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The modern economy includes a variety of markets, and the Internet has opened
opportunities for efficient on-line trading. Researchers have developed algorithms for
various auctions, which have become a popular means for on-line sales. They have
also designed algorithms for exchange-based markets, similar to the traditional stock
exchange, which support fast-paced trading of rigidly standardized securities. On
the other hand, there has been little work on exchanges for complex nonstandard
commodities, such as used cars or collectible stamps.

We propose a formal model for trading of complex goods and services, and
present an automated exchange for a limited version of this model. The exchange
allows the traders to describe commodities by multiple attributes; for example, a car
buyer may specify a model, options, color, and other desirable properties. Further-
more, a trader may enter constraints on the acceptable items rather than a specific
item; for example, a buyer may look for any car that satisfies certain constraints,
rather than for one particular vehicle.

We present an extensive empirical evaluation of the implemented exchange, us-
ing artificial data, and then give results for two real-world markets, used cars and
commercial paper. The experiments show that the system supports markets with up

to 260,000 orders, and generates one hundred to one thousand trades per second.
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Chapter 1
Introduction
1.1 Motivation

Economists define market as “an arrangement which permits numerous buyers and
sellers of related commodities to carry on extensive business transactions on a regular,
organized basis” [Trenton, 1964]. The modern economy includes a wide variety of
markets, from cars to software to office space.

The supply chain between a manufacturer and customer may include several
middlemen. For instance, customers usually buy cars through dealerships, which in
turn acquire cars from manufacturers; the sale of used cars may also involve dealers,
who serve as middlemen in the secondary market.

These resales increase the cost of goods, since they include commissions for the
middlemen. The recent growth of the Internet has opened opportunities for reduc-
ing the number of middlemen [Klein, 1997; Turban, 1997; Wrigley, 1997], and many
companies have experimented with direct sales over the web. Middlemen are also
using the Internet to increase the volume of their sales and reduce expenses. Fur-
thermore, many companies specialize in the development of electronic marketplaces,
which include bulletin boards, auctions, and exchanges.

Electronic bulletin boards are similar to traditional newspaper classifieds. These
boards vary from newsgroup postings to on-line sale catalogs, and they help buyers
and sellers find each other; however, they often require a user to invest significant

effort into searching among multiple ads. For this reason, many buyers prefer on-line



auctions, such as eBay (www.ebay.com).

Auctions have their own problems, which include significant computational
costs, transaction delays, and asymmetry between buyers and sellers. A traditional
auction requires a buyer to bid on a specific item. It helps sellers to obtain the highest
price, but limits buyers’ flexibility. A reverse auction requires a seller to bid on a
customer’s order; thus, it benefits buyers, and restricts the sellers’ flexibility. Fur-
thermore, auctions limit the liquidity, that is, they may cause significant transaction
delays. For example, if a seller posts an item on eBay, she can sell it in three or
more days, depending on the selected duration of the auction, but not sooner. Thus,
auctions are not appropriate for fast sales, which are essential in many markets.

An exchange-based market does not have these problems: it ensures symmetry
between buyers and sellers, and supports fast-paced trading. Examples of liquid
markets include the traditional stock and commodity exchanges, such as the New
York Stock Exchange and Chicago Mercantile Exchange, as well as currency and
bond exchanges. For instance, a trader can buy or sell any public stock in seconds,
at the best available price. Although stocks have long served as an example of an
efficient market, trading in other industries has not reached this efficiency.

The main limitation of traditional exchanges is rigid standardization of tradable
items. For instance, the New York Stock Exchange allows trading of about 3,100
securities, and the buyer or seller has to indicate a specific item, such as IBM stock.
For most goods and services, however, the description is much more complex. For
instance, a car buyer may need to specify a make, model, options, color, and other
desirable features. Furthermore, she usually has a certain flexibility and may accept
any car that satisfies her constraints, rather than looking for one specific vehicle. For
example, she may be willing to get any red Mustang with air conditioning.

Building an exchange for such complex commodities is a major open problem.
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Figure 1.1: The traditional car market versus a centralized exchange. The usual
market includes customers, dealers, and manufacturers (a). An alternative scheme is
trading through the central exchange (b).

An effective trading system should satisfy the following requirements:

e Allow complex constraints in specifications of buy and sell orders

Support fast-paced trading for large markets, with millions of orders

Include optimization techniques that maximize the traders’ satisfaction

Ensure the “fairness” of the market, according to financial industry standards

Allow a user to select preferred trades among matches for her order

1.2 Example

We give an example of a car exchange, which would allow manufacturers, dealers,
and customers to trade new and used vehicles. To simplify this example, we assume
that a user can describe a car by four attributes: model, color, year, and mileage; for
instance, a seller may offer a red Mustang, made in 1996, with 60,000 miles.

In Figure 1.1(a), we illustrate a traditional car market, which includes manu-

facturers, car dealers, and customers. The dealers get cars from manufacturers and



Buy order: Sl order:

Red Mustang, - Any color Mustang,
made after 1999, Fill: made in 2001,

at most 10,000 miles, Red Mustang, 0 miles,

less than $30,000 made in 2001, more than $28,000

0 miles,
$29,000

Figure 1.2: Matching orders and the resulting trade. When the system discovers a
match between two orders, it generates a fill, which is a trade that satisfies both
parties.

resell them to individual drivers. In Figure 1.1(b), we show an alternative trading
model, with a centralized exchange, similar to a stock market. Car dealers may still
participate in this exchange, by acquiring large quantities of cars from a manufacturer
and reselling them to customers; however, the dealers are no longer an essential link,
and manufacturers can sell directly to end users.

The exchange allows the users to place buy and sell orders, analogous to the
orders in a stock market. A prospective buyer may place a buy order, which includes
a description of the desired vehicle and a maximal acceptable price. For instance,
she may indicate that she wants to purchase a red Mustang, made after 1999, with
less than 10,000 miles, and she is willing to pay at most $30,000. Similarly, a user
may place a sell order, which includes the same main elements. For instance, a
manufacturer may offer brand-new Mustangs of any color, for $28,000.

The exchange system searches for matches between buy and sell orders, and
generates corresponding fills, that is, transactions that satisfy both buyers and sellers.
In the previous example, the system will notice that a brand-new red Mustang for
$29,000 satisfies both buyer and seller, and it will generate a fill (see Figure 1.2).
Thus, the customer will acquire a red Mustang from the manufacturer, for $29,000.

If the system does not find fills for some orders, it keeps them in memory and

tries to match them with new, incoming orders. We illustrate it in Figure 1.3, where



Placed at 9am Placed at 11am
Buy order: Sl order:
Red Mustang... Filled at 11am Any color Mustang...

Fill:
Red Mustang...

Figure 1.3: If the system cannot find an immediate match for an order, it keeps
looking for matches among newly placed orders. In this example, it gets the buy
order at 9am and finds a match two hours later.

Placed at 1pm Place at 2pm

Buy order: Sl order: Sl order: Buy order: Sl order: Sl order:
Mustang Mustang Mustang Mustang Mustang Mustang
$30,000 $29,000 $27,000 $30,000 $27,000 $27,000
Y Y

Fill: Fill:

Mustang Mustang

$28,500 $28,500

@ (b)

Figure 1.4: Fairness rules: When the system finds several matches for an order, it
chooses the match with the best price (a); if two matches have the same price, it
prefers the earlier order (b).

the buy order remains open until the system receives a matching sell order two hours
later.

If the system finds several matches for an order, it chooses the match with the
best price. For example, the buy order in Figure 1.4(a) will trade with the cheaper of
the two sell orders. If two matching orders have the same price, the exchange gives
preference to the earlier order, as shown in Figure 1.4(b). These rules correspond to
the standard “fairness” requirements of the financial industry.

The system allows a user to trade several identical items, by specifying a size
for an order. For example, a dealer can place an order to sell four Mustangs, which
may trade with several different buy orders. The system may first match it with a

two-car buy order (see Figure 1.5), and later find another match for the remaining



Buy order: Sl order:
Mustang Mustang
2cars 4 cars
I I
Completely filled Partialy filled
removed redtvjced
| order:
Mustang
2cars

Figure 1.5: Buyers and sellers may trade several items at once, by specifying order
sizes. When the system finds a match, it completely fills the smaller order and reduces
the size of the larger order.

two cars.

A wuser can specify that she is willing to buy or sell any of several items. For
example, a customer can place an order to buy either a Mustang or Corvette. As
another example, a dealer can place an order to sell ten cars, which may be Mustangs,
Escorts, and Rangers. In the latter example, the dealer may end up selling ten
Mustangs, or ten Escorts, or three Mustangs and seven Rangers.

If a user describes a set of items, she can indicate that the price depends on an
item. For example, if a customer wants a Mustang or Corvette, she may offer $30,000
for a Mustang, but only $28,000 for a Corvette. Furthermore, she may offer an extra
$200 if a car is red, and subtract $1 for every ten miles on its odometer. She can also
specify her preferences for selecting among potential trades; for instance, she may
indicate that a red Mustang is better than a white Mustang, and that a Mustang for
$29,000 is better than a Corvette for $28,000 (see Figure 1.6).

A customer may request additional information about potential trades before
committing to one of them. For instance, she may view the pictures of matching cars,

along with their technical descriptions, and manually select the best match.



Buyer preferences:

Buy order:
Red Mustang is better Mustang or | | Sell order: Sell_order: Sl order:
than white Mustang Corvette Red Mustang | | White Mustang Red Corvette
$30,000 $29,000 $29,000 $28,000

$29,000 Mustang is better

than $28,000 Corvette -

ill:
$28,000 Mustang is better Red Mustang
than $27,000 Corvette $29,500

Figure 1.6: Example of preferences: A customer wants to buy a Mustang or Corvette,
and specifies her preferences; the system uses them to choose among matching orders.

1.3 Previous Work

Economists and computer scientists have long realized the importance of auctions
and exchanges for the modern economy, and studied a variety of trading models. The
related computer science research has been focused on optimal matches in various
auction scenarios, and on general-purpose systems for auctions and exchanges.

This research has led to successful systems for Internet auctions, including Yahoo
Auctions (auctions.yahoo.com), eBay (www.ebay.com), and Bid.Com (www.bid.com),
which support millions of traders. Some companies have also built on-line auctions for
business-to-business transactions; for example, FreeMarkets (www.freemarkets.com)
has deployed a reverse auction, which allows suppliers to bid for a large contract with
a business customer.

Although these auctions are more effective than traditional bulletin boards, they
have the typical drawbacks of auction markets, including asymmetric treatment of
buyers and sellers, and significant computational requirements.

Recently, researchers have developed several efficient systems for combinatorial
auctions, which allow buying and selling sets of commodities rather than individual
items. They have considered not only auctions with completely specified commodities,

but also markets that allow the user to negotiate desirable features of merchandise.



1.3.1 Combinatorial Auctions

A traditional combinatorial auction allows bidding on a set of fully specified items.
For example, Katie may bid on a red Mustang, black Corvette, and silver BMW, for
a total price of $80,000. In this case, she will get all three cars together or nothing;
that is, the system will not generate a partial fill.

An advanced auction may allow disjunctions; for instance, Katie may specify
that she wants either a red Mustang and black Corvette or, alternatively, two silver
BMWs. On the other hand, standard combinatorial auctions do not allow incom-
pletely specified items, such as “a Mustang of any color.”

Rothkopf et al. [1998] gave a detailed analysis of combinatorial auctions and
discussed restrictions that ensure computational feasibility. They described seman-
tics of combinatorial bids that allow fast matching, but did not develop a match-
ing algorithm. Nisan discussed alternative semantics for combinatorial bids, for-
malized the problem of searching for optimal and near-optimal matches, and pro-
posed a linear-programming solution, but did not test its effectiveness [Nisan, 2000;
Lavi and Nisan, 2000].

Sandholm [1999] developed several efficient algorithms for one-seller combina-
torial auctions, and showed that they scaled to a market with about one thou-
sand bids. Sandholm and his colleagues later improved the original algorithms,
and implemented a system that processed several thousand bids [Sandholm, 2000a;
Sandholm and Suri, 2000; Sandholm et al., 2001].

Fujishima with other researchers proposed an approach for enhancing standard
auction rules, analyzed trade-offs between optimality and running time, and presented
two related algorithms [Fujishima et al., 1999a; Fujishima et al., 1999b]. The first of
them ensured optimal matching and scaled to about one thousand bids, whereas the

other found near-optimal matches for a market with ten thousand bids.



