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Chapter 1

Introduction

The growth of the Internet has led to the development of electronic markets, and

economists expect that it will play an increasingly important rule in both wholesale

and retail transactions [Feldman, 2000]; the Internet marketplaces include bulletin

boards, auctions, and exchanges [Klein, 1997; Turban, 1997; Wrigley, 1997; Bakos,

2001].

Electronic bulletin boards vary from sale catalogs to newsgroup postings, which

help buyers and sellers to find each other; however, they often require a customer

to invest significant time into searching among multiple ads, and many buyers prefer

on-line auctions, such as eBay (www.ebay.com). Auctions have their own problems,

including significant computational costs and asymmetry between buyers and sellers.

Furthermore, most auctions do not allow fast sales; for instance, if a seller posts an

item on eBay, she can sell it in three or more days, but not sooner.

An exchange-based market ensures symmetry between buyers and sellers, and

supports fast-paced trading. Examples of liquid markets include the traditional stock

and commodity exchanges, as well as currency and bond markets. The main limitation

of these exchanges is rigid standardization of tradable items. For instance, the New

York Stock Exchange allows trading of about 3,100 securities, and a buyer or seller

has to indicate a specific item, such as ibm stock.

For most goods, the description of a desirable trade is more complex. For

instance, a car buyer needs to specify a model, options, color, and other features. She

may also need to specify her preferences; for example, she may indicate that a white

car is acceptable but less desirable than a red car. An exchange for nonstandard

commodities should satisfy the following requirements:

• Allow complex constraints in specifications of buy and sell orders.

• Support fast-paced trading for markets with millions of orders.
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• Include optimization techniques that maximize traders’ satisfaction.

A recent project at the University of South Florida has been aimed at developing

an electronic exchange for complex goods. Johnson [2001] has defined related trading

semantics and developed an exchange system that supports a market with 300,000

orders. Hu [2002] has extended order semantics and developed indexing structures

for fast identification of matches between buy and sell orders.

We have continued this work, and developed algorithms for fast identification

of most preferable matches, which maximize the satisfaction of market participants.

We have tested these algorithms using a suite of artificial markets, as well as a car

market and a commercial-paper market. The tests have shown that the new system is

as fast as the earlier versions, which used suboptimal-matching algorithms; it scales

to markets with 300,000 orders and usually processes 100 to 1,000 new orders per

second.
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Chapter 2

Previous work

Economists and computer scientists have long realized the importance of auctions and

exchanges, and studied a variety of trading models. The related computer science re-

search has been focused on effective auction systems [Bichler, 2000b; Ronen, 2001],

optimal matching in various auctions [Ygge and Akkermans, 1997; Monderer and

Tennenholtz, 2000], bidding strategies [Tesauro and Das, 2001], and general-purpose

systems for auctions and exchanges. It has led to successful Internet auctions, such

as eBay (www.ebay.com) and Yahoo Auctions (auctions.yahoo.com). Recently, re-

searchers have developed several combinatorial auctions, which allow buying and

selling sets of commodities rather than individual items.

Combinatorial auctions. A traditional combinatorial auction allows bidding on a

set of fully specified items. For example, Katie may bid on a red Mustang and black

Corvette for a total price of $40,000; in this case, she will get both cars together

or nothing. An advanced auction may allow disjunctions; for instance, Katie may

specify that she wants either a red Mustang and black Corvette or, alternatively,

two silver bmws. On the other hand, standard combinatorial auctions do not allow

incompletely specified items, such as a Mustang of any color.

Rothkopf et al. [1998] gave a detailed analysis of combinatorial auctions and

described semantics of combinatorial bids that allowed fast matching. Nisan dis-

cussed alternative semantics for combinatorial bids, formalized the problem of search-

ing for optimal and near-optimal matches, and proposed a linear-programming solu-

tion [Nisan, 2000; Lavi and Nisan, 2000]. Zurel and Nisan [2001] developed a system

for finding near-optimal matches, based on a combination of approximate linear pro-

gramming with optimization heuristics. It could quickly clear an auction with 1,000

items and 10,000 bids, and its average approximation error was less than 1%.
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Sandholm [1999] developed several efficient algorithms for one-seller combinato-

rial auctions, and showed that they scaled to a market with about 1,000 bids. Sand-

holm and his colleagues later improved the original algorithms and implemented a sys-

tem that processed several thousand bids [Sandholm, 2000a; Sandholm and Suri, 2000;

Sandholm et al., 2001a]. They developed a mechanism for determining a trader’s pref-

erences and converting them into a compact representation of combinatorial bids [Co-

nen and Sandholm, 2001]. They also described several special cases of bid processing

that allowed polynomial solutions, proved the NP-completeness of more general cases,

and tested various heuristics for NP-complete cases [Sandholm et al., 2001b].

Sakurai et al. [2000] developed an algorithm for finding near-optimal matches

in combinatorial auctions based on a synergy of iterative-deepening A* with limited-

discrepancy search. It processed auctoins with up to 5,000 bids, and its approximation

error was under 5%. Hoos and Boutilier [2000] applied stochastic local search to

finding near-optimal matches; their system could clear auctions with 500 items and

10,000 bids. Akcoglu et al. [2000] represented a combinatorial auction as a graph; its

nodes were bids, and its edges were conflicts between bids. This representation led to

the development of a linear-time approximation algorithm for clearing the auction.

Fujishima proposed an approach for enhancing standard auction rules, ana-

lyzed trade-offs between optimality and running time, and presented two related

algorithms [Fujishima et al., 1999a; Fujishima et al., 1999b]. The first algorithm en-

sured optimal matching and scaled to about 1,000 bids, whereas the second found

near-optimal matches for a market with 10,000 bids.

Leyton-Brown et al. [2000] investigated combinatorial auctions that allowed bid-

ders to specify a number of items; for instance, a buyer could bid on ten identical cars.

They described a branch-and-bound search algorithm for finding optimal matches,

which could quickly process markets with fifteen item types and 2,500 bids.

