
Scheduling with Uncertain Resources:

Learning to Ask the Right Questions

Alexander Carpentier

Computer Science

Carnegie Mellon University

Pittsburgh, PA 15213, USA

alexcarp@cs.cmu.edu

Mehrbod Sharifi

Computer Science

Carnegie Mellon University

Pittsburgh, PA 15213, USA

mehrbod@cs.cmu.edu

Eugene Fink

Computer Science

Carnegie Mellon University

Pittsburgh, PA 15213, USA

e.fink@cs.cmu.edu

Jaime G. Carbonell

Computer Science

Carnegie Mellon University

Pittsburgh, PA 15213, USA

jgc@cs.cmu.edu

Abstract—We consider the task of scheduling a conference
based on incomplete information about resources and constraints,
which requires elicitation of additional data, and describe a
learning procedure that improves elicitation strategies. We outline
the representation of incomplete knowledge, and then describe an
adaptive elicitation procedure, which learns to identify critical
missing data.

Index Terms—Uncertainty, optimization, elicitation, active
learning.

I. INTRODUCTION

When we work on a practical scheduling task, we may not have

complete knowledge of the available resources and schedul-

ing constraints. For example, when scheduling a conference,

we may not know the exact attendance of specific events

or preferences of specific speakers, which may complicate

the selection of appropriate rooms. The task of scheduling

under uncertainty involves several problems, including the

representation of uncertain data, automated construction of

schedules based on these data, and identification of critical

missing knowledge.

We have developed a system for scheduling based on

incomplete and partially uncertain data [1], which has been

part of the RADAR project (www.radar.cs.cmu.edu) at Carnegie

Mellon University, aimed at building a software agent for

assisting an office manager. We have described this schedul-

ing system in a series of four papers; specifically, we have

explained the representation of uncertainty [2], search for

near-optimal schedules [11], elicitation of additional data [3],

and collaboration between the system and its user [10]. We

now present a learning mechanism for improving elicitation

strategies.

The manuscript was received on March 16, 2008. The described work was
supported by the Defense Advanced Research Projects Agency (DARPA) under
Contract No. FA8750-07-D-0185.

The problem of eliciting additional data arises in a variety of

applications, and researchers investigated several related tech-

niques [9]. For example, Burke et al. [7][8] built an assisted

browsing system that helped the user to construct queries,

and Linden et al. [13], Pu and Faltings [14], and Torrens et
al. [16] developed software agents that helped customers to

find airline tickets by eliciting their flight preferences. The

authors of these systems assumed that every query had only a

few parameters, and their approach would be impractical for

scheduling problems, which may have thousands of uncertain

values. As another example, Boutilier et al. studied the op-

timization under uncertainty, and developed a procedure that

generated questions about missing data [4][5][6][15]; however,

it allowed uncertainty only in discrete parameters, and thus it

would be inapplicable to scheduling with continuous variables.

We have considered the problem of scheduling a conference

under uncertainty, which may require handling of thousands

of uncertain values, including both discrete and continuous

parameters. The examination of the previous elicitation tech-

niques has shown that they are inapplicable to this problem,

and we have developed a novel elicitation mechanism, based

on evaluating the impact of missing data on the schedule

quality [3]. We now present a learning procedure that improves

the performance of this mechanism and helps to adapt it to new

scheduling scenarios. We outline the representation of uncer-

tain data (Section II), explain the elicitation steps (Section III),

describe the related learning mechanism (Section IV), and give

experiments on its effectiveness (Section V).

II. SCHEDULING

We begin by reviewing the representation of resources and con-

straints in the developed system. A more detailed description

is available in the earlier paper on the representation of uncer-

tainty in conference scheduling [2]. The two main objects in

this representation are rooms, which define available resources,

and conference events, which include related constraints.

1-4244-2384-2/08/$20.00 c© 2008 IEEE SMC 2008

Fig. 1. Example of a room hierarchy.

Uncertain value:

prob1: from min1 to max1

. . .

probm: from minm to maxm

where

min1 ≤ max1 ≤ ... ≤ minm ≤ maxm

prob1 + ... + probm = 1

Fig. 2. Representation of an uncertain value, which includes multiple disjoint
intervals and their respective probabilities.

We describe a room by a set of properties, such as size,

availability of overhead projectors and microphones, and dis-

tances to other rooms. We also specify the availability of each

room, represented by a collection of time intervals. In addition,

we may arrange rooms into a tree-structured hierarchy, which

specifies main room types, as illustrated in Figure 1. The

system allows manual specification of a room hierarchy, and it

also includes a clustering procedure for automated construction

and refinement of a hierarchy based on similarities among

rooms.