Andersson et al. [2000] compared the main techniques for combinatorial auc-
tions, and proposed an integer-programming representation of auctions, which al-
lowed a richer bid semantics. In particular, they removed some of the restrictions
imposed by Rothkopf et al. [1998].

Although the developed systems can efficiently process several thousand bids,
their running time is super-linear in the number of bids, and they do not scale to

larger markets.

1.3.2 Advanced Semantics

Several researchers studied techniques for processing “flexible” bids, specified by hard
and soft constraints, similar to buy orders in Figures 1.2, 1.3, and 1.6.

Bichler discussed a market that would allow negotiation on any attributes of a
commodity [Bichler et al., 1999; Bichler, 2000]; for instance, a car buyer could set
a fixed price and negotiate on the options and service plan. He analyzed several
alternative versions of this model, and concluded that it would greatly increase the
economic utility of auctions; however, he pointed out the difficulty of implementing
it and did not propose any computational solution.

Jones and Koehler extended the semantics of combinatorial auctions and al-
lowed buyers the use of complex constraints [Jones and Koehler, 2000; Jones, 2000
for instance, a car buyer could bid on a car that was less than three-years old, or on
the fastest available car. They suggested an advanced semantics for these constraints,
which allowed compact description of complex bids; however, they did not allow com-
plex constraints in sell orders. They implemented an algorithm that supported this
semantics and found near-optimal matches; however, it scaled only to one thousand
bids.

This initial work leaves many open problems, which include the use of complex



constraints with general preference functions, symmetric treatment of buy and sell

orders, and development of efficient matching algorithms for advanced semantics.

1.3.3 Exchanges

Economists have extensively studied traditional stock exchanges; for example, see
the historical review by Bernstein [1993] or the textbook by Hull [1999]. They
have focused on exchange dynamics and related mathematics, rather than on ef-
ficient algorithms [Cason and Friedman, 1999; Bapna et al., 2000]. Several com-
puter scientists have also studied market dynamics and proposed algorithms for find-
ing the market equilibrium [Reiter and Simon, 1992; Cheng and Wellman, 1998;
Andersson and Ygge, 1998].

Successful on-line exchanges include electronic communication networks, such as
REDI (www.redibook.com), Island (www.island.com), NexTrade (www.nextrade.org),
Archipelago (www.tradearca.com), and Instinet (www.instinet.com). The directors of
large stock and commodity exchanges are also considering electronic means of trading.
For example, the Chicago Mercantile Exchange has deployed the Globex electronic
trading system, which supports trading around the clock.

Some auction researchers have investigated the related theoretical issues; they
have traditionally viewed exchanges as a variety of auction markets, called continuous
double auctions. In particular, Wurman et al. [1998a] proposed a theory of exchange
markets and implemented a general-purpose system for auctions and exchanges, which
processed traditional fully specified orders. Sandholm and Suri [2000] developed an
exchange for combinatorial orders, similar to bids in combinatorial auctions; however,
their system could not support markets with more than one thousand pending orders.

The related open problems include development of a scalable system for large

combinatorial markets, as well as support for flexible orders with complex constraints.
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1.3.4 General-Purpose Systems

Computer scientists have developed several systems for different types of auctions and
exchanges, which have varied from specialized markets to general-purpose tools for
building new markets. The reader may find a survey of most systems in the review
articles by Guttman et al. [1998a, 1998b] and Maes et al. [1999].

For example, Chavez and his colleagues designed an on-line agent-based auc-
tion; specifically, they built intelligent agents that negotiated with one another, on
behalf of buyers and sellers [Chavez and Maes, 1996; Chavez et al., 1997]. Vetter and
Pitsch [1999] constructed a more flexible agent-based system, which supported sev-
eral types of auctions. Preist [1999a; 1999b] developed a similar distributed system
that supported exchange markets. Bichler designed an electronic brokerage service,
which helped buyers and sellers find each other and negotiate through auction mech-
anisms [Bichler et al., 1998; Bichler and Segev, 1999].

Wurman and Wellman developed a general-purpose system, which could run a
variety of different auctions [Wellman, 1993; Wellman and Wurman, 1998; Wurman
et al., 1998b]; however, they restricted the users to simple fully specified bids. Parkes
built a fast system for combinatorial bids, but it worked only for small markets,
with up to one hundred users [Parkes, 1999; Parkes and Ungar, 2000]. Sandholm
created a more powerful server for combinatorial auctions, configurable for a variety
of markets, and showed its ability to process several thousand bids [Sandholm, 2000a;
Sandholm, 2000b; Sandholm and Suri, 2000].

All of these systems had the same key limitations as commercial on-line ex-

changes: they required fully specified bids and did not support the use of constraints.
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1.4 Contributions

The review of previous work has shown that techniques for trading of complex com-
modities are still limited. Researchers have investigated several auction models, as
well as exchanges for standardized securities, but they have not applied the exchange
model to complex goods. The main open problems are (1) design of an automated
exchange for complex securities, (2) analysis of related trading rules, and (3) devel-
opment of a rigorous theory of complex exchanges.

The work reported here is a step toward addressing these problems. We define
complex orders and propose related trading semantics. Specifically, we view a mar-
ket as a set of tradable items, and an order as its subset. The proposed model is
applicable to a variety of markets, from financial securities to automobiles. We have
used it in developing a prototype exchange system, in collaboration with PowerLoom
Corporation, the sponsor for this project.

We have performed an extensive empirical evaluation of the resulting system,
using a suite of artificial markets, as well as used-car and commercial-paper markets.
The experiments have shown that the system allows fast trading in large-scale mar-
kets. For instance, it supports the used-car market with 260,000 pending orders and
300 new orders per second, on a single 400-MHz workstation.

First, we analyze a general trading problem and formalize the concept of complex
commodities (Chapter 2). Then, we describe the implemented functionality, and
discuss its advantages and main limitations (Chapter 3). Finally, we give results of
testing the system and show how its performance depends on the market size, order

complexity, and other properties of the exchange (Chapter 4).
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Chapter 2

General Problem

We formalize a general problem of building an automated exchange, and illustrate
it with car-market examples. The purpose of an exchange is to allow purchase and
sale of certain items; in other words, it helps prospective buyers and sellers find each

other.

2.1 Buyers and Sellers

When a buyer looks for a certain item, she usually has some flexibility; that is, she
is willing to buy any of several acceptable items. For example, suppose that Katie is
looking for a sports car; then, she may be willing to buy one of several models, such
as a Corvette, Mustang, or Viper. For each of these models, Katie has to determine
the maximal acceptable price. Furthermore, a buyer usually has preferences among
acceptable items; for instance, Katie may prefer Mustangs to other models, and she
may prefer red cars to black ones. The preferences may depend on the price, features,
or other factors, such as service quality or delivery date.

Similarly, when a dealer sells a vehicle, she has to decide on a minimal acceptable
price. For instance, Laura may be selling a Corvette for no less than $15,000 and a
Mustang for no less than $20,000. If the seller offers multiple items, she may prefer
some sales to others. For example, Laura may prefer to sell the Mustang for $20,000,
rather than the Corvette for $15,000. If Katie came to Laura to purchase a sports

car, then Laura would try to sell the Mustang before offering the Corvette.

13



If a buyer’s constraints match a seller’s constraints, then they may trade; that
is, the buyer may purchase an item from the seller. If a buyer finds several acceptable
items, possibly provided by different sellers, she will buy the best available item,
where the notion of “best” depends on her subjective preferences. Similarly, a seller
may be able to choose the most attractive deal among several bids.

We use the term buy order to refer to a buyer’s set of requirements and prefer-
ences. For example, Katie’s desire to purchase a sports car can be expressed as an
order for a sports car, and her price limits and preferences will be a part of this order.
When a buyer announces her desire to trade, we say that she has placed an order.

Similarly, a sell order is a seller’s set of constraints, which define the offered
merchandise. For example, Laura may place an order to sell a Mustang or Corvette,
and her order may also include price limits and preferences. If a buy and sell order

match, they may result in a trade between the corresponding parties.

2.2 Concept of an Order

A specific market includes a certain set of items that can potentially be bought and
sold; we denote it by M, which stands for market set. Note that this set may be very
large or even infinite; in the car market, M includes all vehicles that have ever been
made, as well as vehicles that can be made in the future. The choice of a market
set limits the objects that can be traded, but it does not guarantee that all of these
objects will be traded. For instance, if we restrict M to cars, then the market does
not allow trading of bicycles or golf carts. On the other hand, even if M includes
Star Wars land speeders, they may never be traded.

When a customer makes a purchase or sale, she needs to specify a set of ac-
ceptable items, denoted I, which stands for item set; it must be a subset of M, that

is, I C M. For example, if Katie shops for a brand-new sports car, then her set [

14



includes all new sports vehicles.

In addition, a customer should specify a limit on the price that she is willing to
pay, which may depend on specific items in /. For instance, Katie may be willing to
pay $25,000 for a red Mustang, but only $24,000 for a black Mustang, and even less
for a Corvette. Formally, a price limit is a real-valued function defined on the set I,
whose values are nonnegative; for each item i € I, it defines a certain limit, Price(i).
If a customer is buying an item, then Price(7) is the maximal acceptable price. For a
seller, on the other hand, it is the minimal acceptable price.

Formally, a buy or sell order must include two elements (see Figure 2.1a):
e a set of items I C M, and

e a price function Price(i): I — RT,

where R is the set of nonnegative real-valued prices.

We say that a buy order matches a sell order if the buyer’s constraints are
consistent with the seller’s constraints, thus allowing a mutually acceptable trade
(see Figure 2.1b). For instance, if Katie is willing to pay $20,000 for a red Corvette,
and Laura is ready to sell a red Corvette for $19,000, then their orders match.

Formally, let (I, Price,) be a buy order and (I, Prices) be a sell order. Then,
these orders match if some item ¢ satisfies both buyer and seller, at a mutually ac-

ceptable price:

there exists i € I, N I such that Price,(i) > Prices(i).

2.3 Quality Function

Both buyers and sellers may have preferences among acceptable trades, which depend

on a specific item 7 and its price p. For instance, Katie may prefer a red Mustang for

15
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Figure 2.1: An example of a buy order (a) and a match between a buy and sell
order (b). The horizontal plane represents the market set M, and the vertical axis
is price R*. The buyer is interested in a certain set I, of cars, with different price
limits; in particular, she would buy a red Mustang for $20,000. Her order matches
the sell order shown on the right.

$25,000 to a black Corvette for $20,000.

We define these preferences as a real-valued function Qual(i, p), which assigns
a numeric quality to each pair. The larger values correspond to “better” items; that
is, if Qual(i1,p1) > Qual(iz, p2), then a customer would rather pay p; for i; than p,

for i5. For example, Katie’s quality function would satisfy the following inequality:

Qual(red-Mustang, $25,000) > Qual(black-Chevrolet, $20,000).

Each customer may use her own quality function; furthermore, she may specify
different functions for different orders. Note that we define quality as a totally ordered
function, which is a simplification. In real life, customers sometimes reason in terms of
partially ordered functions. For instance, Katie may believe that a $25,000 Mustang

is better than a $20,000 Corvette, but she may be undecided between a $25,000
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Mustang and an $18,000 Corvette.
Also note that buyers prefer lower prices, whereas sellers try to get as much
money as possible, which means that all quality functions must be monotonic on

price.

e Buy monotonicity: If Qual, is a quality function for a buy order, and p; < po,

then, for every item i, Qual,(i,p1) > Qual,(i, pa).

e Sell monotonicity: If Qual, is a quality function for a sell order, and p; < po,

then, for every item i, Qual,(i,p1) < Qual,(7, o).

2.4 Order Size

If a user wants to buy or sell several identical items, she may include their number in
the order specification; for example, Katie can place an order to buy two sports cars,
and Laura can announce a sale of one thousand Corvettes.

We assume that the order size is a natural number, that is, the market partic-
ipants buy and sell whole items. This assumption is somewhat restrictive, since it
enforces discretization of continuous commodities, such as copper or orange juice.

The user may specify not only the overall order size, but also the minimal
acceptable size. For instance, suppose that Amanda is a wholesale agent for Chevrolet,
and she needs to sell one thousand cars. Furthermore, she has no time for individual
sales, and works with dealerships that are buying at least ten cars at once. Then, she
may specify that the overall size of her sell order is one thousand, and the minimal
acceptable size is ten.