Lehmann et al. [1999] investigated heuristic algorithms for combinatorial auc-

tions and identified cases that allowed truthful bidding, which meant that users did

not benefit from providing incorrect information about their intended maximal bids.

Gonen and Lehmann [2000, 2001] studied branch-and-bound heuristics for process-

ing combinatorial bids and integrated them with linear programming. Mu’alem and

Nisan [2002] also investigated truthful-bidding combinatorial auctions, described con-
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ditions for ensuring truthful bidding, and proposed approximation algorithms for

clearing the auctions that satisfied these conditions.

Yokoo et al. [2001a, 2001b] considered a problem of false-name bids, that is,

manipulation of prices by creating fictitious users and submitting bids without in-

tention to buy; they proposed auction rules that discouraged such bids. Suzuki and

Yokoo [2002] studied another security problem in combinatorial auctions; they inves-

tigated techniques for clearing an auction without revealing the content of bids to

the auctioneer. They described a distributed dynamic-programming algorithm that

found matches without revealing the bids to the auction participants or to any central

“auctioneer” system; however, its complexity was exponential in the number of items.

Andersson et al. [2000] compared the main techniques for combinatorial auc-

tions and proposed an integer-programming representation that allowed richer bid

semantics. Wurman et al. [2001] analyzed a variety of previously developed auctions

and identified the main components of an automated auction, including bid seman-

tics, clearing mechanisms, rules for placing and canceling bids, and policies for hiding

information from other users. They proposed a standardized format for describing

the components of each specific auction.

Researchers have also investigated the application of auction algorithms to non-

financial settings, such as scheduling problems [Wellman et al., 2001], management

of resources in wide-area networks [Chen et al., 2001], and co-ordination of services

performed by different companies [Preist et al., 2001].

The reader may find a detailed survey of combinatorial auctions in the review

article by de Vries and Vohra [2001]. Although the developed systems can efficiently

process several thousand bids, their running time is super-linear in the number of

bids, and they do not scale to larger markets.

Advanced semantics. Several researchers have studied techniques for specifying

the dependency of an item price on the number and quality of items. They have

also investigated techniques for processing “flexible” bids, specified by hard and soft

constraints.

Che [1993] analyzed auctions that allowed negotiating not only the price but

also the quality of a commodity. A bid in these auctions was a function that specified

5



a desired trade-off between price and quality. Cripps and Ireland [1994] considered a

similar setting and suggested several strategies for bidding on price and quality.

Sandholm and Suri [2001b] described a mechanism for imposing nonprice con-

straints in combinatorial auctions, such as budget constraints and limit on the number

of winners; they showed that these constraints sometimes increased the auction com-

plexity, and sometimes reduced the complexity. They have also studied combinatorial

auctions that allowed bulk discounts [Sandholm and Suri, 2001a]; that is, they en-

abled a bidder to specify a dependency between item price and order size. Lehmann

et al. [2001] also considered the dependency of price on order size, showed that the

corresponding problem of finding best matches was np-hard, and developed a greedy

approximation algorithm.

Bichler discussed a market that would allow negotiations on any attributes of

a commodity [Bichler et al., 1999; Bichler, 2000a]; for instance, a car buyer could

set a fixed price and negotiate the options and service plan. He analyzed several

alternative versions of this model, and concluded that it would greatly increase the

economic utility of auctions; however, he pointed out the difficulty of implementing

it and did not propose any computational solution.

Jones extended the semantics of combinatorial auctions and allowed buyers to

use complex constraints [Jones, 2000; Jones and Koehler, 2000]; for instance, a car

buyer could bid on a vehicle that was less than three-years old, or on the fastest

available vehicle. They suggested an advanced semantics for these constraints, which

allowed compact description of complex bids; however, they did not allow complex

constraints in sell orders. They implemented an algorithm that found near-optimal

matches, but it scaled only to one thousand bids.

Boutilier and Hoos [2001] developed a general propositional language for speci-

fying bids in combinatorial auctions, which allowed a compact representation of most

bids. Conen and Sandholm [2002] described a system that helped the participants of

combinatorial auctions to specify their bids; it elicited the preferences of an auction

participant and used them to define appropriate bids.

This initial work leaves many open problems, which include the use of complex

constraints with general preference functions, symmetric treatment of buy and sell

orders, and design of efficient matching algorithms for advanced semantics.
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Exchanges. Economists have extensively studied traditional stock exchanges; for

example, see the historical review by Bernstein [1993] and the textbook by Hull [1999].

They have focused on exchange dynamics and related mathematics, rather than on

efficient algorithms [Cason and Friedman, 1996; Cason and Friedman, 1999; Bapna

et al., 2000]. Several computer scientists have also studied trading dynamics and

proposed algorithms for finding the market equilibrium [Reiter and Simon, 1992;

Cheng and Wellman, 1998; Andersson and Ygge, 1998].

Successful on-line exchanges include electronic communication networks, such

as redi (www.redibook.com) and Island (www.island.com). The directors of large

stock and commodity exchanges are also considering electronic means of trading. For

example, the Chicago Mercantile Exchange has deployed the Globex system, which

supports trading around the clock.

Some auction researchers have investigated the related theoretical issues; they

have viewed exchanges as a variety of auction markets, called continuous double auc-

tions. In particular, Wurman et al. [1998a] proposed a theory of exchange markets and

implemented a general-purpose system for auctions and exchanges, which processed

traditional fully specified orders. Sandholm and Suri [2000] developed an exchange

for combinatorial orders, but it could not support markets with more than 1,000 or-

ders. Blum et al. [2002] explored methods for improving liquidity of standardized

exchanges. Kalagnanam et al. [2000] investigated techniques for placing orders with

complex constraints and identifying matches between them. They developed network-

flow algorithms for finding optimal matches in simple cases, and showed that more

complex cases were np-complete. The complexity of their algorithms was super-linear

in the number of orders, and the resulting system did not scale beyond a few thousand

orders.

The related open problems include development of scalable systems for large

combinatorial markets, as well as support for flexible orders with complex constraints.

