
instance, we may not know the exact size of the conference 
room, or the relative importance of the demo and discussion. 
We represent uncertain values of room properties, event 
importances, and preference weights by probability density 
functions, approximated by collections of uniform 
distributions. Specifically, we encode an uncertain value by a 
set of disjoint intervals that may contain it, with a probability 
assigned to each interval; the sum of these probabilities is 1.0. 
In Figure 5(a), we summarize this encoding and give the 
related constraints on probabilities and endpoints of intervals. 
 For example, suppose that the exact size of the conference 
room is unknown. Recent measurements suggest that it is 
between 500 and 750, whereas old records show that it is 
between 1000 and 1250. If we trust the measurements more 
than the old records, but not completely, we may assume that 
the size is between 500 and 750 with 0.75 probability, and 
between 1000 and 1250 with 0.25 probability; in Figure 3, we 
show the corresponding probability density function. 

VI. UNCERTAIN PREFERENCES 
The representation of uncertain preferences is based on the 
combination of piecewise-linear functions (Section IV) with 
uncertain values (Section V). Specifically, we represent a 
preference by a piecewise-linear function that may have 
uncertain y-coordinates.  
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Fig. 3.  Probability density function for uncertain room size, which is 
between 500 and 750 with 0.75 probability, and between 1000 and 
1250 with 0.25 probability. 
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(a) Piecewise-linear function with uncertain y-values. 
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(b) Two piecewise-linear functions and their probabilities. 

 
Fig. 4: Examples of uncertain preference functions; the first function 
includes uncertain quality values, whereas the second is encoded by 
two different functions, with probabilities of 0.75 and 0.25. 

 
                         
 

(a) Representation of an uncertain value. 
 

prob1: from min1 to max1 
prob2: from min2 to max2 

… 
probm: from minm to maxm 

 

We describe an uncertain value by multiple intervals and respective 
probabilities, and we specify each interval by its minimal and 
maximal value. The intervals do not overlap, and the sum of the 
probabilities is 1.0, which means that we impose the following 
constraints on the related values: 
 

 min1 ≤ max1 ≤ min2 ≤ max2 ≤ …≤ minm ≤ maxm 
 prob1 + prob2 + … + probm = 1.0 
                         
 

(b) Representation of an uncertain function. 
 

prob1: (x11, y11), (x12, y12), … 
prob2: (x21, y21), (x22, y22), … 

… 
probm: (xm1, ym1), (xm2, ym2), … 

 

We describe an uncertain function by multiple piecewise-linear 
functions and respective probabilities. The description of each 
piecewise-linear function is a list of segment endpoints sorted by 
x-coordinate. The x-coordinate of a point must be a specific number, 
whereas its y-coordinate may be either a number or an uncertain 
value. For each piecewise-linear function, the x-coordinates of its 
endpoints are distinct: 
 

 x11 < x12 < … 
 x21 < x22 < … 
  … 
 xm1 < xm2 < … 
 

Furthermore, the probabilities that correspond to different 
piecewise-linear functions sum to 1.0: 
 

 prob1 + prob2 + … + probm = 1.0 
                         

Fig. 5: Encoding of uncertain values and functions. We use 
uncertain values to represent room properties, event importances, 
and preference weights, and uncertain functions to represent 
preferences. 
 
 
 
 
                         

The algorithm inputs an uncertain value, represented by the vectors 
prob1…probm, min1…minm, and max1…maxm, as shown in Fig. 5(a). 

It returns the mathematical expectation of this uncertain value. 
                         

 

EXPECTED-UNCERTAIN-VALUE (prob, min, max, m)  
mean = 0 
for i = 1 to m do 
 mean = mean + probi · (mini + maxi) / 2 
return mean 
                         
Fig. 6: Computing the mathematical expectation of an uncertain 
value, represented by a collection of uniform distributions and their 
probabilities. 

 



 
 

 

For example, suppose that we need to encode a preference 
for a room size. Suppose further that the minimal allowed size 
is 600, and that 1200 is definitely enough, but we are 
uncertain about sizes between 600 and 1200. We believe that 
800 may be an acceptable size, but there is a risk that it would 
be barely enough. We also believe that the size of 1000 
should make the attendees perfectly happy, but there is a 
chance that some attendees would prefer a larger room. We 
may represent it by the function in Figure 4(a), where the 
quality for the size of 800 is an uncertain value between −5.0 
and 0.0, and the quality for the size of 1000 is an uncertain 
value between 0.0 and 1.0. 

We also allow specifying an uncertain preference by 
multiple functions and their probabilities. For example, 
suppose that some conference event requires at least 600 
square feet, and the description of the event indicates that the 
optimal room size is 800, but a member of the conference 
committee has told us that the appropriate size is 1200. If we 
trust the committee member more than the description, but 
not completely, we may assume that the description is correct 
with probability 0.25. We then represent the size preference 
by two different piecewise-linear functions, with the 
probabilities of 0.75 and 0.25, as shown in Figure 4(b). 