To summarize, an order may include five elements:
e Item set,

e Price function, Price: I — R™"
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e Quality function, Qual: I x R = R
e Order size, Maz
e Minimal acceptable size, Min

The item set, price limit, and size specification form hard constraints, which determine
whether a buy and sell order match each other. To define the matching conditions,
we denote the item set of a buy order by I, its price function by Pricey, and its size
parameters by Maz, and Min,. Similarly, we denote the parameters of a sell order by
I, Prices, Maz,, and Mins,. The two orders match if they satisfy the following two

conditions:
e For some item ¢ € I, N I, Pricey(i) > Prices(i)
o Miny, < Mazx, and Min, < Max,

The quality function is a soft constraint, which does not affect the matching condi-

tions; it defines a user’s preference among available matches.

2.5 Fills and Order Execution

When a buy order matches a sell order, the corresponding parties may complete a
trade, which involves delivery of an appropriate item or multiple items to a buyer,
for an appropriate price. We use the term fill to refer to the traded items and their
price.

For example, suppose that Katie has placed an order for two sports cars, and
Laura is selling three red Mustangs. If the prices of these orders match, Katie may
purchase two red Mustangs from Laura; in this case, we say that two red Mustangs
are a fill for her order. Formally, a fill consists of three parts: a specific item i, its

price p, and the number of purchased items, denoted size.
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Suppose that (I, Pricey, Maz,, Min,) is a buy order, and (I, Prices, Maz,, Min)
is a matching sell order. A wvalid fill (4,p, size) for these orders must satisfy the

following three conditions:

e 1€ ,NI
o Prices(i) < p < Pricey(i)
e max(Miny, Ming) < size < min(Mazy,, Maz,)

Note that a fill is fully specified, that is, it consists of a specific item, price, and
quantity. Unlike an order, it cannot include a set of possible items or a range of
different sizes. Furthermore, all items in a fill have the same price; for instance, a fill
(red-Mustang, $20,000, 2) means that Katie purchased two red Mustangs at $20,000
each. If she had bought these cars for different prices, we would represent them as
two different fills for the same order.

If both buyer and seller specify a set of items, we may have freedom to select
one of several possible items: the resulting fill can contain any item ¢ € I, N I;. For
example, suppose that Katie wants to buy a sports car, and Laura has placed an order
to sell Mustangs, Corvettes, and Vipers. Then, the resulting fill can contain any of
these models. Similarly, we may have some freedom in selecting the price and size of

the fill. The heuristics for making these choices depend on a specific implementation.

e Choice of an item: If I, N I, includes several items, the choice of an item
may be random. Alternatively, we may choose an item to maximize either the
buyer’s preference function or the seller’s preferences. A more complex heuristic
may search for an item that maximizes the overall satisfaction of the buyer and

seller.

e Price choice: The default strategy is to split the price difference between the

buyer and seller, which means that p = Priceb(i);Prices(i)' Another standard
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Sell order:
Buy order:| | Sell order: Buy order:| | Sell order: Buy order:| | Sell order: Buy order:| | 4 cars,
3cars 3cars 2 cars 3cars 2cars 1car 3cars at least 2 cars

removed removed removed reduced reduced removed removed removed
Sl order: Buy order: (the reduced size
1car 1car issmaller than

the minimal size)

Figure 2.2: Examples of order execution.

option is to favor either the buyer or seller; that is, we may always use p =

Prices(1) or, alternatively, we may always use p = Price,(i).

e Size choice: We assume that both buyers and sellers are interested in trading
at the maximal size, or as close to the maximal size as possible. Thus, the fill
has the largest possible size, that is, size = min(Maz,, Maz,). This default is

the same as in stock and futures trading.

After a buyer or seller has gotten a fill, she may keep the initial order, reduce its
size, or remove the order; the default option is size reduction. For example, if Laura
ordered a sale of three cars and has gotten a two-car fill, then the size of her order
becomes one.

If the reduced size is zero, we remove the order from the market. If the size
remains positive but drops below the minimal acceptable size Min, the order is also
removed. For example, if Amanda indicated that her minimal sale is ten cars, and
her order size has dropped to five cars, then this order is cancelled.

The process of generating a fill and then reducing the buy and sell orders is
called an erecution of orders. We illustrate different scenarios of order execution in

Figure 2.2.
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2.6 Market Attributes

The set M of all possible items may be very large, which means that we cannot
explicitly represent all items. For example, we probably cannot make a catalog of all
feasible cars, since it would include a separate entry for each possible combination of
models, colors, features, and other attributes that describe a specific vehicle.

To avoid this problem, we define a set M by a list of attributes and possible
values of each attribute. As a simplified example, we may define a used car by four
attributes: Model, Color, Year, and Mileage. Then, a user describes a specific car by
substituting values for these attributes; for example, a seller may offer a red Mustang,
made in 1998, with 30,000 miles.

Formally, every attribute is a set of values; for instance, the Model set may
include all car models, Color may include all visible wavelengths, Year may include
the integer values from 1896 to 2001, and Mileage may include real values from 0
to 500,000. The market set M is a Cartesian product of these attribute sets; in this
example, M = Model x Color x Year x Mileage. If the market includes n attributes,
then each item is an n-tuple; in the car example, it is a quadruple that specifies the
model, color, year, and mileage.

The Cartesian-product representation is a simplification, based on the assump-
tion that all items in the market have the same attributes. Some markets do not
satisfy this assumption; for example, if we trade chariots and Star Wars land speed-
ers on the same market, we may need two different sets of attributes. We further

limit the model by assuming that every attribute set has one of three types:

e A set of explicitly listed values, such as car models
e An interval of integer numbers, such as year

e An interval of real values, such as mileage
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Chapter 3

Matcher Engine

We have built a prototype system for a special case of the automated exchange prob-
lem. We describe the semantics of orders in the implemented exchange, and then

explain its functionality and overall architecture.

3.1 Order Representation

We first describe the representation of item sets and prices in the implemented system,
and discuss the related limitations. The representation is less general than the formal
model in Chapter 2. In particular, it limits possible item sets and does not allow the

use of price and quality functions.

3.1.1 Sell Items

A sell order has to include a specific item, rather than a set of acceptable items. For
example, Laura can order the sale of a red Mustang made in 1998, which has 10,000
miles; however, she cannot offer a set of various Mustangs made between 1990 and
2000. If she is selling multiple different cars, she needs to place multiple orders.
This limitation is based on the assumption that sellers usually offer specific
items; however, some real-world markets do not satisfy this assumption. In particular,
it creates problems for trading of services, such as package delivery or carpet cleaning.
For instance, a maid service may offer to clean any carpets, rather than a specific

carpet in a specific building.

22



To describe an item, the seller has to provide a value for each attribute; for
example, Laura may define the model as Mustang, the color as red, and so on. If the
market includes n attributes, then the definition of a sell item is a sequence of n values,
(11,19, -..,1n), where 4 is the value of the first attribute, iy is for the second attribute,

and so on. For example, Laura would define her car as (Mustang, red, 1998, 10,000).

3.1.2 Buy Item Sets

A buyer may specify a set I of multiple items, but possible sets are limited by the
representation. A buyer has to give a set of acceptable values for each attribute,
which is called an attribute set. Thus, if the market includes n attributes, the buy-
order description contains n attribute sets, and the set I is a Cartesian product of
these attribute sets. For example, Katie may indicate that she wants a Mustang or
Corvette, the acceptable colors are red, silver, and black, the car should be made in
1998 or later, and it should have no more than 30,000 miles.

To give a formal definition, suppose that the set of all possible values for the
first attribute is M, the set of all values for the second attribute is M, and so on,
which means that the market set of all possible items is M = M; x My x ... x M,.
The buyer has to specify a set I; of values for the first attribute, where Iy C M, a
set, of values for the second attribute, Iy C M,, and so on. The resulting item set [

is the Cartesian product of the specified sets:

I=1 x1I, x...x1I,.

For instance, Katie has specified the following item set in the automobile example:

I = {Mustang, Corvette} x {red, silver,black} x {1998,1999, ...} x [0..30,000].
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Note that an item set in the implemented matcher must be a Cartesian product of
attribute sets. For example, Katie cannot describe an item set that includes red

Mustangs and black Corvettes, but no black Mustangs.

3.1.3 Attribute Sets

A buyer may use specific values or ranges; for example, she may specify a desired
year as 2001 or as a range from 1998 to 2001. Note that ranges work only for numeric
attributes, such as year and mileage.

The specification of a market may include certain standard sets of values, such
as all sports cars or all American cars, and the buyer may use them in her orders.
For example, she may place an order for any American car.

Moreover, the buyer may use unions and intersections in her specification of
attribute sets. For instance, suppose that Katie is interested in Mustangs, Corvettes,
and European sports cars; suppose further that we have defined a standard set that
includes all European cars, and another standard set that comprises all sports cars.

Then, Katie can represent the desired set of models as follows:

{Mustang, Corvette} U (European-cars N Sports-cars).

Formally, an attribute set may be:

e A specific value, such as Mustang or 2001

A range of values, such as 1998-2001

A standard set of values, such as all European cars

An intersection of several attribute sets

A union of several sets
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3.1.4 Price and Size

A buyer or seller must specify a numeric price p for her order, rather than a price
function. The price of a sell order represents the minimal acceptable price for an
offered item; for example, Laura may offer a red Mustang for $20,000.

The price of a buy order is the maximal acceptable price for every item in the
order. For instance, suppose that Katie wants to buy a Mustang or Corvette, and
the price of her order is $20,000; then, she is willing to pay that price for either car.
On the other hand, if Katie’s price limit depends on the model, she has to place a
separate order for each car.

The size specification is the same as in the general model, as described in Sec-
tion 2.4; that is, an order may include a total size Mazx and a minimal acceptable
size Min. For example, Laura may want to sell four red Mustangs, and refuse to sell
less than two at once; in this case, Laura’s Max size is four and her Min size is two.

Note that, if an order includes multiple items, then the specified price is for each
item. For instance, if Laura is selling four cars at $20,000, then the price of each car
is $20,000, and the total price of all four cars is $80,000.

Also note that, if a buyer specifies a set of items, then the order size determines
the total number of items that she is willing to purchase. For example, if Katie is
looking for Mustangs and Corvettes, and her order size is two, then she will buy at

most two cars; she would not buy two Mustangs and two Corvettes.

3.2 Basic Functionality

We describe the basic operations of the implemented system, which include processing
of new orders, search for matches, and generation of fills, as well as modification of

previously placed orders.
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3.2.1 Matches and Fills

The search for matching orders is based on the definition in Section 2.4; that is, two
orders match if the system can choose an item, price, and size that satisfy both of
them.

We now define a match for the limited representation of the implemented sys-
tem. Let (I1, Iy, ..., I, py, Mazy, Miny) be a buy order, where I, I, ..., I, are at-
tribute sets, and the last three parameters specify price and size constraints, and
let (71,12, .. ., in, Ps, Mazs, Min,) be a sell order, where i1, i, ..., i, describe a specific

item. Then, these two orders match if they satisfy the following conditions:

e For every k € [1..n], we have iy € I}

® Dp Z Ds
o Miny, < Max, and Min, < Max,

When two orders match, the system may generate a fill, using the item from the
sell order. Since the sell item is fully specified, it uniquely defines the fill item.
The size of the resulting fill is the maximal size that matches both orders, which is
min(Mazs, Maz,). The default price of the fill is 7%, but this default can be changed
in favor of buyers or sellers.

The implemented system includes an indexing structure for sell orders, which
allows a fast retrieval of all sells that match a given buy order. On the other hand,
the system does not index buy orders, and it cannot efficiently retrieve all buys for a
given sell. This asymmetry does not prevent efficient matching, since the implemented

“one-way” search finds matches for sell orders.
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Figure 3.1: The architecture of the trading system.

3.2.2 Architecture

The system consists of a central matcher and multiple interfaces, which run on sepa-
rate machines and communicate with the matcher over a network (see Figure 3.1).

The users enter their orders through the interface machines, which send the
orders to the matcher engine. The central engine serves as a trading pit, similar to
a trading floor of the stock exchange; it finds matches among the received orders,
generates fills, and sends them to the corresponding interface machines.