General-purpose systems. Computer scientists have developed several systems

for auctions and exchanges, which vary from specialized markets to general-purpose

tools for building new markets. The reader may find a survey of most systems in the

review articles by Guttman et al. [1998a, 1998b] and Maes et al. [1999].
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Kumar and Feldman [1998] built an Internet-based system that supported sev-

eral standard auctions, including open-cry auctions, single-round sealed-bid auctions,

and multiple-round auctions. Chavez and his colleagues designed an on-line agent-

based auction; they built intelligent agents that negotiated on behalf of buyers and

sellers [Chavez and Maes, 1996; Chavez et al., 1997]. Vetter and Pitsch [1999] con-

structed a more flexible agent-based system that supported several types of auctions.

Preist [1999a; 1999b] developed a similar distributed system for exchange markets.

Bichler designed an electronic brokerage service that helped buyers and sellers to

find each other and to negotiate through auction mechanisms [Bichler et al., 1998;

Bichler and Segev, 1999].

Benyoucef et al. [2001] considered a problem of simultaneous negotiations for in-

terdependent goods in multiple markets, and applied a workflow management system

to model the negotiation process. Their system helped a user to purchase a combina-

torial package of goods in noncombinatorial markets. Boyan et al. [2001] also built a

system for simultaneous bidding in multiple auctions; they applied beam search with

simple heuristics to the problem of buying complementary goods in different auc-

tions. Babaioff and Nisan [2001] studied the problem of integrating multiple auctions

across a supply chain, and proposed a mechanism for sharing information among such

auctions.

Wurman and Wellman built a general-purpose system, called the Michigan In-

ternet AuctionBot, that could run a variety of different auctions [Wellman, 1993;

Wellman and Wurman, 1998; Wurman et al., 1998b; Wurman and Wellman, 1999];

however, they restricted the users to simple fully specified bids. Their system included

scheduler and auctioneer procedures, related databases, and advanced interfaces. Hu

et al. [1999] created agents for bidding in the Michigan AuctionBot; they used regres-

sion and learning techniques to predict the behavior of other bidders. Later, Hu et

al. [2000] designed three types of agents and showed that their relative performance

depended on the strategies of other auction participants. Hu and Wellman [2001] de-

veloped an agent that learned the behavior of its competitors and adjusted its strategy

accordingly. Wurman [2001] considered a problem of building general-purpose agents

that simultaneously bid in multiple auctions.

Parkes built a fast system for combinatorial auctions, but it worked only for
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markets with up to one hundred users [Parkes, 1999; Parkes and Ungar, 2000]. Sand-

holm created a more powerful auction server, configurable for a variety of mar-

kets, and showed its ability to process several thousand bids [Sandholm, 2000a;

Sandholm, 2000b; Sandholm and Suri, 2000].

All these systems have the same limitation as commercial on-line exchanges;

they require fully specified bids and do not support the use of constraints.
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Chapter 3

Motivating example

We give an example of an exchange for trading new and used cars. To simplify this

example, we assume that a trader can describe a car by four attributes: model, color,

year, and mileage. For instance, a seller may offer a red Mustang, made in 1999, with

35,000 miles.

The exchange allows placing buy and sell orders, analogous to the orders in a

stock market. A prospective buyer can place a buy order, which includes a description

of the desired vehicle and a maximal acceptable price. For instance, she may indicate

that she wants a red Mustang, made after 1999, with at most 20,000 miles, and she

is willing to pay $19,000. Similarly, a seller can place a sell order; for instance, a

manufacturer may offer a brand-new Mustang of any color for $18,000.

The exchange system searches for matches between buy and sell orders, and

generates corresponding fills, that is, transactions that satisfy both buyers and sellers.

In the previous example, it will determine that a brand-new red Mustang for $18,500

satisfies both the buyer and the seller (Figure 3.1). If the system finds several matches

for an order, it chooses the match with the best price. For example, the buy order in

Figure 3.2 will trade with the cheaper of the two sell orders.

The system allows a user to trade several identical items by specifying a size for

Red Mustang,
made in 2001,

0 miles,
$18,500

Fill:
Red Mustang,

made after 1999,
Any color Mustang,

Sell:

made in 2001,
0 miles,

more than $18,000less than $19,000
at most 20,000 miles,

Buy:

Figure 3.1: Matching orders and the resulting trade. When the system finds a match
between two orders, it generates a fill, which is a trade that satisfies both parties.

10



$18,000

Fill:
Mustang

Sell: Sell:
Mustang

$17,000$18,000

Buy:

$19,000
Mustang Mustang

Figure 3.2: Choosing the match with the best price.

Completely filled Partially filled

removed reduced

Mustang
Fill:

2 cars

Mustang

Mustang

2 cars

Sell:

2 cars
Mustang

Buy:

4 cars

Sell:

Figure 3.3: Example of order sizes. When the system finds a match, it completely
fills the smaller order and reduces the size of the larger order.

an order. For example, a dealer can place an order to sell four Mustangs; then, the

system can match it with a smaller buy order (Figure 3.3) and later find a match for

the remaining cars. In addition, the user can specify a minimal acceptable size of a

transaction. For instance, the dealer may place an order to sell four Mustangs, and

indicate that she wants to trade at least two cars.

A user can specify that she is willing to trade any of several items. For example,

she can place an order to buy either a Mustang or Camaro. If a user describes a set

of items, she can indicate that the price depends on an item. For instance, she may

offer $18,500 for a Mustang and $17,500 for a Camaro; furthermore, she may offer an

extra $500 if a car is red, and subtract $1 for every ten miles on its odometer. A user

can also specify her preferences for choosing among potential trades; for instance, she

may indicate that a red Mustang is better than a white Mustang, and that a Mustang

for $19,000 is better than a Camaro for $18,000.
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Chapter 4

General exchange model

We describe a general model of trading complex commodities using a car market as

an example. We formalize the concept of buy and sell orders, and consider a trading

environment that allows hard and soft constraints in the order specification.

4.1 Orders

A specific market includes a certain set of items that can potentially be bought and

sold; we denote it by M , which stands for market set. In the car market, it includes

all vehicles that have ever been made, as well as vehicles that can be made in the

future.