The description of a conference event includes its impor-

tance and a set of related constraints and preferences. The

importance is a positive integer, the constraints are ranges of

acceptable values for start time, end time, duration, and room

properties, and the preferences are ranges of preferred values,

which must be within the respective acceptable ranges. The

system allows arranging events into a tree-structured hierarchy,

similar to the room hierarchy.

We may have incomplete information about room proper-

ties, event importances, constraints, and preferences. We rep-

resent every uncertain value by a probability density function,

approximated by a set of uniform distributions. That is, we

encode an uncertain value by a set of disjoint intervals that

may contain it, with a probability assigned to each interval

(Figure 2).

When constructing a schedule, the system assigns a specific

room, start time, and duration to every event. We measure the

quality of these assignments on the scale from 0.0 (lowest) to

Fig. 3. Reward for satisfying a preference.

1.0 (highest). If an assignment violates any hard constraints,

its quality is zero. Else, we compute its quality through the

rewards for satisfying the related preferences. If a start time,

end time, duration, or room property is within the preferred

range, the respective reward is 1.0. If it is outside the preferred

range, the reward linearly decreases with the distance from

the range (Figure 3). If the event has k preferences, and their

respective rewards are r1, ..., rk, then the assignment quality

is (r1 + ... + rk)/k.

The overall schedule quality is the weighted sum of the

quality values of individual assignments. That is, if a schedule

includes n events, their quality values are Qual1, ..., Qualn,

and their importances are imp1, ..., impn, the overall quality is

imp1 · Qual1 + ... + impn · Qualn
imp1 + ... + impn

.

If some relevant values are uncertain, the system evaluates

the expected quality of each assignment, and then computes

the expected value of their weighted sum:

E(imp1) · E(Qual1) + ... + E(impn) · E(Qualn)
E(imp1) + ... + E(impn)

.

The purpose of scheduling is to maximize this expected

quality. The system includes a scheduling procedure based on

randomized hill-climbing, which does not guarantee optimality,

but usually finds near-optimal solutions [11].

III. ELICITATION

The system computes not only the expected schedule quality,

but also its standard deviation. A high deviation means that the

true quality may be significantly different from its expectation.

We may reduce uncertainty by asking the human administrator

to provide more accurate data; we list the types of possible

questions in Figure 4.

The system includes two modules for ranking potential

questions by importance, called impact-based elicitor and

adaptive elicitor (Figure 5). After ranking all questions, it

requests the user to provide answers, starting with the most

important questions. If the user answers some questions, the

system uses the new data to improve the schedule.

SMC 2008

• Provide the exact value for an uncertain room property.

• Provide the exact value for an uncertain event importance.

• Provide the exact acceptable range for start time, end time,

duration, or room property in an event description.

• Provide the exact preferred range for start time, end time,

duration, or room property in an event description.

Fig. 4. Types of questions to the user. The system may ask to find out
more information about room properties, event importances, and scheduling
constraints and preferences.

Fig. 5. Two modules for the ranking of potential questions.

Impact-based elicitor: The first module is a combination

of the two algorithms developed by Bardak [1][3], which

evaluate the impact of potential questions on the quality of

a given schedule. For each question, the system estimates

the expected quality increase if it can use the related answer

in re-scheduling. After evaluating each question, it sorts the

questions by their impacts. The related algorithms ignore the

questions that have no impact on the given schedule, even if

the related answers may help in the future.

Adaptive elicitor: The second module uses heuristic rules

to rank the questions ignored by the impact-based elicitor.

Although the answers to these questions do not affect a

given schedule, they may be essential for other schedules.

For example, we may need to ask about the properties of a

major auditorium even if the current schedule does not use

it. The effectiveness of this module depends on the available

heuristics, and we have developed a learning mechanism for

improving them.

IV. LEARNING

The system learns typical importance values of potential ques-

tions, and then uses them to estimate the relative importance of

questions that do not affect a given schedule. We explain the

use of learned values and then present the learning procedure.

Question importances: The system keeps a list of all poten-

tial questions, which correspond to parameters of scheduling

problems, including properties of specific rooms, event im-

portances, and constraints and preferences of specific events.

If the system encounters several scheduling scenarios, with

different rooms and events, it adds all potential questions from

all scenarios to the overall list. For each question, it keeps the

learned value of its typical importance, along with a counter

of all scheduling problems used in learning this value. When

the adaptive elicitor processes the questions that do not affect

the current schedule, it sorts them in the decreasing order of

the learned importances.