The implemented architecture is based on an asynchronous messaging protocol;
the matcher receives orders over the network and sends resulting fills. It supports
not only “order” and “fill” messages, but also several other message types, such as
cancellation and modification of orders; we will discuss some of them in Sections 3.2.3
and 3.4.

In Figure 3.2(a), we illustrate the main cycle of the matcher engine, which
alternates between parsing of incoming messages and search for matches. When
the matcher parses messages with new orders, it performs a preliminary search for
matches and adds the orders to the indexing structure (see Figure 3.2b). We refer to

an order that is currently in the system as a pending order.
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Figure 3.2: Main operations of the matcher engine: top-level loop (a), processing an

incoming order (b), and search for sell orders that match a given buy order (c)
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When the system receives a new buy order, it immediately searches for matches,
which may result in finding a fill before processing the next message. If there are no
matches, the system adds the order to the list of buy orders. Similarly, if the system
fills only a portion of a large buy order, it stores the remaining part.

When the system gets a new sell order, it adds the order to the indexing struc-
ture without searching for matches, since the engine has no efficient mechanism for
identifying relevant buy orders. The system will find a fill later, when processing a
matching buy order.

For example, if Laura places a sell order for one Mustang, the system adds
her order to the indexing structure. If Katie later places a buy order for two sports
cars, the system immediately looks for matches among pending sells. It finds Laura’s
order, generates the corresponding fill, and informs Katie and Laura that they have
exchanged a Mustang. Since Laura was selling only one car, the system removes her
order from the indexing structure. On the other hand, Katie needs one more car;
thus, the system reduces the size of her order and adds it to the list of buy orders.

After processing the messages, the system matches all pending buy orders, which
include not only the new arrivals, but also the old unfilled orders. For each buy order,
it searches for matching sell orders, as shown in Figure 3.2(c). When the system finds
a match, it generates a fill and sends a notification to the buyer and seller interfaces.

The matcher keeps track of the “age” of each pending order, and uses it to avoid
repetitive search for matches among the same sell orders. If it has already searched
for matches for some buy order and has not found any, then the matching process

will involve search only among newly arrived sell orders.
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3.2.3 Order Modification

The traders can cancel or modify their old orders. For example, if Katie has ordered
two sports cars and has not gotten a fill, she may decide to cancel her order. When
the matcher gets a cancellation message, it immediately deletes the order from the
indexing structure.

Alternatively, Katie can modify her order, for example, change her price or
reduce the order size. The system treats a modification message as a cancellation of
an old order and immediate placement of a new one. For sell orders, it means that
the modified order replaces the old one in the indexing structure. If a user modifies
a buy order, the system immediately searches for matches.

The engine includes several optimization heuristics that prevent unneeded match-
ing upon modification. For example, if Katie reduces the price of a buy order or
increases the minimal acceptable size, the system will not perform a search, since
these modifications cannot lead to new matches.

A user may indicate a cancellation time for each order, and then the system
will automatically remove the order upon reaching the specified time. For instance,
Katie may indicate that her order should remain in the system for two days. If Katie
later changes her mind, she may manually cancel her order before the specified time
or, alternatively, change the cancellation time. The system allows specifying any
cancellation time, with one-second precision, and maintains a priority queue of all

times.

3.2.4 Fairness Heuristics

If the system identifies multiple matches between buy and sell orders, it may need to
choose among them before generating fills. For example, if a buy order matches two

different sell orders, the system has to select between the two, and the users usually
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expect a “fair’choice. We have used help from Michael Foster, a professional trader
working for PowerLoom Corporation, to identify standard fairness expectations.

First, if the system has found several matches for the same trade, it should
prefer the best-price match. For instance, if Katie is looking for a sports car and
the matcher has found two different orders to sell sports cars, then it has to match
Katie’s buy order with the cheaper sell.

Second, if several users compete for the same trade, the system should give
priority to the user who offers a better price. For instance, suppose that Laura and
Michelle are both selling a Corvette, and Laura’s price is better. Then, the system
should fill Laura’s order before Michelle’s order. Although traders often view this
requirement as different from the first one, both impose the same constraints on the
matching process.

Third, if several traders offer the same price, the system should execute their
orders on a first-come first-serve basis. Thus, if Laura and Michelle offer Mustangs for
the same price, and Laura has made her offer before Michelle, then Laura’s sell order
should get priority. Professional traders consider this “chronological” fairness almost
as important as price fairness. When a seller makes a low-price offer in a volatile
market, she assumes a risk and expects to be rewarded with priority over other sellers

who follow her lead.

3.3 Complex Orders

The described semantics allows efficient matching, but limits the system’s flexibility.
We now present an extension to the basic semantics, supported in the implemented

matcher.
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3.3.1 Complex Sells

We have described simple sell orders, which include specific items rather than item
sets. The implemented system also enables the seller to enter a list of several alter-
native items. For instance, Laura may indicate that she wants to sell a car, which
may be either a red Mustang or black Corvette; furthermore, she may give different
price limits for different cars.

A sell order with several items is called a complexr order; formally, it is a set
of several items and their prices, along with the order’s size constraints. We denote
the item set as {(i1,p1), (i2,p2),..., (ik, pk)}, where i’s are items and p’s are their
prices. The user has to describe each item as an n-tuple of its attribute values, and

the overall encoding of a complex order is as follows:

Item 1: (i1y,i1a,...,01,), I

Item 2: (21,12, ...,12,), P2

Item k: (iky,iko, ..., 0k,), Pk

Size: Maz, Min
For example, Laura may place the following complex sell order:

Item 1: (Mustang, red, 2001, 0), $20,000
Item 2: (Corvette, black, 2001, 0), $15,000

Size: 4, 2

This order means that Laura is selling four cars, each sale must include at least two
cars, and every sold car must be either a red Mustang or a black Corvette. For
example, Laura may sell four Mustangs and no Corvettes; alternatively, she may sell

one Mustang and three Corvettes. She wants at least $20,000 for each Mustang and
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Figure 3.3: An example of a complex sell order (a) and complex buy order (b). A
complex sell includes a list of items (i1, i2, and i3) and their prices (p1, p2, and p3),
whereas a complex buy is a union of several Cartesian-product sets, along with a price
limit for each set. Complex buy and sell orders are a special case of general orders,
illustrated in Figure 2.1 (page 16).
at least $15,000 for each Corvette; for instance, if selling one Mustang and three
Corvettes, she must get at least $20,000 4+ $15,000 - 3 = $65,000.

A complex sell order is a special case of a general order, defined in Section 2.2.
Recall that the general model allows any item set I and price function Price: I — R,
as illustrated in Figure 2.1 (page 16). For a complex order, the item set consists of

the specified items, and the price function is defined by the listed prices, as shown in

Figure 3.3(a):

I=1{i1,i2,13,..., 1k}

Price(i1) = pt

Price(ik) = pk
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3.3.2 Complex Buys

The system includes a similar mechanism for complex buy orders. Recall that a buyer
normally defines an item set as a Cartesian product (Section 3.1.2). When placing a
complex order, a buyer specifies the item set as a union of several Cartesian products,
I =T1Ul2U...UIm, and she may specify different prices for different Cartesian
products. Formally, a complex buy order with m Cartesian products includes the

following elements:

Subset 1: 11y x I'1o X ... x I1,, pt

Subset 2: 12, x 12 x ...x 12,, p2

Subset m: Imq; X I'mg X ... X Im,, pm

Size: Mazx, Min
For example, Katie may place the following buy order:

Subset 1: {Mustang, Camry} x {red, silver}x{1998,1999,...}x[0..30,000], $25,000
Subset 2: Sports-Car x {silver} x {1999, 2000, ...} x [0..10,000], $30,000

Size: 3, 1

In this case, she is buying three cars, where each car must belong to one of the subsets.
Thus, she may buy a Mustang or Camry, as long as it is red or silver, made in 1998 or
later, and has at most 30,000 miles (Subset 1). Alternatively, she will accept a sports
car, if it is silver, made in 1999 or later, and has at most 10,000 miles (Subset 2).
The specified subsets do not have to be disjoint; for instance, a brand-new silver
Mustang belongs to both parts of Katie’s order. In this case, the system takes the
largest of the specified prices; thus, it assumes that Katie is willing to pay $30,000

for a silver Mustang.
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We may describe a complex buy order as follows, in terms of the general model

of Section 2.2:

I=11UI2U...Ulm
Vi1 € 11, Price(i1) = p1

V i2 € 12, Price(i2) = p2

V im € I'm, Price(im) = pm

We illustrate this definition in Figure 3.3(b). Observe that, if some item belongs to
multiple sets, the definition is ambiguous, as it assigns several prices to this item. In
this case, we define the price as the maximum of subset prices; we show this situation

for an item 71 in Figure 3.3(b).

3.3.3 Matching

If buyers and sellers enter complex orders, the system has to identify matches among

them and generate appropriate fills. Consider the following two complex orders:

Sell order: ({(i1s,p1s), (125, 02s), - - -, (iks, pks) }, Maxs, Min)

Buy order: ({(I1y,p1), (I2%,p%), - - -, (Imy, pmy)}, Mazy, Miny)
These orders match if some element of the sell matches some element of the buy:

e There exist j € [1..k] and [ € [1..m],

such that ¢j, € I}, and pl, > pj;,
o Miny < Mazx, and Min, < Max,

If the two orders satisfy this condition, the matcher generates a fill with item ij,, price

’%pl”, and size min(Mazy, Mazy).
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Buy order: Sell order: Sl order: Sl order:
All Ford models Mustang Corvette Viper
2 cars 4 cars 4 cars 4 cars
Fill:
Mustang
2cars
removed reduced reduced reduced
Sl order: Al order: | order:
Mustang Corvette Viper
2 cars 2 cars 2cars

Complex order

Figure 3.4: Example of a trade between a complex sell order and a simple buy. After
generating a fill, the system reduces the size of all elements of the complex sell.
The system stores each element of a complex order as a separate simple order in

the indexing structure. Thus, it represents a k-element sell order as k£ simple orders:

(115, p1s, Mazs, Miny), (i2s, p2s, Mazs, Miny), . . ., (iks, pks, Mazs, Ming).

Similarly, it represents an m-element complex buy as m buy orders:

(Ilb,plb, Maa:b, Minb), (I2b,p2b, MG,.’II(,, Minb), ceey (Imb,pmb, MG,.’I,'(,, Mznb)

The matching process does not distinguish between simple orders and elements of a
complex order; that is, it treats each element as a separate simple order.

When the system generates a fill for an element of a complex order, it reduces
the size of all its elements; this synchronized reduction is the only difference between
processing parts of a complex order and individual simple orders. In Figure 3.4, we
illustrate a trade that involves a complex sell. In this example, Laura wants to sell

four cars, where each car may be a Mustang, Corvette, or Viper. The system stores
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her order as three simple sell orders of the same size, connected by a complex-order
link. Katie is looking for two cars produced by Ford, and she uses a predefined set
“all Ford models” in her order. Since Mustang is a Ford, the system finds a match
between the buy order and the “Mustang” element of Laura’s sell. It generates the

corresponding fill, and then reduces the size of all elements of the sell.

3.4 Confirmations

When placing an order, a trader may provide not only a description used in automated
matching, but also additional information for human traders. For instance, Laura may
post a picture of a specific car; as another example, when a company sells stocks or
bonds, it has to publish a prospectus.

Since the automated matcher cannot process this information, it has to provide
a mechanism that allows a trader to preview matching orders and choose among
them. The implemented mechanism is based on confirmations, which enable a trader
to browse through potential matches and find the most desirable choice.

When a user places an order, she may indicate the need for confirmation. In
this case, when the system finds matches for the order, it sends their descriptions to
the corresponding user interface. If the user confirms some of the matches, the engine
executes the corresponding trades. For example, Katie may place an order to buy a
brand-new silver Corvette, and require confirmation for her order. Then, she will be
able to browse through matching Corvettes and hand-pick the best match.

If two matching orders do not need confirmation, the system executes the trade
without prior notification to the user. If one of the orders needs confirmation, the
system notifies the corresponding user and executes the trade upon getting a confir-
mation (see Figure 3.5a). If both orders require confirmation, the system notifies both

sides and completes the trade only after getting both confirmations (see Figure 3.5b).
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Figure 3.5: Trading with confirmations. If one of the matching orders needs confirma-
tion, the system notifies the corresponding trader and waits for her approval (a). If
both orders need confirmation, the system delays the trade until it receives approval
from both parties (b). If the system finds an alternative match before getting an
approval, it executes the corresponding trade and later rejects the confirmation (c).
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For example, if Katie requests confirmation for her Corvette order, and Laura sells a
Corvette that also needs confirmation, then the system will generate a fill only after
getting confirmations from both Katie and Laura.