When a trader makes a purchase or sale, she has to specify a set of acceptable

items, denoted I, which stands for item set; it must be a subset of M , that is,

I ⊆ M . In addition, a trader should specify a limit on the acceptable price; for

instance, Katie may be willing to pay $19,000 for a red Mustang, but only $18,500 for

a black Mustang, and even less for a Camaro. Formally, a price limit is a real-valued

function defined on the set I; for each item i ∈ I, it gives a certain limit Price(i).

For a buyer, Price(i) is the maximal acceptable price; for a seller, it is the minimal

acceptable price.

We use the term buy order to refer to a buyer’s item set and price function;

when a buyer announces her desire to trade, we say that she has placed an order.

Similarly, a sell order is a seller’s constraints that define the offered merchandise. We

say that a buy order matches a sell order if the buyer’s constraints are consistent with

the seller’s constraints, thus allowing for a mutually acceptable trade. For instance,

if Katie is willing to pay $19,000 for a red Mustang, and Laura offers a red Mustang

for $18,000, then their orders match.
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4.2 Quality functions

Buyers and sellers may have preferences among acceptable trades, which depend on

a specific item i and its price p. For instance, Katie may prefer a red Mustang for

$19,000 to a black Camaro for $18,000.

We represent preferences by a real-valued function Qual(i, p) that assigns a nu-

meric quality to each pair of an item and price. Larger values correspond to better

transactions; that is, if Qual(i1, p1) > Qual(i2, p2), then the user would rather trade i1

at price p1 than i2 at p2. We assume that negative quality corresponds to unacceptable

trades; that is, if Qual(i, p) < 0, the user will not trade item i at price p.

Each trader can use her own quality functions and specify different functions for

different orders. Note that buyers look for low prices, whereas sellers prefer to get as

much money as possible, which means that quality functions must be monotonic on

price:

• Buy monotonicity: If Qualb is a quality function for a buy order, and p1 ≤ p2,

then, for every item i, we have Qualb(i, p1) ≥ Qualb(i, p2).

• Sell monotonicity: If Quals is a quality function for a sell order, and p1 ≤ p2,

then, for every item i, we have Quals(i, p1) ≤ Quals(i, p2).

We do not require a user to specify a quality function for each order; by default,

quality is defined through price. To define this default function, we denote the user’s

price function by Price, and the price of an actual purchase or sale of an item i by p.

The default function is the difference between the price limit and actual price, divided

by the price limit:

• For buy orders: Qualb(i, p) = Price(i)−p
Price(i)

.

• For sell orders: Quals(i, p) = p−Price(i)
Price(i)

.

For instance, if a customer is wiling to pay $19,000 for a Mustang, and she gets an

opportunity to buy it for $18,500, then the default quality is $19,000−$18,500
$19,000

= 0.026.
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4.3 Order sizes

If a user wants to trade several identical items, she can include their quantity in the

order specification; for example, Katie can place an order to buy two sports cars.

We assume that an order size is a natural number; thus, we enforce discretization of

continuous commodities, such as orange juice.

The user can specify not only an overall order size but also a minimal acceptable

size. For instance, suppose that a Toyota wholesale agent is selling one thousand cars,

and she works only with dealerships that are buying at least twenty vehicles. Then,

she may specify that the overall size of her order is one thousand, and the minimal

size is twenty. In addition, the user can indicate that a transaction size must be

divisible by a certain number, called a size step. For example, a wholesale agent may

specify that she is selling cars in blocks of ten.

To summarize, an order may include six elements:

• Item set, I ⊆ M

• Price function, Price : I → R

• Quality function, Qual : I × R → R

• Overall order size, Max

• Minimal acceptable size, Min

• Size step, Step

To define a match between a buy order and sell order, we denote the item set of

a buy order by Ib, its price function by Priceb, its quality function by Qualb, and its

size parameters by Maxb, Minb, and Stepb. Similarly, we denote the parameters of a

sell order by Is, Prices, Quals, Maxs, Mins, and Steps. The two orders match if they

satisfy the following constraints:

• There is an item i ∈ Ib ∩ Is, such that Prices(i) ≤ Priceb(i).

• There is a price p, such that

– Prices(i) ≤ p ≤ Priceb(i), and
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– Qualb(i, p) ≥ 0 and Quals(i, p) ≥ 0.

• There is a mutually acceptable size value, size, such that

– Minb ≤ size ≤ Maxb,

– Mins ≤ size ≤ Maxs, and

– size is divisible by Stepb and Steps.

4.4 Market attributes

The set M of all possible items may be very large, which means that we cannot

explicitly represent all items. To avoid this problem, we define this set by a list of

attributes and possible values for each attribute. As a simplified example, we describe

a car by four attributes: Model, Color, Year, and Mileage.

Formally, every attribute is a set of values; for instance, the Model set may

include all car models, Color may include standard colors, Year may include the

integers from 1896 to 2002, and Mileage may include the real values from 0 to 500,000.

The market set M is a Cartesian product of the attribute sets; in this example,

M = Model×Color×Year×Mileage. If the market includes n attributes, each item

is an n-tuple; in the car example, it is a quadruple that specifies the model, color,

year, and mileage. We assume that every attribute is one of the three types:

• Set of explicitly listed values, such as the car model.

• Interval of integers, such as the year.

• Interval of real values, such as the mileage.

The value of a commodity may monotonically depend on some of its attributes;

for example, the quality of a car decreases with an increase in mileage. When a

market attribute has this property, we say that it is monotonically decreasing. To

formalize this concept, suppose that a market has n attributes, and we consider the

kth attribute. We denote attribute values of a given item by i1, . . . , ik, . . . , in, and a

transaction price by p. The kth attribute is monotonically decreasing if all price and

quality functions satisfy the following constraints:
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• Price monotonicity: If Price is a price function for a buy or sell order, and ik ≤ i′k,

then, for every two items (i1, . . . , ik−1, ik, ik+1, . . . , in) and (i1, . . . , ik−1, i
′
k, ik+1, . . . , in),

we have Price(i1, . . . , ik, . . . , in) ≥ Price(i1, . . . , i′k, . . . , in).