Learning procedure: The system learns typical importances

by applying the impact-based elicitor to a set of training

problems. We summarize the learning algorithm in Figure 6;

for each problem in the training set, it invokes the impact-based

elicitor to determine the importances of the questions that

affect the related schedule, and uses the results to update the

learned importances. For each question, the learned importance

is the mean of its importances in specific problems, and the

respective value of the problem counter is the number of

training problems where this question affects the schedule.

Generalization: If some questions do not affect any schedules

in the training set, the procedure in Figure 6 does not learn their

importances. We use the room and event hierarchies to estimate

the importances of these questions based on the importances of

other similar questions. We give the estimation procedure for

questions about rooms in Figure 7; the procedure for questions

about events is similar. These two procedures input a question

without a learned importance, retrieve analogous questions for

other objects of the same type, and estimate the importance

of the given question as the mean importance of the retrieved

questions.

Problem generation: If the available set of training problems

is too small, the system generates new variations of given

problems, and uses them as additional training instances. To

construct a new problem, it randomly changes event assign-

ments in a given schedule and then applies the hill-climbing

procedure to repair the schedule. Since different starting points

of the hill-climbing usually lead to different local maxima,

multiple applications of this procedure give different near-

optimal schedules, which serve as different training problems.

V. EXPERIMENTS

We have applied the developed system to schedule a four-

day conference, which includes eighty-four events, where each

event has twenty constraints. The available resources include

eighty-eight rooms, where each room has seventeen properties.

The problem representation comprises about 3300 parameters;

SMC 2008

Input: Set of scheduling problems, denoted problem-set.
Output: Set of questions with learned importances, learned-qs.

LEARN(problem-set)
initialize learned-qs as an empty set of questions

for each problem in problem-set do
apply the impact-based elicitor to this problem,

which returns the set of selected questions, selected-qs,

and the impact of each selected question, current-impact
for each question q in selected-qs do

if q is not in learned-qs
then add q to learned-qs

total-impact[q] = current-impact[q]
counter[q] = 1

else total-impact[q] = total-impact[q] + current-impact[q]
counter[q] = counter[q] + 1

for each question q in learned-qs do
importance[q] = total-impact[q] / counter[q]

return learned-qs

Fig. 6. Learning of typical importances of potential questions. The procedure
applies the impact-based elicitor to multiple problems, and determines the
mean importance of each question.

Input: Question q about a property of a specific room.

Output: Estimated importance of this question.

GET-IMPORTANCE(q, room)
if q has a learned importance

then return importance[q]
room-type = parent[room]
while room-type is not NIL

and the system has no learned importances of any

similar questions for rooms of room-type do
room-type = parent[room-type]

if room-type is NIL

then return NIL (i.e. no importance estimate)

let similar-qs be the set of similar questions with

learned importances for rooms of room-type
impact-sum = 0
counter-sum = 0
for each question sim-q in similar-qs do

impact-sum = impact-sum + total-impact[sim-q]
counter-sum = counter-sum + counter[sim-q]

return impact-sum / counter-sum

Fig. 7. Generalization of question importances. We give the generalization
procedure for the room hierarchy, which estimates the importance of a given
question by averaging the importances of other similar questions.

Fig. 8. Dependency of the schedule quality on the number of questions, for
the elicitation based on the learned knowledge (solid line) and without learned
knowledge (short dashes), as well as for the random selection of questions
(long dashes). We also show the quality of the schedule constructed based on
the full knowledge of all parameters (horizontal dotted line at the top).

the values of 1200 parameters are uncertain, which means that

the system may potentially ask 1200 questions.

We have trained the adaptive elicitor on sixty scheduling

problems, produced by the problem-generation procedure, and

then used the learned knowledge in the elicitation. During

the elicitation process, the system has first constructed a

schedule based on the initial incomplete data; then, it has

asked for additional data, five questions at a time, and modified

the schedule after receiving answers to each “batch” of five

questions. We have also run the analogous elicitation process

without the learned knowledge, which has served as a baseline

for evaluating the impact of learning.

We summarize the results in Figure 8, which shows the

dependency of the schedule quality on the number of questions.

We show this dependency for the elicitation based on the

learned knowledge (solid line) and analogous results without

learning (short dashes). We also show the results of elicitation

using completely random selection of questions, without any

learning or impact analysis (long dashes). The results confirm

that the learning helps to improve the elicitation effectiveness,

and enables the system to construct a better schedule.