A trader may confirm several different matches for her order, which allows the
system to execute any of them. For instance, Katie may confirm several different
Corvettes, and then she will get one of them.

When the system asks users for confirmation, it does not remove either order
from the matching process, and may find other matches for them. Thus, if a user
thinks too long, she may be too late in sending a confirmation and miss a trade. In
this case, the matcher notifies the user that the confirmed trade is no longer available
(see Figure 3.5¢). For instance, when Katie confirms a purchase of a specific Corvette,
she may find out that someone else has bought it before her. As another example,
if Laura is slow in sending her confirmation, she may learn that Katie has already
purchased another car and cancelled her order.

The engine always tries to fill orders without confirmation before sending re-
quests for confirmation. This heuristic improves the speed of the trading process and

reduces the number of “late” confirmations.
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Chapter 4

Performance

We describe experiments with artificial market data, and then show the performance
for two real-world markets. The experiments have involved a single computer, without

network communications, and thus the results do not account for network delays.

4.1 Artificial Markets

We give results of artificial tests with five control variables. We measure the matcher’s
efficiency for different numbers of market attributes and values per attribute, as well

as the dependency of the performance on the number of orders.

4.1.1 Control Variables

We have implemented an experimental setup that allows control over five features of
artificial markets: number of attributes in an item description, number of alternative
values for an attribute, number of pending orders, rate of incoming orders, and average
number of matches per order.

Attributes: The number of attributes determines the complexity of traded items.
For example, the description of a public stock includes only one attribute, the stock
symbol, whereas the example car market has four attributes: model, color, year, and
mileage. The description of a used vehicle in a real market includes more attributes,
such as transmission type, options package, and number of previous owners. We have

considered artificial markets with one, three, ten, thirty, and one hundred attributes.
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Values: The implemented system supports integer and real attributes, as well as
explicitly listed values (see Section 2.6). We have considered only integer attributes
in the artificial markets, and we have controlled the number of values per attribute.
We have varied this number from two to 1,024; that is, the smallest market has two
values for each attribute, and the largest market includes 1,024 values per attribute.

Pending orders: We have varied the number of pending orders from one to
218 that is, 262,144, and measured the dependency of the system’s efficiency on the
number of orders. We have randomly generated these orders, which include an equal
number of buys and sells.

New orders: Recall that the system’s top-level loop involves processing new
orders and matching old orders (see Figure 3.2a). The number of new orders in the
beginning of the loop is proportional to the rate of placing new orders, and we have
directly controlled the number of new orders, which includes an equal number of buys
and sells. We have experimented with 256, 8,192, and 262,144 new orders, which are
powers of two, 28, 213 and 2'8.

Matching density: We define the matching density as the mean percentage of
sell orders that match a given buy order; in other words, it is the probability that a
randomly selected buy order matches a randomly chosen sell. For example, if each
buy order matches 1% of sell orders, then the matching density is 0.01. We have

experimented with five density values: 0.0001, 0.001, 0.01, 0.1, and 1.

4.1.2 Measured Variables

We have considered five different settings for the number of attributes, six settings for
the number of values per attribute, nineteen settings for the number of pending orders,
three settings for the number of new orders, and five settings for the matching density.

For each combination of settings, we have run two independent experiments; for each
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experiment, we have measured the time of processing new orders and matching old
orders, average time between placing an order and getting a response, and maximal
throughput of the system.

Processing time: The first measurement is the time of processing new orders,
which is the first part of the system’s main loop (see Figure 3.2a). This time is
proportional to the number of new orders; it also depends on several other factors,
including the number of attributes and pending orders.

Matching time: The second measurement is the time of matching old orders,
which is the second part of the main loop (Figure 3.2a). The total of processing and
matching time is the overall length of the main loop, which determines the system’s
speed.

Response time: We have recorded the average time between placing an order and
getting the system’s response. If the system immediately finds a match for the new
order, then its response is the corresponding fill; else, it responds with a confirmation
message. The response time has varied from a few seconds to more than twenty
minutes. This delayed response is often unacceptable in financial markets, but it
would not cause problems in consumer markets, such as used cars.

Mazimal throughput: Finally, we have determined the maximal acceptable fre-
quency of placing new orders; if the system gets more orders per second, then the
number of unprocessed orders in the input queue keeps growing and eventually leads

to an overflow.

4.1.3 Summary Graphs

We give a detailed summary of experiments in Appendices A and B. The results
in Appendix A (page 80) are for markets with one, three, and ten attributes. The

graphs in Appendix B (page 124) are for more complex markets, which include thirty
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and one hundred attributes. We show the four measurements for each of the settings,
including the minimal, maximal, and mean values of these measurements.

In Figures 4.1-4.5, we show the dependency of the system’s performance on each
of the control variables. We use three performance measurements: (1) the time of
one pass through the system’s main loop, which includes processing of new orders and
matching of old orders; (2) the mean time between placing a new order and getting
a response; and (3) the system’s throughput.

For each control variable, we consider three settings of the other four variables.
For each of the three settings, we give two graphs with the dependency of the perfor-
mance on the selected variable; the first graph is in logarithmic scale, and the second
is in linear scale.

In Figure 4.1, we show how the performance changes with the number of pending
orders. The main-loop and response times are linear in the number of orders. The
throughput in small markets grows with the number of orders; it reaches an upper
limit when the market grows to about two hundred orders, and slightly decreases with
further increase in the number of orders.

In Figure 4.2, we show that both main-loop time and response time linearly in-
crease with the number of new orders. We do not show the dependency of throughput
on the number of new orders, because the rate of incoming orders directly depends
on the throughput, and we cannot treat this rate as an independent control variable.

In Figure 4.3, we give the dependency of the performance on the number of
attributes. The main-loop and response times are super-linear in the number of at-
tributes, whereas throughput is in inverse proportion to the same super-linear func-
tion.

In Figure 4.4, we show that the main-loop and response times grow sub-linearly

with the number of values per attribute, and throughput slightly decreases with an
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increase in the number of values. Finally, the graph in Figure 4.5 shows a linear

relationship between the main-loop time and matching density.
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(c) Maximal number of new orders per second.

Figure 4.1: Dependency of the system’s performance on the number of pending orders.
We consider three different settings of control variables, which correspond to dotted,
dashed, and solid lines. The dotted lines show performance for markets with one
attribute, two values per attribute, 256 new orders in the input queue, and matching
density of 0.0001. The dashed lines are for markets with three attributes, sixteen
values per attribute, 8,192 new orders, and matching density of 0.001. Finally, the
solid lines are for ten attributes, 1,024 values per attribute, 8,192 orders in the input
queue, and matching density of 0.01. The graphs on the left are in logarithmic scale,
whereas the graphs on the right are in linear scale.
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Figure 4.2: Dependency of the performance on the number of new orders in the input
queue. Note that we do not plot this dependency for the system’s throughput, because
the rate of incoming orders directly depends on the throughput, and thus we cannot
view the number of new orders as an independent control variable. The dotted lines
give the results for one attribute, two values per attribute, 256 pending orders, and
matching density of 0.0001. The dashed lines are for three attributes, sixteen values
per attribute, 8,192 pending orders, and matching density of 0.001. Finally, the solid
lines are for ten attributes, 1,024 values per attribute, 262,144 pending orders, and
matching density of 0.01. The graphs on the left are in logarithmic scale, whereas
the graphs on the right are in linear scale.
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Figure 4.3: Dependency of the performance on the number of market attributes. The
dotted lines show experiments with two values per attribute, 256 pending orders,
256 new orders, and matching density of 0.0001. The dashed lines are for sixteen
values per attribute, 8,192 pending orders, 8,192 new orders, and matching density
of 0.001. The solid lines are for 1,024 values per attribute, 262,144 pending orders,
8,192 new orders, and matching density of 0.01. The graphs on the left are in loga-
rithmic scale, whereas the graphs on the right are in linear scale. Note that we do not
plot the solid lines for 30 and 100 attributes, since we have not been able to run the
corresponding experiments, which would require more than 1 Gbyte main memory.



x 10

[EnY
o
o
N

[

time (msec)
|
[
[
|
|
|
|
|
|
|
|
|
|
|
time (msec)

[EnY

(=]
(=]
o

10° 107 0 200 400 600 800 1000
values per attribute values per attribute

(a) Time of processing new orders and matching old orders.

X lO6

=
o
(&l
=

I3 =S, T N

time (msec)
|
|
|
|
|
|
time (msec)

o

=

o
o
o

10° 10 0O 200 400 600 800 1000
values per attribute values per attribute

(b) Average time between order placement and response.

orders per sec
=
o
N
orders per sec
7/
7/
I
I
I
I
I
|

=

o
(<]
o

=
o

10> 0 200 400 600 800 1000
values per attribute values per attribute

(c) Maximal number of new orders per second.

Figure 4.4: Dependency of the performance on the number of values per attribute.
The dotted lines show experiments with one attribute, 256 pending orders, 256 new
orders, and matching density of 0.0001. The dashed lines are for three attributes,
8,192 pending orders, 8,192 new orders, and matching density of 0.001. The solid
lines are for ten attributes, 262,144 pending orders, 8,192 new orders, and matching

density of 0.01. The graphs on the left are in logarithmic scale, whereas the graphs
on the right are in linear scale.
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Figure 4.5: Dependency of the performance on the matching density. The dotted
lines show experiments with one attribute, two values per attribute, 256 pending
orders, and 256 new orders. The dashed lines are for three attributes, sixteen values
per attribute, 8,192 pending orders, and 8,192 new orders. The solid lines are for ten
attributes, 1,024 values per attribute, 262,144 pending orders, and 8,192 new orders.
The graphs on the left are in logarithmic scale, whereas the graphs on the right are
in linear scale.
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4.2 Real Markets

The results of experiments with real-world markets have been similar to those of
artificial tests. First, we have applied the system to a used-car market with eight
attributes, which is an extended version of the example market. Second, we have

experimented with a financial market, which involves trading of commercial paper.

4.2.1 TUsed Cars

We have tested the system on a car market with eight attributes: transmission,
number of doors, interior color, exterior color, year, model, options, and mileage
(see Figures 4.6 and 4.7). The market includes all models offered by AutoNation
(www.autonation.com); it comprises seven interior colors, fifty-two exterior colors,
257 models, and 1,024 option packages. We have also defined three standard sets of
interior colors, three sets of exterior colors, and forty-three sets of models.

We have run experiments with up to 260,000 pending orders; the control vari-
ables have included the number of pending orders, the number of new orders in the
input queue, and the matching density. We have considered nineteen different set-
tings for the number of pending orders, two settings for the number of new orders,
and five settings for matching density. For each combination of settings, we have
run two experiments, and we show the results in Figures 4.8-4.12. Observe that the
system readily scales to markets with 260,000 orders, and that the performance in
the car market is very similar to that in artificial markets.

In Figures 4.13-4.15, we show the dependency of the system’s performance on
each of the control variables. The main-loop and response times are linear in the
number of orders, whereas throughput first increases and then slightly decreases with
the number of orders. The system parses 500 to 1,000 orders per second, and generates

250 to 500 trades per second.
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Attribute 1: Transmission (2 values)
Manual, automatic.

Attribute 2: Number of doors (3 values)
Two, three, four.

Attribute 3: Interior color (7 values)
Black, gray, white, tan, brown, blue, red.

Standard sets
Dark (2 values)
Medium (3 values)
Light (2 values)

Attribute 4: Exterior color (52 values)
Amazon Green Dark Green Satin
Arizona Beige Dark Toreador Red
Atlantic Blue Deep Emerald Green
Autumn Orange Deep Jewel Green
Autumn Red Deep Wedgewood Blue
Black Ebony
Bright Amber Electric Green
Bright Atlantic Blue Estate Green
Bright Red Fort Knox Gold
Bright Silver Graphite Blue
Cabernet Red Harvest Gold
Charcoal Green Infra Red
Chesapeake Blue Island Blue
Chestnut Ivory Parchment
Chrome Yellow Jewel Green
Cloud White Laser Red Tinted
Crystal White Light Blue
Dark Blue Light Brass

Standard sets

Dark (18 values)
Medium (20 values)
Light (14 values)

Light Gray

Light Parchment Gold
Light Sapphire Blue
Malibu Blue

Mandarin Gold

Medium Brown

Medium Charcoal Blue
Medium Charcoal Green
Medium Gray

Medium Royal Blue
Medium Steel Blue
Medium Titanium
Medium Wedgewood Blue
Midnight Gray
Performance Red

Silver

Figure 4.6: Attributes 1-4 of the used-car market (also see Figure 4.7).
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Attribute 5: Year (106 values)
Integer values from 1896 to 2001.