• Buy monotonicity: If Qualb is a quality function for a buy order, and ik ≤ i′k,

then, for every two items (i1, . . . , ik−1, ik, ik+1, . . . , in) and (i1, . . . , ik−1, i
′
k, ik+1, . . . , in),

and every price p, we have Qualb(i1, . . . , ik, . . . , in, p) ≥ Qualb(i1, . . . , i′k, . . . , in, p).

• Sell monotonicity: If Quals is a quality function for a sell order, and ik ≤ i′k,

then, for every two items (i1, . . . , ik−1, ik, ik+1, . . . , in) and (i1, . . . , ik−1, i
′
k, ik+1, . . . , in),

and every price p, we have Quals(i1, . . . , ik, . . . , in, p) ≤ Quals(i1, . . . , i′k, . . . , in, p).

Similarly, if the quality of commodities grows with an increase in an attribute

value, we say that the attribute is monotonically increasing. For example, the quality

of a car increases with the year of making.

4.5 Fills

When a buy order matches a sell order, the corresponding parties can complete a

trade; we use the term fill to refer to the traded items and their price. For example,

suppose that Katie has placed an order for two sports cars, and Laura is selling

four red Mustangs. If the prices of these orders match, Katie may purchase two red

Mustangs from Laura; in this case, we say that two red Mustangs is a fill for her

order. Formally, a fill consists of three parts: a specific item i, its price p, and the

number of purchased items, denoted size.

If (Ib,Priceb,Qualb,Maxb,Minb, Stepb) is a buy order, and (Is,Prices,Quals,Maxs,

Mins, Steps) is a matching sell order, then a fill (i, p, size) must satisfy the following

conditions:

• i ∈ Ib ∩ Is

• Prices(i) ≤ p ≤ Priceb(i)

• Qualb(i, p) ≥ 0 and Quals(i, p) ≥ 0

• max(Minb,Mins) ≤ size ≤ min(Maxb,Maxs)
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• size is divisible by Stepb and Steps

If both buyer and seller specify a set of items, the resulting fill can contain any

item i ∈ Ib∩Is. Similarly, we may have some freedom in selecting the price and size of

the fill; the heuristics for making these choices depend on a specific implementation.

• Item choice: If Ib∩Is includes several items, we may choose an item to maximize

either the buyer’s quality function or the seller’s quality.

• Price choice: The default strategy is to split the price difference between the

buyer and seller, which means that p = Priceb(i)+Prices(i)
2

.

• Size choice: We assume that buyers and sellers are interested in trading at the

maximal size, or as close to the maximal size as possible; thus, the fill has the

largest possible size. In Figure 4.1, we give an algorithm that finds the maximal

fill size for two matching orders.

After generating a fill, the system reduces the sizes of the respective orders. If

the reduced size of an order is zero, the system removes the order from the market. If

the size remains positive but drops below the minimal acceptable size Min, the order

is also removed.
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fill-size(Maxb,Minb,Stepb;Maxs,Mins,Steps)
The algorithm inputs the size specification of a buy order, Maxb, Minb, and Stepb,
and the size specification of a matching sell order, Maxs, Mins, and Steps.
The output is the fill size for these orders.

Find the least common multiple of Stepb and Steps:
step := Stepb·Steps

gcd(Stepb,Steps)

Find the maximal acceptable size, divisible by step:
size := bmin(Maxb,Maxs)

step c · step
Verify that it is not smaller than the minimal acceptable sizes:

If size ≥ Minb and size ≥ Mins, then return size
Else, return 0 (no acceptable size)

gcd(Stepb,Steps)
The algorithm determines the greatest common divisor of Stepb and Steps.

small := min(Stepb, Steps)
large := max(Stepb, Steps)
Repeat while small 6= 0:

rem := large mod small
large := small
small := rem

Return large

Figure 4.1: Computing the fill size for two matching orders.

18



Chapter 5

Order representation

We describe the representation of orders in the implemented system. We explain the

use of Cartesian products for coding item sets, and then describe the price functions,

quality functions, and sizes.

Cartesian products. When a trader places an order, she has to specify a set of

acceptable values for each market attribute, which is called an attribute set. Thus,

if a market includes n attributes, the order description contains n attribute sets. For

example, Katie may indicate that she is buying an Echo or Tercel, the acceptable

colors are white, silver, and gold, the car should be made after 1999, and it should

have at most 30,000 miles.

To give a formal definition, we denote the set of all possible values for the first

attribute by M1, the set of all values for the second attribute by M2, and so on. The

trader has to specify a set I1 ⊆ M1 of values for the first attribute, a set I2 ⊆ M2 of

values for the second attribute, and so on. The resulting set I of acceptable items is

the Cartesian product of the attribute sets; that is, I = I1 × I2 × · · · × In.

A trader can use specific values or ranges for each attribute; for instance, she

can specify a desired year as 2002 or as a range from 1999 to 2002. Note that ranges

work only for numeric attributes, such as year and mileage. A trader can also specify

a list of several values or ranges. For instance, if Katie is interested in white, silver,

and gold cars, she can specify the set of colors as {white, silver, gold}. If she

is interested in cars made before 1950 and after 1999, she can specify the year as

{[1896..1950], [1999..2002]}.

Unions and filters. A trader can define an item set I as the union of several

Cartesian products. For example, if she wants to buy either a used Camry or a new
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Echo, she can specify the following set:

I = {Camry} × {white, silver, gold} × [1999..2002] × [0..30,000]

∪ {Echo} × {white, silver, gold} × {2002} × [0..200].