VI. CONCLUDING REMARKS

We have described a technique for learning the importance of

potential questions about missing data, which helps to improve

the elicitation of additional information in scheduling prob-

lems. Although we have applied this technique to conference

scheduling, it does not rely on any specific features of this

task, and it is applicable to a variety of optimization problems.

We are now working on a general-purpose elicitation system,

embedded into Excel, which can be integrated with a wide

range of optimization architectures [12].

SMC 2008

ACKNOWLEDGMENT

We are grateful to P. Matthew Jennings, Steven Gardiner,

Peter Smatana, Blaze Iliev, and Ulas Bardak for their work on

the scheduling and elicitation system, and for their help with

the development of the described learning algorithm. We also

thank Andrew Yeager for testing and evaluating this system.

REFERENCES

[1] U. Bardak. “Information elicitation in scheduling problems.” Ph.D.

Thesis, Language Technologies Institute, Carnegie Mellon University,

2007.

[2] U. Bardak, E. Fink, and J. G. Carbonell. “Scheduling with uncertain re-

sources: Representation and utility function.” In Proceedings of the IEEE

International Conference on Systems, Man, and Cybernetics, pp. 1486–

1492, 2006.

[3] U. Bardak, E. Fink, C. R. Martens, and J. G. Carbonell. “Scheduling

with uncertain resources: Elicitation of additional data.” In Proceedings
of the IEEE International Conference on Systems, Man, and Cybernetics,

pp. 1493–1498, 2006.

[4] C. Boutilier, R. Das, J. O. Kephart, G. Tesauro, and W. E. Walsh.

“Cooperative negotiation in autonomic systems using incremental utility

elicitation.” In Proceedings of the Nineteenth Conference on Uncertainty
in Artificial Intelligence, pp. 89–97, 2003.

[5] C. Boutilier, R. Patrascu, P. Poupart, and D. Schuurmans. “Constraint-

based optimization with the minimax decision criterion.” In Proceedings
of the Ninth International Conference on Principles and Practice of
Constraint Programming, pp. 168–182, 2003.

[6] C. Boutilier, R. Patrascu, P. Poupart, and D. Schuurmans. “Regret-based

utility elicitation in constraint-based decision problems.” In Proceedings
of the Nineteenth International Joint Conference on Artificial Intelli-
gence, pp. 929–934, 2005.

[7] R. D. Burke, K. J. Hammond, and B. C. Young. “Knowledge-based nav-

igation of complex information spaces.” In Proceedings of the Thirteenth
National Conference on Artificial Intelligence, pp. 462–468, 1996.

[8] R. D. Burke, K. J. Hammond, and B. C. Young. “The FindMe approach

to assisted browsing.” IEEE Expert, 12(4), pp. 32–40, 1997.

[9] L. Chen and P. Pu. “Survey of preference elicitation methods.”

Swiss Federal Institute of Technology in Lausanne, Technical Report

No. IC/200467, 2004.

[10] E. Fink, U. Bardak, B. Rothrock, and J. G. Carbonell. “Scheduling

with uncertain resources: Collaboration with the user.” In Proceedings
of the IEEE International Conference on Systems, Man, and Cybernetics,

pp. 11–17, 2006.

[11] E. Fink, P. M. Jennings, U. Bardak, J. Oh, S. F. Smith, and J. G. Car-

bonell. “Scheduling with uncertain resources: Search for a near-optimal

solution.” In Proceedings of the IEEE International Conference on
Systems, Man, and Cybernetics, pp. 137–144, 2006.

[12] B. Fu, E. Fink, and J. G. Carbonell. “Analysis of uncertain data: Tools for

representation and processing.” In Proceedings of the IEEE International
Conference on Systems, Man, and Cybernetics, 2008.

[13] G. Linden, S. Hanks, and N. Lesh. “Interactive assessment of user

preference models: The automated travel assistant.” In Proceedings of
the Sixth International Conference on User Modeling, pp. 67–78, 1997.

[14] P. Pu and B. Faltings. “Personalized navigation of heterogeneous product

spaces using SmartClient.” In Proceedings of the 2002 International
Conference on Intelligent User Interfaces, pp. 212–213, 2002.

[15] R. Patrascu, C. Boutilier, R. Das, J. O. Kephart, G. Tesauro, and

W. E. Walsh. “New approaches to optimization and utility elicitation

in autonomic computing.” In Proceedings of the National Conference
on Artificial Intelligence, pp. 140–145, 2005.

[16] M. Torrens, P. Herzog, L. Samson, and B. Faltings. “Reality: A scalable

intelligent travel planner.” In Proceedings of the 2003 ACM Symposium
on Applied Computing, pp. 623–630, 2003.

SMC 2008