The developed system allows the use of uncertain quality 
values and multiple piecewise-linear functions at the same 
time; that is, we may specify several piecewise-linear 
functions with their probabilities, and use uncertain 
y-coordinates in each function. In Figure 5(b), we summarize 
the representation of uncertain preferences. 

VII. UTILITY FUNCTION 
If the description of rooms and events includes uncertainty, 
the schedule utility depends on the mathematical expectation 
of the quality and on the standard deviation of the expected 
quality. When the system constructs a near-optimal schedule, 
it keeps track of the expected quality of candidate schedules. 
The quality computation is based on the assumption that all 
probability distributions are independent. If some of them are 
dependent, the computation does not give the exact expected 
quality, but it usually provides a good approximation. 

If a schedule violates some hard constraint with a nonzero 
probability, the overall schedule quality is −penalty 
regardless of the other constraints. If the schedule satisfies all 
hard constraints, the system computes the expected quality of 
each assignment. To estimate the assignment quality for a 
specific event, it determines the expected values of the related 
preference functions,  E(p1),…, E(pk), as well as the expected 
values of their weights, E(w1),…, E(wk), and uses them to 
compute the expected quality of the assignment, which is 
 

(E(w1) · E(p1) + … + E(wk ) · E(pk)) / ((E(w1 ) + … + E(wk)). 
 

We give algorithms for computing the expected values of 
uncertain preferences and their weights in Figures 6–8. The 
procedure in Figure 6 finds the mean of a probability-density 
function represented by a collection of uniform distributions. 
We use it to determine the expected values of uncertain 
preference weights, E(w1),…, E(wk). The procedure in 

Figure 7 gives the expected value of a fully certain preference 
function applied to an uncertain argument, and the procedure 
in Figure 8 determines the expected value of an uncertain 
preference function. We use these procedures to compute the 
expected preference values, E(p1),…, E(pk). 

The system uses the expected quality of assignments, along 
with the expected values of event importances, to compute 
the expected quality of the overall schedule, which is 
 

(E(imp1 ) · E(Qual1) + … + E(impn) · E(Qualn)) /  
(E(imp1) + … + E(impn)). 

 

It also determines the standard deviation of the schedule 
quality, which shows the accuracy of the quality estimate. 

For instance, consider the example in Section II, and 
suppose that the conference-room size is represented by the 
uncertain value in Figure 3, the room-size preference for the 
demo is the uncertain function in Figure 4(a), and all other 
resources and preferences are fully certain, as shown in 
Tables 1–3. Then, the expected quality of the schedule in 
Figure 1 is 0.54, and its standard deviation is 0.08. 

The purpose of scheduling is to increase the expected 
quality and reduce its standard deviation. Thus, the schedule 
utility monotonically increases with an increase of the 
expected quality, and monotonically decreases with an 
increase of its deviation. The developed system allows the use 
of an arbitrary utility function that satisfies these two 
conditions; it inputs a given utility function, and uses 
hill-climbing to construct a schedule that maximizes this 
function. The search algorithm begins with the empty 
schedule and gradually improves it; at each step, it either 
assigns a slot to some event that is not yet in the schedule, or 
moves some scheduled event to a new slot. The system 
continues the search until it either cannot find further 
improvements or reaches a time limit. We have presented 
more details of this algorithm in the paper on the optimization 
with uncertain knowledge [Fink et al., 2006b]. 

VIII. EXPERIMENTS 
We have applied the developed system to several scheduling 
problems, and compared its performance with the results of 
manual scheduling. Every room in these problems has fifteen 
properties, and every event has seventeen preference 
functions. We have experimented with both fully certain and 
uncertain world knowledge, and we have varied the number 
of rooms and events. We have used a 2.4-GHz Xeon 
computer with 400-MHz bus and 1,024-MByte memory, and 
set the time limit for generating schedules to 10 seconds.  

 In the manual-scheduling experiments, we have 
provided the users with a graphical interface for building a 
schedule, which shows room properties, event importances, 
constraints, and preferences [Fink et al., 2006a]. It allows 
construction of a schedule by dragging and dropping events, 
and it provides feedback on the schedule quality. We have not 
imposed any time limit on manual scheduling; most users 
have spent five to ten minutes on small scheduling problems, 
and ten to twenty minutes on large problems. 



 
 

 

                         
The algorithm inputs a fully certain preference function, represented 
by the coordinates of its endpoints, x1…xl and y1…yl; and an 
uncertain value, represented by vectors prob1…probm, min1…minm, 
and max1…maxm, as shown in Fig. 5(a). 

It returns the mathematical expectation of applying the certain 
preference function to the uncertain value. 

We assume that all intervals of the uncertain value are in the domain 
of the preference function, that is, x1 ≤ min1 ≤ maxm ≤ xl. If the 
uncertain value does not satisfy this assumption, then it violates the 
related hard constraint, and the system does not apply the preference 
function to this value. 

The algorithm consists of three procedures: 
• PREF-FOR-CERTAIN: Determine the value of a piecewise-linear 

function for a fully certain argument. 
• PREF-FOR-UNIFORM: Determine the expected value of a piecewise- 

linear function for an uncertain argument represented by a single 
uniform distribution. 