Furthermore, the trader can indicate that she wants to avoid certain items, by provid-

ing a filter function that prunes undesirable items. Formally, it is a Boolean function

on the set I that gives false for unwanted items. We implement it by an arbitrary

C++ procedure that inputs an item description and returns true or false. To

summarize, the representation of an item set consists of two parts:

• A union of Cartesian products,

I = I1 1 × I1 2 × . . . × I1 n ∪ . . . ∪ Ik 1 × Ik 2 × . . . × Ikn

• A filter function, Filter : I → {true, false},
implemented by a C++ procedure

Price, quality, and size. If a price function is a constant, the trader specifies it

by a numeric value, called a price threshold. If an item set is the union of several

Cartesian products, the trader can specify a separate threshold for each product. For

instance, if Katie’s item set is the union of used Camries and new Echoes, she can

indicate that she is paying $15,000 for a Camry and $12,000 for an Echo. If several

Cartesian products overlap, and the trader has specified different thresholds for these

products, then we use the tightest threshold for their intersection; that is, we use the

lowest threshold for buy orders, and the highest threshold for sell orders.

If a price is not constant, the trader specifies it by an arbitrary C++ procedure

that inputs an item and outputs the corresponding price limit. If an order includes

both a threshold and price function, the system uses the tighter of the two. If the mar-

ket includes monotonic attributes, the price functions must satisfy the monotonicity

condition of Section 4.4.

The representation of a quality function is also an arbitrary C++ procedure;

it inputs an item description and price, and outputs a numeric quality value. If

a user does not provide any quality function, the system uses the default quality
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measure defined through the price function (Section 4.2). All quality functions must

be monotonic on price (Section 4.2); if some attributes are monotonic, the quality

must also satisfy the monotonicity condition of Section 4.4.

Finally, the size specification is the same as in the general model; it includes the

overall size, minimal acceptable size, and size step.
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Chapter 6

Indexing structure

We describe the data structures for fast identification of matches between buy and

sell orders. We first explain the overall architecture and then present the indexing

structures. We refer to the orders that are currently in the system as pending orders.

6.1 Architecture

The system maintains a description of market attributes and a collection of pending

orders (Figure 6.1). It includes a central structure for indexing of pending orders,

implemented by two trees (see Section 6.2). This structure allows indexing of orders

with fully specified items; for example, it can include an order to sell a red Mustang

made in 1999, but it cannot contain an order to buy any red car made after 1999.

If we can put an order into the indexing structure, we call it an index order. If an

order includes a set of items, rather than a fully specified item, the matcher adds it

to an unordered list of nonindex orders. In Figure 6.2, we give an example of four

index orders and four nonindex orders. The indexing structure allows fast retrieval

of index orders that match a given order. On the other hand, the system does not

identify matches between two nonindex orders.

In Figure 6.3, we show the main cycle of the matcher, which alternates between

processing new orders and finding matches for pending nonindex orders. When it

Market description

Pending orders

Trees with

    orders
index nonindex
orders

List of

Figure 6.1: Main data structures.
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sell: red Mustang, made in 1999, 30,000 miles
sell: white Camry, made in 1998, 42,000 miles
sell: red Echo, made in 1995, 65,000 miles
buy: green Saturn, made in 1997, 58,000 miles

Trees with index orders
buy: any red car, made after 2000
sell: any sports car, made in 2001
buy: any green Mustang, at most 5,000 miles
sell: any Echo, made in 1995

Pending orders

Market description
Attribute 1: Model               Attribute 3: Year
Attribute 2: Color                Attribute 4: Mileage

List of nonindex orders

Figure 6.2: Example of index and nonindex orders.

No

Yes

Stop trading?

Stop the matcher

For every pending nonindex
order, search for matching 

index orders (see Figure 6.5)

Process every new order
in the queue of incoming
orders (see Figure 6.4)

Start the matcher

Figure 6.3: Top-level loop of the matcher engine.

receives a new order, it immediately searches for matching index orders (Figure 6.4).

If there are no matches, and the new order is an index order, then the system adds

it to the indexing structure. Similarly, if the matcher fills only part of a new index

order, it stores the remaining part in the indexing structure. If the system gets a

nonindex order and does not find a complete fill, it adds the unfilled part to the list

of nonindex orders.

For example, suppose that Laura places an order to sell a red Mustang, made

in 1999, with 30,000 miles. The system immediately looks for matching index orders;

if it does not find a match, it adds the order to the indexing structure. If Katie later

places a buy order for a sports car, the system identifies the match with Laura’s order.
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Add it to the
indexing structure

Add it to the list of
 nonindex orders

Search for index orders
that match the new order

completely filled?

order?
Is it an index

Yes

Yes No

No

Is the new order

         (see Figure 6.5)

Figure 6.4: Processing of a new order.

After processing all new orders, the system tries to fill pending nonindex orders,

which include not only the new arrivals, but also the old unfilled orders. For each

nonindex order, it identifies matching index orders (Figure 6.5). For example, consider

the market in Figure 6.2, and suppose that Laura places an order to sell a green

Mustang, made in 2001, with zero miles. Since the market has no matching index

orders, the system adds this new order to the indexing structure. After processing all

new orders, it tries to fill the nonindex orders, and determines that Laura’s order is

a match for the old order to buy any green Mustang.

6.2 Indexing trees

We have implemented an indexing structure for orders with fully specified items,

which do not include ranges or lists of values. The structure consists of two identical

trees: one is for buy orders, and the other is for sell orders.

In Figure 6.6, we show an indexing tree for sell orders; its height is equal to the

number of market attributes, and each level corresponds to one of the attributes. The
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Delete the index order

the index orders with matching items

Completely filled the
index order?

Completely filled the
given order?

Delete the given order

Yes

Yes

index order
No available

Yes

Does the price of the
selected order match
the given price limit?

No

has not yet been considered, among
Select the highest-quality order, that

Find index orders with matching items

reduce the size of both orders
Generate a fill and 

No

No

Figure 6.5: Search for index orders that match a given order.
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root node encodes the first attribute, and its children represent different values of this

attribute; in Figure 6.6, each child of the root corresponds to some car model. The

nodes at the second level divide the orders by the second attribute, and each node at

the third level corresponds to specific values of the first two attributes. In general, a

node at level i divides orders by the values of the ith attribute, and each node at the

(i + 1)th level corresponds to all orders with specific values of the first i attributes.

If some items are not currently on sale, the tree does not include the corresponding

nodes; for instance, if nobody is selling an Echo, the root has no child for Echo.