Attribute 6: Model (257 values)
All models offered by AutoNation (www.autonation.com).

Standard sets
American (138 values)  Chevrolet (26 values) Mazda (11 values)

European (48 values) Chrysler (9 values) Mercedes Benz (9 values)
Japanese (71 values) Dodge (12 values) Mercury (5 values)
Ford (19 values) Mitsubishi (6 values)
Sedans (139 values) GMC (10 values) Nissan (8 values)
Sports Cars (28 values) Honda (8 values) Oldsmobile (5 values)
SUVs (57 values) Hyundai (6 values) Plymouth (5 values)
Trucks (23 values) Infiniti (4 values) Pontiac (8 values)
Vans (10 values) Isuzu (4 values) Porsche (2 values)
Jaguar (4 values) Saturn (6 values)
Acura (6 values) Jeep (4 values) Subaru (3 values)
Audi (6 values) Kia (5 values) Suzuki (4 values)
BMW (7 values) Land Rover (2 values) Toyota (16 values)
Buick (5 values) Lexus (8 values) Volkswagen (7 values)
Cadillac (5 values) Lincoln (5 values) Volvo (7 values)

Attribute 7: Option package (1,024 values)
Standard combinations of options offered by AutoNation.

Attribute 8: Mileage (500,001 values)
Integer values from 0 to 500,000.

Figure 4.7: Attributes 5-8 of the used-car market (also see Figure 4.6).
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Figure 4.8: Performance in the car market, for matching density of 0.0001. We show
the dependency of the system’s performance on the number of pending orders, for
256 new orders (solid lines) and 8,192 new orders (dotted lines). Both horizontal and
vertical scales are logarithmic, and the vertical bars mark the minimal and maximal
values of the time measurements.
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Figure 4.9: Performance in the car market, for matching density of 0.001. We show
results for 256 new orders (solid lines) and 8,192 new orders (dotted lines), with the
minimal and maximal values (vertical bars).
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Figure 4.10: Performance in the car market, for matching density of 0.01. We show
results for 256 new orders (solid lines) and 8,192 new orders (dotted lines), with the
minimal and maximal values (vertical bars).
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Figure 4.11: Performance in the car market, for matching density of 0.1. We show
results for 256 new orders (solid lines) and 8,192 new orders (dotted lines), with the
minimal and maximal values (vertical bars).
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Figure 4.12: Performance in the car market, for matching density of 1. We show
results for 256 new orders (solid lines) and 8,192 new orders (dotted lines), with the
minimal and maximal values (vertical bars).
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(c) Maximal number of new orders per second.

Figure 4.13: Dependency of the performance on the number of pending orders, for the
car market. The dotted lines show experiments with 256 new orders and matching
density of 0.0001. The dashed lines are for 8,192 new orders and matching density
of 0.001. The solid lines are for 8,192 new orders and matching density of 0.01. The
graphs on the left are in logarithmic scale, whereas the graphs on the right are in
linear scale.
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Figure 4.14: Dependency of the performance on the number of new orders, for the car
market. The dotted lines show experiments with 256 pending orders and matching
density of 0.0001. The dashed lines are for 8,192 pending orders and matching density
of 0.001. The solid lines are for 262,144 pending orders and matching density of 0.01.
The graphs on the left are in logarithmic scale, whereas the graphs on the right are
in linear scale. We do not plot this dependency for the throughput, because the rate
of incoming orders directly depends on the throughput, and thus we cannot view the
number of new orders as an independent control variable.
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Figure 4.15: Dependency of the performance on the matching density, for the car
market. The dotted lines show experiments with 256 pending orders and 256 new
orders. The dashed lines are for 8,192 pending orders and 8,192 new orders. The
solid lines are for 262,144 pending orders and 8,192 new orders. The graphs on the
left are in logarithmic scale, whereas the graphs on the right are in linear scale.
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4.2.2 Commercial Paper

When a large company needs a short-term loan, it may issue commercial paper, which
is a fixed-interest “promissory note,” similar to a bond. The company sells commercial
paper to investors, for a certain period of time, and later returns their money along
with interest; the payment day is called the maturity date. The main difference from
bonds is duration of the loan: commercial paper is issued for a short term, from one
week to nine months.

Investors usually describe the income from commercial paper in terms of the
annual interest rate. For example, suppose that a company has issued a seven-day
commercial paper, in the amount of $10,000,000, with annual interest 10%. Then,
the daily interest is 10%/365 = 0.0274%, and the total amount of interest is about
$10,000,000 - 0.0274% - 7 = $19,180. The exact amount is slightly higher, $19,197,
because of compound interest.

The appropriate interest depends on the current rate of US Treasury bonds, and
on the chance of a company’s bankruptcy before the maturity date. The estimated
chance of bankruptcy depends on the company’s reputation and the paper’s time
until maturity. The investors expect less reliable companies to pay higher interest;
furthermore, they expect that, the more time to maturity, the higher the interest. For
example, a risky software provider should pay higher interest than a reliable utilities
company, and a nine-month paper should carry higher interest than a one-month
paper of the same company.

After investors buy a commercial paper, they may resell it on a secondary mar-
ket, before the maturity date. For example, suppose that Katie has bought a three-
month paper in May, and then decided that she needs money in June. Then, she may
resell the paper and keep part of the interest; if the rate has not changed, she will get

one-month interest. On the other hand, if the interest rate of the company’s paper
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Attribute 1: Maturity date (2550 values)
All dates from 1/1/2001 to 12/31/2010, excluding weekends and holidays.

Attribute 2: Company (5000 values)

5000 US companies.

Standard sets
Automobiles (100 values)

Banks (250 values)

Capital Goods (500 values)
Consumer Durables (200 values)
Diversified Financials (200 values)
Energy (250 values)

Food and Tobacco (350 values)
Health Care (150 values)

Hotels and Restaurants (100 values)

Household Products (150 values)
Insurance (150 values)

Materials (450 values)

Media (100 values)
Pharmaceuticals (250 values)
Retail (400 values)

Software (300 values)

Technology Equipment (550 values)

Telecommunications (350 values)
Transportation (200 values)

S&P AAA rating (50 values)

S&P AA+ rating (535 values)
S&P AA rating (535 values)
S&P AA— rating (535 values)
S&P A+ rating (758 values)
S&P A rating (759 values)
S&P A— rating (758 values)
S&P BBB+ rating (356 values)
S&P BBB rating (357 values)
S&P BBB— rating (357 values)

Moody Aaa rating (100 values)
Moody Aa+ rating (441 values)
Moody Aa rating (441 values)
Moody Aa— rating (441 values)
Moody A+ rating (653 values)
Moody A rating (654 values)
Moody A— rating (653 values)
Moody Baa+ rating (539 values)
Moody Baa rating (539 values)
Moody Baa— rating (539 values)

Figure 4.16: Attributes of the commercial-paper market.

has changed, the sale price may be different. If Katie is lucky, she may get more than

one-month interest, but in an unfavorable case she may get smaller interest or even

lose part of her investment.

The description of commercial paper includes two attributes: the issuing com-
pany and maturity date. Furthermore, investors usually group companies by their

credit rating and industry group. In Figure 4.16, we show the attributes, values, and

standard sets of the commercial-paper market.

We have run experiments with up to 260,000 pending orders, using the same

control variables and their settings as in the car-market tests, with the addition of
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a third setting for the number of new orders. We show the results in Figures 4.17—
4.21, and plot the dependency of the system’s performance on the control variables
in Figures 4.22-4.24. The experiments have confirmed that the system scales to large
markets, and that its performance in real-life markets is close to the results of the
artificial tests; it parses 1,500 to 4,500 orders per second, and generates 700 to 2,000

trades per second.
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Figure 4.17: Performance in the commercial-paper market, for matching density
of 0.0001. We show the dependency of the system’s performance on the number
of pending orders, for 256 new orders (solid lines), 8,192 orders (dotted lines), and
262,144 orders (dashed lines). Both horizontal and vertical scales are logarithmic, and
the vertical bars mark the minimal and maximal values of the time measurements.
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Figure 4.18: Performance in the commercial-paper market, for matching density
of 0.001. We show results for 256 new orders (solid lines), 8,192 orders (dotted lines),
and 262,144 orders (dashed lines), with the minimal and maximal values (vertical
bars).
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Figure 4.19: Performance in the commercial-paper market, for matching density
of 0.01. We show results for 256 new orders (solid lines), 8,192 orders (dotted lines),
and 262,144 orders (dashed lines), with the minimal and maximal values (vertical
bars).
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Figure 4.20: Performance in the commercial-paper market, for matching density
of 0.1. We show results for 256 new orders (solid lines), 8,192 orders (dotted lines),
and 262,144 orders (dashed lines), with the minimal and maximal values (vertical
bars).
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Figure 4.21: Performance in the commercial-paper market, for matching density of 1.
We show results for 256 new orders (solid lines), 8,192 orders (dotted lines), and
262,144 orders (dashed lines), with the minimal and maximal values (vertical bars).
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Figure 4.22: Dependency of the performance on the number of pending orders, for the
commercial-paper market. The dotted lines show experiments with 256 new orders
and matching density of 0.0001. The dashed lines are for 8,192 new orders and
matching density of 0.001. The solid lines are for 8,192 new orders and matching

density of 0.01. The graphs on the left are in logarithmic scale, whereas the graphs
on the right are in linear scale.
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Figure 4.23: Dependency of the performance on the number of new orders, for the
commercial-paper market. The dotted lines show experiments with 256 pending or-
ders and matching density of 0.0001. The dashed lines are for 8,192 pending orders
and matching density of 0.001. The solid lines are for 262,144 pending orders and
matching density of 0.01. The graphs on the left are in logarithmic scale, whereas
the graphs on the right are in linear scale. We do not plot this dependency for the
throughput, because the rate of incoming orders directly depends on the throughput,
and thus we cannot view the number of new orders as an independent control variable.
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Figure 4.24: Dependency of the performance on the matching density, for the
commercial-paper market. The dotted lines show experiments with 256 pending or-
ders and 256 new orders. The dashed lines are for 8,192 pending orders and 8,192
new orders. The solid lines are for 262,144 pending orders and 8,192 new orders. The

graphs on the left are in logarithmic scale, whereas the graphs on the right are in
linear scale.
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Chapter 5

Concluding Remarks

The modern economy includes a variety of marketplaces with millions of participants,
and the Internet has led to the development of new efficient markets. Computer sci-
entists have studied algorithms for various auctions and standardized exchanges, but
they have done little work on exchange markets for complex nonstandard commodi-
ties.

We have proposed a formal model for trading complex securities, and built an
exchange that allows complex constraints in descriptions of buy orders. It supports
markets with up to 260,000 orders and parses hundreds of new orders per second.
We have included several heuristics for maximizing traders’ satisfaction, and allowed
traders to participate in choosing matches for their orders.

On the negative side, the developed system does not allow complex constraints in
sell orders, does not guarantee optimal trades, and does not support soft constraints or
preference functions. We plan to address these problems as part of the future research.
We are also working on a distributed version of the exchange, which will improve
scalability; it will include a central matcher and multiple preprocessing modules,

whose roles are similar to that of stock brokers on Wall Street.
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Appendix A

Experiments with a Small Number of Attributes

We give results for markets with a small number of attributes; specifically, we ex-
periment with one, three, and ten attributes. We have explained the setup for these

experiments in Section 4.1.

A.1 Processing Time

We show the mean time of processing new orders in the first half of the system’s top-
level loop (see Figure 3.2a), for various settings of control variables. We also mark

the minimal and maximal values of the time measurements.
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(b) Market with three attributes.
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(c) Market with ten attributes.