• EXPECTED-CERTAIN-PREF: Determine the expected value of a 
piecewise-linear function for an uncertain argument represented 
by multiple uniform distributions and their probabilities. 

                         

Input: A piecewise-linear function, represented by vectors x1…xl 
and y1…yl, and a fully certain argument arg. 

Output: The value of the function for this argument. 
 

PREF-FOR-CERTAIN (x, y, l; arg) 
Find index a such that either arg = xa or xa−1 < arg < xa 
if arg = xa then return ya 
return (ya · arg − ya−1 · arg + ya−1 · xa − ya · xa−1) / (xa − xa−1) 
                         

Input: A piecewise-linear function, represented by vectors x1…xl 
and y1…yl, and a uniform-distribution argument, represented by the 
endpoints of the distribution, min-arg and max-arg. 

Output: Expected value of the function for this uncertain argument. 
 

PREF-FOR-UNIFORM (x, y, l; min-arg, max-arg) 
if min-arg=max-arg then return PREF-FOR-CERTAIN(x, y, l; min-arg) 
Find index a such that either min-arg = xa or xa < min-arg < xa+1 
Find index b such that either max-arg = xb or xb−1 < max-arg < xb 
min-y = PREF-FOR-CERTAIN (x, y, l; min-arg) 
max-y = PREF-FOR-CERTAIN (x, y, l; max-arg) 
if a = b − 1 then return (min-y + max-y) / 2 
sum = (xa+1 − min-arg) · (min-y + ya+1) / 2 
for j = a + 1 to b − 2 do 
 sum = sum + (xj+1 − xj) · (yj + yj+1) / 2 
sum = sum + (max-arg − xb−1) · (yb−1 + max-y) / 2 
return sum / (max-arg − min-arg) 
                         

Input: A piecewise-linear function, represented by vectors x1…xl 
and y1…yl, and an uncertain argument, represented by vectors 
prob1…probm, min1…minm, and max1…maxm, as shown in Fig. 5(a). 

Output: Expected value of the function for the uncertain argument. 
 

EXPECTED-CERTAIN-PREF (x, y, l; prob, min, max, m) 
mean = 0 
for i = 1 to m do 
 mean = mean + probi · PREF-FOR-UNIFORM (x, y, l; mini, maxi) 
return mean 
                         

Fig. 7: Computing the mathematical expectation of a fully certain 
piecewise-linear function applied to an uncertain property value. 

                         
 

The algorithm inputs an uncertain preference function, represented 
by a collection of functions, pref1…prefm, and their probabilities, 
prob1…probm. Every prefi is a piecewise-linear function, which may 
include uncertain y-coordinates, as shown in Fig. 5(b). 

It also inputs an uncertain value val, represented by a collection of 
intervals and their probabilities, as shown in Fig. 5(a). 

It returns the expected value of applying the uncertain preference 
function to the uncertain value. 

                         
 

EXPECTED-UNCERTAIN-PREF (prob, pref, m; val)  
mean = 0 
for i = 1 to m do 
 for every uncertain y-coordinate in the representation of prefi do 

Call EXPECTED-UNCERTAIN-VALUE (see Fig. 6) 
to find the expected value of the uncertain y 

  Replace the uncertain y in prefi with its expected value 
 Call EXPECTED-CERTAIN-PREF (see Fig. 7) to find E(prefi(val)), 

which is the expected value of applying the resulting 
fully certain function prefi to the uncertain value val 

 mean = mean + probi · E(prefi(val)) 
return mean 
                         
Fig. 8: Computing the mathematical expectation of an uncertain 
preference function applied to an uncertain property value. 

 
Problem size Schedule quality 

Number
of rooms 

Number
of events 

Manual 
scheduling 

Automatic 
scheduling 

Experiments with fully certain world knowledge 
5 32 0.92 0.94 
9 62 0.83 0.94 

13 84 0.61 0.93 
Experiments with uncertain world knowledge 

5 32 0.78 0.80 
9 62 0.72 0.83 

13 84 0.63 0.83 
Table 4: Comparison of automatic and manual scheduling. 

 
In Table 4, we summarize the results of these experiments, 

which show that the system constructs better schedules than 
the human users, and that the difference becomes greater with 
an increase of the problem size. 

IX. CONCLUSIONS 
We have proposed a representation of incomplete knowledge 
in scheduling problems, which allows fast computation of 
expected schedule quality, and thus supports efficient search 
for near-optimal schedules. The proposed approach is based 
on representing uncertain values as probability density 
functions, approximated by collections of uniform 
distributions. We have applied it to scheduling conferences; 
however, it does not rely on any specific features of this task, 
and it is applicable to a variety of optimization problems. 

The developed system has two main limitations. First, it 
does not support uncertainty in hard constraints; if these 
constraints include uncertainty, the system ensures that the 
probability of their violation is zero, which means that it 
internally replaces uncertain hard constraints with the 
respective worst-case constraints. Second, the system 



 
 

 

assumes that the probability distributions of uncertain 
variables are independent, and it does not include a 
mechanism for representing dependencies among variables. 
We are currently working on removing these limitations. 
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