Every nonleaf node includes a red-black tree that allows fast retrieval of its

children with specific values. A leaf of the indexing tree includes orders with identical

items, which may have different prices and sizes. Each leaf includes a red-black tree

that indexes the corresponding orders by price.

The nodes of an indexing tree include summary data that help to find matching

orders. Every node contains the following data about the orders in the corresponding

subtree:

• The total number of orders and the total of their sizes.

• The minimal and maximal price.

• The minimal and maximal value for each numeric attribute.

• The time of the latest addition of an order.

For example, consider node 2 in Figure 6.6; the subtree rooted in this node includes

nine orders. If the newest of these orders was placed at 2pm, the summary data in

node 2 are as follows:

• Number of orders: 9 • Years: 1998..2001

• Total size: 14 • Mileages: 0..45,000

• Prices: $13,000..21,000 • Latest addition: 2pm

6.3 Basic tree operations

When a user places or removes an index order, the system has to update the indexing

tree. We describe algorithms for adding a new order to the indexing structure and

deleting an old order.
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Model Color Year Mileage Price Size
A Camry Black 1999 35,000 14,000 2
B Camry Black 1999 35,000 14,500 1
C Camry Red 1998 40,000 13,000 1
D Camry Red 1998 40,000 13,500 2
E Camry Red 1998 40,000 14,000 2
F Camry Red 1998 45,000 14,000 2
G Camry Red 2001 0 20,000 2
H Camry Red 2001 0 20,500 1
I Camry Red 2001 0 21,000 1
J Corvette Gold 1998 48,000 30,000 1
K Corvette Red 2000 19,000 35,000 2
L Corvette Red 2000 19,000 36,000 1
M Corvette Red 2000 19,000 37,000 1
N Mustang Blue 2000 21,000 15,000 2
O Mustang Blue 2000 25,000 19,000 1
P Mustang Blue 2000 25,000 19,500 2
Q Mustang Blue 2000 25,000 20,000 5

(a) List of index orders.

Mileage Mileage Mileage Mileage Mileage Mileage

Year

Color Color

Model

Year Year Year Year

Color

Black Camry,
made in 1999,

B

Gold Corvette, Red Corvette,
made in 2000,

Blue Mustang,
made in 2000,

Blue Mustang,
made in 2000,made in 1998,

Red Camry,
made in 2001,

0 miles

Red Camry,
made in 1998,

Red Camry,
made in 1998,

16 17 18 19 20 22 23

D

C E

H

G

N

M

P
$14.5K

$14K
A

$14K$13K

$13.5K $14K
F

$20K

I

$30K
J

$15K$36K
L

$35K
K

$37K
Q

$20K

O

$19K

$20.5K

35,000 miles 40,000 miles 45,000 miles 25,000 miles21,000 miles19,000 miles48,000 miles

$21K

$19.5K

210

10 12 15141311

6 7 8

32

RedBlack

CorvetteCamry

1999 1998 2001 1998

35,000 40,000 45,000

Mustang

20002000

21,000 25,00019,00048,000

4

9
RedGold Blue

5

1

(b) Indexing tree.

Figure 6.6: Indexing tree with seventeen orders.
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Adding an order. When a user places an index order, the system adds it to the

corresponding leaf; for example, if Laura places an order to sell a black Camry, made

in 1999, with 35,000 miles, the system adds it to node 16 in Figure 6.7. If the leaf is

not in the tree, the matcher adds the appropriate new branch; for example, if Laura

offers to sell a white Camry, the matcher adds the dashed branch in Figure 6.7.

After adding a new order, the system modifies the summary data of the ancestor

nodes. Note that every summary value is the minimum, maximum, or sum of the

order values. In Figure 6.8, we give the algorithms for updating the total size and

minimal price; the update of the other values is similar. These algorithms perform

one pass from the leaf to the root, and their running time is proportional to the height

of the tree; thus, if the market includes n attributes, the time is O(n).

Deleting an order. When the matcher fills an index order, or a trader cancels her

old order, the system removes the order from the corresponding leaf. If the leaf does

not include other orders, the system deletes it from the indexing tree; for example, if

the matcher fills order F in Figure 6.6, it removes node 18. If the deleted node is the

only leaf in some subtree, the system removes this subtree; for instance, the deletion

of order J leads to the removal of nodes 7, 13, and 20.

After deleting an order, the system updates the summary data in the ancestor

nodes. In Figure 6.9, we give procedures for updating the total size and minimal

price; the modification of the other data is similar. The update time depends on the

number n of market attributes, and on the number of children of the ancestor nodes,

c1, c2, ..., cn. If a summary value is the sum of the order values, the update time is

O(n); if it is the minimum or maximum of order values, the time is O(c1+c2+...+cn).
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Mileage Mileage

Model

Model Color Year Mileage Price Size

R Camry 1999 35,000 215,000
S Camry 1999 14,00035,000 1

Black
White

(a) Two new orders.

Red Camry,
made in 2001,

0 miles

Red Camry,
made in 1998,

Red Camry,
made in 1998,

17 18 19

D

C E

F H

G
$14K $20K

$20.5K

I
$21K

$14K
S

35,000 miles
made in 1999,
White Camry,

(b) Indexing tree with new orders.

$13.5K $14K

$13K

Black Camry,
made in 1999,

B
$14.5K

16

A
$14K

R

$15K

0

Mileage

35,000

10

6

Year

2

Mileage

Color

Year

45,000 miles40,000 miles35,000 miles

35,000 40,000 45,000

11 12

Black Red White

1

CorvetteCamry Mustang

Year

5

1998 2001 19991999

Figure 6.7: Adding orders to an indexing tree. We show new orders by dashed ovals.
If the tree does not have the leaf for a new order, the system adds the proper branch.
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add-size(new-size, leaf)
The algorithm inputs the size of a newly added order

and the corresponding leaf of the indexing tree.

node := leaf
Repeat while node 6= nil:

total-size[node] := total-size[node] + new-size
node := parent[node]

add-price(new-price, leaf)
The algorithm inputs the price of a newly added order

and the corresponding leaf of the indexing tree.

node := leaf
Repeat while node 6= nil and min-price[node] > new-price:

min-price[node] := new-price
node := parent[node]

Figure 6.8: Updating the summary data after addition of an order. We show the
update of the total size (add-size) and minimal price (add-price).
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del-size(old-size, leaf)
The algorithm inputs the size of a deleted order,
along with the leaf from which the order is deleted.

node := leaf
Repeat while node 6= nil:

total-size[node] := total-size[node] − old-size
node := parent[node]

del-price(old-price, leaf)
The algorithm inputs the price of a deleted order,

along with the leaf from which the order is deleted.