Figure A.1: Time of processing the new orders, for matching density of 0.0001. We
consider markets with two values per attribute (left), four values per attribute (mid-
dle), and eight values per attribute (right). We show the dependency of the pro-
cessing time on the number of pending orders, for 256 new orders (solid lines), 8,192
orders (dotted lines), and 262,144 orders (dashed lines). Both horizontal and vertical
scales are logarithmic, and the vertical bars mark the minimal and maximal values
of the time measurements.
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Figure A.2: Time of processing the new orders, for matching density of 0.0001. We
consider markets with 16 values per attribute (left), 128 values per attribute (middle),
and 1,024 values per attribute (right); the legend is the same as in Figure A.1.
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Figure A.3: Time of processing the new orders, for matching density of 0.001. We
consider markets with two values per attribute (left), four values per attribute (mid-
dle), and eight values per attribute (right); the legend is the same as in Figure A.1.
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Figure A.4: Time of processing the new orders, for matching density of 0.001. We
consider markets with 16 values per attribute (left), 128 values per attribute (middle),
and 1,024 values per attribute (right); the legend is the same as in Figure A.1.
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Figure A.5: Time of processing the new orders, for matching density of 0.01. We con-
sider markets with two values per attribute (left), four values per attribute (middle),
and eight values per attribute (right); the legend is the same as in Figure A.1.

85



16 values per attribute

=
o
(2]

time (msec)

[EnY
o
(=]

10° 10°

number of pending orders

(a) Market with one attribute.

16 values per attribute

Ay
o
o

|

|

|

l

\

A

time (msec)

o

=
o

10° 10°

number of pending orders

(b) Market with three attributes.

16 values per attribute

Ay
o
o
'

time (msec)

o

=
o

0 105

number of pending orders

[y
o

(¢) Market with ten attributes.

10

10°

128 values per attribute

0 5

10 10

10

10°

1

10

10°

number of pending orders

128 values per attribute

0° 10°

number of pending orders

128 values per attribute

0 5

10 10

number of pending orders

10

10°

1024 values per attribute

0 5

10 10

10

10°

1

10

10°

number of pending orders

1024 values per attribute

0° 10°

number of pending orders

1024 values per attribute

0 5

10 10

number of pending orders

Figure A.6: Time of processing the new orders, for matching density of 0.01. We
consider markets with 16 values per attribute (left), 128 values per attribute (middle),
and 1,024 values per attribute (right); the legend is the same as in Figure A.1.
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Figure A.7: Time of processing the new orders, for matching density of 0.1. We con-
sider markets with two values per attribute (left), four values per attribute (middle),
and eight values per attribute (right); the legend is the same as in Figure A.1.
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Figure A.8: Time of processing the new orders, for matching density of 0.1. We
consider markets with 16 values per attribute (left), 128 values per attribute (middle),
and 1,024 values per attribute (right); the legend is the same as in Figure A.1.
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Figure A.9: Time of processing the new orders, for matching density of 1. We consider
markets with two values per attribute (left), four values per attribute (middle), and
eight values per attribute (right); the legend is the same as in Figure A.1.
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Figure A.10: Time of processing the new orders, for matching density of 1. We
consider markets with 16 values per attribute (left), 128 values per attribute (middle),
and 1,024 values per attribute (right); the legend is the same as in Figure A.1.
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A.2 Matching Time

We give the mean time of matching all pending buy orders, in the second half of the
system’s top-level loop (see Figure 3.2a), along with the minimal and maximal values

of the time measurements.
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Figure A.11: Time of matching the pending orders, for matching density of 0.0001.
We consider markets with two values per attribute (left), four values per at-
tribute (middle), and eight values per attribute (right). We show the dependency
of the matching time on the number of pending orders, for 256 new orders (solid
lines), 8,192 orders (dotted lines), and 262,144 orders (dashed lines). Both horizon-
tal and vertical scales are logarithmic, and the vertical bars mark the minimal and
maximal values of the time measurements.
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Figure A.12: Time of matching the pending orders, for matching density of 0.0001.
We consider markets with 16 values per attribute (left), 128 values per attribute (mid-
dle), and 1,024 values per attribute (right); the legend is the same as in Figure A.11.
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(¢) Market with ten attributes.

Figure A.13: Time of matching the pending orders, for matching density of 0.001. We
consider markets with two values per attribute (left), four values per attribute (mid-
dle), and eight values per attribute (right); the legend is the same as in Figure A.11.
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Figure A.14: Time of matching the pending orders, for matching density of 0.001. We
consider markets with 16 values per attribute (left), 128 values per attribute (middle),
and 1,024 values per attribute (right); the legend is the same as in Figure A.11.
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Figure A.15: Time of matching the pending orders, for matching density of 0.01. We
consider markets with two values per attribute (left), four values per attribute (mid-
dle), and eight values per attribute (right); the legend is the same as in Figure A.11.
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(b) Market with three attributes.
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(¢) Market with ten attributes.

Figure A.16: Time of matching the pending orders, for matching density of 0.01. We
consider markets with 16 values per attribute (left), 128 values per attribute (middle),
and 1,024 values per attribute (right); the legend is the same as in Figure A.11.
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Figure A.17: Time of matching the pending orders, for matching density of 0.1. We
consider markets with two values per attribute (left), four values per attribute (mid-
dle), and eight values per attribute (right); the legend is the same as in Figure A.11.
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(b) Market with three attributes.
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Figure A.18: Time of matching the pending orders, for matching density of 0.1. We
consider markets with 16 values per attribute (left), 128 values per attribute (middle),
and 1,024 values per attribute (right); the legend is the same as in Figure A.11.
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Figure A.19: Time of matching the pending orders, for matching density of 1. We con-
sider markets with two values per attribute (left), four values per attribute (middle),
and eight values per attribute (right); the legend is the same as in Figure A.11.
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(¢) Market with ten attributes.

Figure A.20: Time of matching the pending orders, for matching density of 1. We
consider markets with 16 values per attribute (left), 128 values per attribute (middle),
and 1,024 values per attribute (right); the legend is the same as in Figure A.11.

101



A.3 Response Time

We plot the average time between placing a new order and receiving a response from
the system. Recall that the response may not include a fill for the order; if the
matcher does not find an immediate fill, it responds with a confirmation of the new

order.
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(c) Market with ten attributes.

Figure A.21: Time between placing a new order and getting a response, for matching
density of 0.0001. We consider markets with two values per attribute (left), four
values per attribute (middle), and eight values per attribute (right). We show the
dependency of the response time on the number of pending orders, for 256 new or-
ders (solid lines), 8,192 orders (dotted lines), and 262,144 orders (dashed lines). Both
horizontal and vertical scales are logarithmic, and the vertical bars mark the minimal
and maximal values of the time measurements.
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Figure A.22: Time between placing a new order and getting a response, for matching
density of 0.0001. We consider markets with 16 values per attribute (left), 128 values

per attribute (middle), and 1,024 values per attribute (right); the legend is the same
as in Figure A.21.
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(¢) Market with ten attributes.

Figure A.23: Time between placing a new order and getting a response, for matching
density of 0.001. We consider markets with two values per attribute (left), four values

per attribute (middle), and eight values per attribute (right); the legend is the same
as in Figure A.21.
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(b) Market with three attributes.
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(¢) Market with ten attributes.

Figure A.24: Time between placing a new order and getting a response, for matching
density of 0.001. We consider markets with 16 values per attribute (left), 128 values

per attribute (middle), and 1,024 values per attribute (right); the legend is the same
as in Figure A.21.
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(¢) Market with ten attributes.

Figure A.25: Time between placing a new order and getting a response, for matching
density of 0.01. We consider markets with two values per attribute (left), four values
per attribute (middle), and eight values per attribute (right); the legend is the same
as in Figure A.21.
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Figure A.26: Time between placing a new order and getting a response, for matching
density of 0.01. We consider markets with 16 values per attribute (left), 128 values

per attribute (middle), and 1,024 values per attribute (right); the legend is the same
as in Figure A.21.
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(b) Market with three attributes.
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Figure A.27: Time between placing a new order and getting a response, for matching
density of 0.1. We consider markets with two values per attribute (left), four values
per attribute (middle), and eight values per attribute (right); the legend is the same
as in Figure A.21.
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Figure A.28: Time between placing a new order and getting a response, for matching
density of 0.1. We consider markets with 16 values per attribute (left), 128 values

per attribute (middle), and 1,024 values per attribute (right); the legend is the same
as in Figure A.21.
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Figure A.29: Time between placing a new order and getting a response, for matching
density of 1. We consider markets with two values per attribute (left), four values
per attribute (middle), and eight values per attribute (right); the legend is the same
as in Figure A.21.
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(a) Market with one attribute.
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(¢) Market with ten attributes.

Figure A.30: Time between placing a new order and getting a response, for matching
density of 1. We consider markets with 16 values per attribute (left), 128 values per
attribute (middle), and 1,024 values per attribute (right); the legend is the same as
in Figure A.21.
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A.4 Maximal Throughput

We show the limit on the number of new orders per second. If the matcher gets more

orders, it has to reject some of them, to prevent overflow of the message queue.
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(a) Market with one attribute.
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(¢) Market with ten attributes.

Figure A.31: Maximal number of orders per second, for matching density of 0.0001.
We consider markets with two values per attribute (left), four values per at-
tribute (middle), and eight values per attribute (right). We show the dependency
of the system’s throughput on the number of pending orders. Both horizontal and
vertical scales are logarithmic.
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(b) Market with three attributes.
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(¢) Market with ten attributes.

Figure A.32: Maximal number of orders per second, for matching density of 0.0001.
We consider markets with 16 values per attribute (left), 128 values per attribute (mid-
dle), and 1,024 values per attribute (right).
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(b) Market with three attributes.
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(¢) Market with ten attributes.

Figure A.33: Maximal number of orders per second, for matching density of 0.001. We
consider markets with two values per attribute (left), four values per attribute (mid-
dle), and eight values per attribute (right).
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(¢) Market with ten attributes.

Figure A.34: Maximal number of orders per second, for matching density of 0.001. We
consider markets with 16 values per attribute (left), 128 values per attribute (middle),
and 1,024 values per attribute (right).
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(a) Market with one attribute.
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(b) Market with three attributes.
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(¢) Market with ten attributes.

Figure A.35: Maximal number of orders per second, for matching density of 0.01. We
consider markets with two values per attribute (left), four values per attribute (mid-
dle), and eight values per attribute (right).
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(a) Market with one attribute.
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(b) Market with three attributes.
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(¢) Market with ten attributes.

Figure A.36: Maximal number of orders per second, for matching density of 0.01. We
consider markets with 16 values per attribute (left), 128 values per attribute (middle),
and 1,024 values per attribute (right).
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(¢) Market with ten attributes.

Figure A.37: Maximal number of orders per second, for matching density of 0.1. We
consider markets with two values per attribute (left), four values per attribute (mid-
dle), and eight values per attribute (right).
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(a) Market with one attribute.
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(b) Market with three attributes.
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(¢) Market with ten attributes.

Figure A.38: Maximal number of orders per second, for matching density of 0.1. We
consider markets with 16 values per attribute (left), 128 values per attribute (middle),
and 1,024 values per attribute (right).
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(¢) Market with ten attributes.

Figure A.39: Maximal number of orders per second, for matching density of 1. We
consider markets with two values per attribute (left), four values per attribute (mid-
dle), and eight values per attribute (right).
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(b) Market with three attributes.
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(¢) Market with ten attributes.

Figure A.40: Maximal number of orders per second, for matching density of 1. We
consider markets with 16 values per attribute (left), 128 values per attribute (middle),
and 1,024 values per attribute (right).
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Appendix B

Experiments with a Large Number of Attributes

We give results for markets with a large number of attributes; specifically, we experi-
ment with thirty and one hundred attributes. We have explained the setup for these

experiments in Section 4.1.

B.1 Processing Time

We show the mean time of processing new orders in the first half of the system’s top-
level loop (see Figure 3.2a), for various settings of control variables. We also mark

the minimal and maximal values of the time measurements.
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(a) Market with thirty attributes.
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(b) Market with one hundred attributes.

Figure B.1: Time of processing the new orders, for matching density of 0.0001. We
consider markets with two values per attribute (left), four values per attribute (mid-
dle), and eight values per attribute (right). We show the dependency of the processing
time on the number of pending orders, for 256 new orders (solid lines) and 8,192 new
orders (dotted lines). Both horizontal and vertical scales are logarithmic, and the
vertical bars mark the minimal and maximal values of the time measurements.
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(a) Market with thirty attributes.
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(b) Market with one hundred attributes.

Figure B.2: Time of processing the new orders, for matching density of 0.0001. We
consider markets with 16 values per attribute (left), 128 values per attribute (middle),
and 1,024 values per attribute (right); the legend is the same as in Figure B.1.
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(a) Market with thirty attributes.
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(b) Market with one hundred attributes.

Figure B.3: Time of processing the new orders, for matching density of 0.001. We
consider markets with two values per attribute (left), four values per attribute (mid-
dle), and eight values per attribute (right); the legend is the same as in Figure B.1.
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(a) Market with thirty attributes.
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(b) Market with one hundred attributes.

Figure B.4: Time of processing the new orders, for matching density of 0.001. We
consider markets with 16 values per attribute (left), 128 values per attribute (middle),
and 1,024 values per attribute (right); the legend is the same as in Figure B.1.
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(a) Market with thirty attributes.
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(b) Market with one hundred attributes.

Figure B.5: Time of processing the new orders, for matching density of 0.01. We con-
sider markets with two values per attribute (left), four values per attribute (middle),
and eight values per attribute (right); the legend is the same as in Figure B.1.
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(a) Market with thirty attributes.
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(b) Market with one hundred attributes.

Figure B.6: Time of processing the new orders, for matching density of 0.01. We
consider markets with 16 values per attribute (left), 128 values per attribute (middle),
and 1,024 values per attribute (right); the legend is the same as in Figure B.1.
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(a) Market with thirty attributes.
2 values per attribute 4 values per attribute 8 values per attribute
2 10° 10° 10°
3
(4]
=
10° R (U - 10°L -
10 10 10 10 10 10
number of pending orders number of pending orders number of pending orders

(b) Market with one hundred attributes.

Figure B.7: Time of processing the new orders, for matching density of 0.1. We con-
sider markets with two values per attribute (left), four values per attribute (middle),
and eight values per attribute (right); the legend is the same as in Figure B.1.
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(a) Market with thirty attributes.
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(b) Market with one hundred attributes.

Figure B.8: Time of processing the new orders, for matching density of 0.1. We
consider markets with 16 values per attribute (left), 128 values per attribute (middle),
and 1,024 values per attribute (right); the legend is the same as in Figure B.1.
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(a) Market with thirty attributes.
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(b) Market with one hundred attributes.

Figure B.9: Time of processing the new orders, for matching density of 1. We consider
markets with two values per attribute (left), four values per attribute (middle), and
eight values per attribute (right); the legend is the same as in Figure B.1.
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(b) Market with one hundred attributes.

Figure B.10: Time of processing the new orders, for matching density of 1. We
consider markets with 16 values per attribute (left), 128 values per attribute (middle),
and 1,024 values per attribute (right); the legend is the same as in Figure B.1.
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B.2 Matching Time

We give the mean time of matching all pending buy orders, in the second half of the
system’s top-level loop (see Figure 3.2a), along with the minimal and maximal values

of the time measurements.
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(b) Market with one hundred attributes.

Figure B.11: Time of matching the pending orders, for matching density of 0.0001.
We consider markets with two values per attribute (left), four values per at-
tribute (middle), and eight values per attribute (right). We show the dependency
of the matching time on the number of pending orders, for 256 new orders (solid
lines) and 8,192 new orders (dotted lines). Both horizontal and vertical scales are

logarithmic, and the vertical bars mark the minimal and maximal values of the time
measurements.
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(a) Market with thirty attributes.
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(b) Market with one hundred attributes.

Figure B.12: Time of matching the pending orders, for matching density of 0.0001.
We consider markets with 16 values per attribute (left), 128 values per attribute (mid-
dle), and 1,024 values per attribute (right); the legend is the same as in Figure B.11.
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(b) Market with one hundred attributes.

Figure B.13: Time of matching the pending orders, for matching density of 0.001. We
consider markets with two values per attribute (left), four values per attribute (mid-
dle), and eight values per attribute (right); the legend is the same as in Figure B.11.
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(a) Market with thirty attributes.
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(b) Market with one hundred attributes.

Figure B.14: Time of matching the pending orders, for matching density of 0.001. We
consider markets with 16 values per attribute (left), 128 values per attribute (middle),
and 1,024 values per attribute (right); the legend is the same as in Figure B.11.
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(a) Market with thirty attributes.
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(b) Market with one hundred attributes.

Figure B.15: Time of matching the pending orders, for matching density of 0.01. We
consider markets with two values per attribute (left), four values per attribute (mid-
dle), and eight values per attribute (right); the legend is the same as in Figure B.11.
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(a) Market with thirty attributes.
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(b) Market with one hundred attributes.

Figure B.16: Time of matching the pending orders, for matching density of 0.01. We
consider markets with 16 values per attribute (left), 128 values per attribute (middle),
and 1,024 values per attribute (right); the legend is the same as in Figure B.11.
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(a) Market with thirty attributes.
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(b) Market with one hundred attributes.

Figure B.17: Time of matching the pending orders, for matching density of 0.1. We
consider markets with two values per attribute (left), four values per attribute (mid-
dle), and eight values per attribute (right); the legend is the same as in Figure B.11.
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(a) Market with thirty attributes.
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(b) Market with one hundred attributes.

Figure B.18: Time of matching the pending orders, for matching density of 0.1. We
consider markets with 16 values per attribute (left), 128 values per attribute (middle),
and 1,024 values per attribute (right); the legend is the same as in Figure B.11.
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(b) Market with one hundred attributes.

Figure B.19: Time of matching the pending orders, for matching density of 1. We con-
sider markets with two values per attribute (left), four values per attribute (middle),
and eight values per attribute (right); the legend is the same as in Figure B.11.
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(a) Market with thirty attributes.
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(b) Market with one hundred attributes.

Figure B.20: Time of matching the pending orders, for matching density of 1. We
consider markets with 16 values per attribute (left), 128 values per attribute (middle),
and 1,024 values per attribute (right); the legend is the same as in Figure B.11.
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B.3 Response Time

We plot the average time between placing a new order and receiving a response from
the system. Recall that the response may not include a fill for the order; if the
matcher does not find an immediate fill, it responds with a confirmation of the new

order.
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(b) Market with one hundred attributes.

Figure B.21: Time between placing a new order and getting a response, for matching
density of 0.0001. We consider markets with two values per attribute (left), four
values per attribute (middle), and eight values per attribute (right). We show the
dependency of the response time on the number of pending orders, for 256 new or-
ders (solid lines) and 8,192 new orders (dotted lines). Both horizontal and vertical
scales are logarithmic, and the vertical bars mark the minimal and maximal values
of the time measurements.
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(b) Market with one hundred attributes.

Figure B.22: Time between placing a new order and getting a response, for matching
density of 0.0001. We consider markets with 16 values per attribute (left), 128 values

per attribute (middle), and 1,024 values per attribute (right); the legend is the same
as in Figure B.21.

148



2 values per attribute 4 values per attribute 8 values per attribute

210° 10° 10°
Q
£
10° J 105 Z 105 -
10 10 10 10 10 10
number of pending orders number of pending orders number of pending orders
(a) Market with thirty attributes.
2 values per attribute 4 values per attribute 8 values per attribute
)
210° 10° 10°
2 ,_,/—/ —ﬁf/\/ /
Q
£
10° J 105 Z 105 -
10 10 10 10 10 10
number of pending orders number of pending orders number of pending orders

(b) Market with one hundred attributes.

Figure B.23: Time between placing a new order and getting a response, for matching
density of 0.001. We consider markets with two values per attribute (left), four values

per attribute (middle), and eight values per attribute (right); the legend is the same
as in Figure B.21.
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(b) Market with one hundred attributes.

Figure B.24: Time between placing a new order and getting a response, for matching
density of 0.001. We consider markets with 16 values per attribute (left), 128 values

per attribute (middle), and 1,024 values per attribute (right); the legend is the same
as in Figure B.21.
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(b) Market with one hundred attributes.

Figure B.25: Time between placing a new order and getting a response, for matching
density of 0.01. We consider markets with two values per attribute (left), four values

per attribute (middle), and eight values per attribute (right); the legend is the same
as in Figure B.21.
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(a) Market with thirty attributes.
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(b) Market with one hundred attributes.

Figure B.26: Time between placing a new order and getting a response, for matching
density of 0.01. We consider markets with 16 values per attribute (left), 128 values

per attribute (middle), and 1,024 values per attribute (right); the legend is the same
as in Figure B.21.
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(b) Market with one hundred attributes.

Figure B.27: Time between placing a new order and getting a response, for matching
density of 0.1. We consider markets with two values per attribute (left), four values

per attribute (middle), and eight values per attribute (right); the legend is the same
as in Figure B.21.
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(a) Market with thirty attributes.
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(b) Market with one hundred attributes.

Figure B.28: Time between placing a new order and getting a response, for matching
density of 0.1. We consider markets with 16 values per attribute (left), 128 values

per attribute (middle), and 1,024 values per attribute (right); the legend is the same
as in Figure B.21.
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(b) Market with one hundred attributes.

Figure B.29: Time between placing a new order and getting a response, for matching
density of 1. We consider markets with two values per attribute (left), four values

per attribute (middle), and eight values per attribute (right); the legend is the same
as in Figure B.21
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(b) Market with one hundred attributes.

Figure B.30: Time between placing a new order and getting a response, for matching
density of 1. We consider markets with 16 values per attribute (left), 128 values per

attribute (middle), and 1,024 values per attribute (right); the legend is the same as
in Figure B.21.
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B.4 Maximal Throughput

We show the limit on the number of new orders per second. If the matcher gets more

orders, it has to reject some of them, to prevent overflow of the message queue.
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(b) Market with one hundred attributes.

Figure B.31: Maximal number of orders per second, for matching density of 0.0001.
We consider markets with two values per attribute (left), four values per at-
tribute (middle), and eight values per attribute (right). We show the dependency
of the maximal number of orders per second on the number of pending orders. Both
horizontal and vertical scales are logarithmic.
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(a) Market with thirty attributes.
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(b) Market with one hundred attributes.
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Figure B.32: Maximal number of orders per second, for matching density of 0.0001.
We consider markets with 16 values per attribute (left), 128 values per attribute (mid-
dle), and 1,024 values per attribute (right).
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(a) Market with thirty attributes.
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(b) Market with one hundred attributes.
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Figure B.33: Maximal number of orders per second, for matching density of 0.001. We
consider markets with two values per attribute (left), four values per attribute (mid-
dle), and eight values per attribute (right).
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(a) Market with thirty attributes.
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(b) Market with one hundred attributes.
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Figure B.34: Maximal number of orders per second, for matching density of 0.001. We
consider markets with 16 values per attribute (left), 128 values per attribute (middle),
and 1,024 values per attribute (right).
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(a) Market with thirty attributes.

10
(8]
3
5 10°
o
&
3
5 10°
10° 10°
number of pending orders
. 2 values per attribute
10
(&)
[}
@ 2
@ 10
o
o
3
S 10°
10° 10°

number of pending orders

(b) Market with one hundred attributes.
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Figure B.35: Maximal number of orders per second, for matching density of 0.01. We
consider markets with two values per attribute (left), four values per attribute (mid-
dle), and eight values per attribute (right).
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(a) Market with thirty attributes.
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(b) Market with one hundred attributes.
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Figure B.36: Maximal number of orders per second, for matching density of 0.01. We
consider markets with 16 values per attribute (left), 128 values per attribute (middle),
and 1,024 values per attribute (right).
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(a) Market with thirty attributes.
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(b) Market with one hundred attributes.
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Figure B.37: Maximal number of orders per second, for matching density of 0.1. We
consider markets with two values per attribute (left), four values per attribute (mid-
dle), and eight values per attribute (right).
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(a) Market with thirty attributes.
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(b) Market with one hundred attributes.
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Figure B.38: Maximal number of orders per second, for matching density of 0.1. We
consider markets with 16 values per attribute (left), 128 values per attribute (middle),
and 1,024 values per attribute (right).
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(a) Market with thirty attributes.
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(b) Market with one hundred attributes.

Figure B.39: Maximal number of orders per second, for matching density of 1. We
consider markets with two values per attribute (left), four values per attribute (mid-
dle), and eight values per attribute (right).
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(a) Market with thirty attributes.
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(b) Market with one hundred attributes.
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Figure B.40: Maximal number of orders per second, for matching density of 1. We
consider markets with 16 values per attribute (left), 128 values per attribute (middle),
and 1,024 values per attribute (right).
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