If min-price[leaf] < old-price, then terminate
Update the minimal price of the leaf:

min-price[leaf] := +∞
For every order in the leaf:

If min-price[leaf] > price[order],
then min-price[leaf] := price[order]

Update the minimal price of its ancestors:
node := leaf
Repeat while min-price[node] > old-price

and parent[node] 6= nil and min-price[parent[node]] = old-price:
node := parent[node]
min-price[node] := +∞
For every child of node:

If min-price[node] > min-price[child],
then min-price[node] := min-price[child]

Figure 6.9: Updating the summary data after deletion of an order. We show the
update of the total size (del-size) and minimal price (del-price).
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Chapter 7

Search for matches

We describe two techniques for the retrieval of matching orders from an indexing tree.

The first algorithm is based on the depth-first search developed by Johnson [2002]

during his work on the earlier version of the system. The second technique is a novel

retrieval algorithm, based on the best-first search in an indexing tree, which allows

fast retrieval of the highest-quality matches.

7.1 Depth-first search

In Figure 7.1, we give an algorithm that retrieves matching leaves of an indexing tree

for a given item set. The find-leaves subroutine finds all matches for a Cartesian

product. It identifies all children of the root that match the first element of the

Cartesian product, and then recursively processes the corresponding subtrees. For

example, suppose that a buyer is looking for a Camry or Mustang made after 1998,

with any color and mileage, and the tree of sell orders is as shown in Figure 7.3.

The subroutine determines that nodes 2 and 4 match the model, and then recursively

processes the two respective subtrees. It identifies three matching nodes for the second

attribute, three nodes for the third attribute, and finally four matching leaves. If a

given order includes a union of several Cartesian products, we call the find-leaves

subroutine for each product. If an order includes a filter function, the subroutine uses

it to prune inappropriate leaves.

To avoid search in the branches that have not changed since the previous search,

we compare the time stamp of the given order with the latest addition time of each

branch. Similarly, we compare the time stamp of the given order with the placement

times of index orders in the matching leaves. The time stamp of an order is the time

of the previous search for matches. We prune the branches whose latest addition

times are smaller than the time stamp of the given order, and skip the index orders
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matching-leaves(I, filter, time-stamp, num-leaves, root)
The algorithm inputs an item description I, represented by a union of Cartesian products, a
corresponding filter function and time stamp, a limit on the number of retrieved leaves, and the
root of an indexing tree. It returns a set of leaves that match the item description.

leaves := ∅ (set of matching leaves)
num-left := num-leaves (limit on the number of leaves)
For each Cartesian product I1 × I2 × . . . × In in the union I:

Call find-leaves(I1 × I2 × . . . × In, filter, time-stamp, leaves, num-left, root)
If num-left = 0, then return leaves

Return leaves

find-leaves(I1 × I2 × . . . × In, filter, time-stamp, leaves, num-left, node)
The subroutine inputs a Cartesian product I1 × I2 × . . . × In, a corresponding filter function

and time stamp, a set of matching leaves, a limit on the number of retrieved leaves, and a node

of the indexing tree. It finds the matching children of the given node, recursively processes the

respective subtrees, and identifies matching leaves in these subtrees.

If latest-addition-time[node] ≤ time-stamp, then terminate
If node is a leaf and filter(node) = true, then:

Add node to leaves
num-left := num-left − 1

If node is not a leaf, then:
Identify all children of node that match Ilevel[node]

For each matching child:
Call find-leaves(I1 × I2 × . . . × In, filter, time-stamp, leaves, num-left, child)
If num-left = 0, then terminate

Figure 7.1: Retrieval of matching leaves.
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matching-orders(order, leaves)
The algorithm inputs an order and the leaves that match the order’s item set.

It identifies matching orders in these leaves and completes the respective trades.

Quality := Qual[order]
For each leaf in leaves:

current-order[leaf] := best-price-order[leaf]
quality[leaf] := Quality(current-order[leaf])

Build a priority queue for leaves, sorted by quality[leaf]
Repeat while Max[order] ≥ Min[order] and Quality(current-order[top-leaf[queue]]) ≥ 0:

leaf := top-leaf[queue]
best-order := current-order[leaf]
current-order[leaf] := next-by-price[current-order[leaf]]
quality[leaf] := Quality(current-order[leaf])
Update the position of leaf in the priority queue
If placement-time[best-order] > time-stamp[order], then:

size := fill-size(Max[order], Min[order], Step[order],
Max[best-order], Min[best-order], Step[best-order])

If size > 0, then:
Generate a fill for order and best-order
Max[order] := Max[order] − size
Max[best-order] := Max[best-order] − size
If Max[best-order] < Min[best-order], then remove best-order from the market

If Max[order] < Min[order], then remove order from the market
Else, set time-stamp[order] to the current time

Figure 7.2: Retrieval of matching orders.

34



Mileage Mileage

Year

Color

Model

Year

Mileage

Black Camry,
made in 1999,
35,000 miles

B
$14.5K

Gold Corvette, Red Corvette,
made in 2000,
19,000 miles

Blue Mustang,
made in 2000,
21,000 miles

Blue Mustang,
made in 2000,
25,000 miles

made in 1998,
48,000 miles

Red Camry,
made in 2001,

0 miles

Red Camry,
made in 1998,
45,000 miles

Red Camry,
made in 1998,
40,000 miles

Mustang

45,000
16 17 18 19 20 21 22 23

25,00021,00019,00048,000

2000200019981998

040,00035,000

1999

Red Gold Blue
5 6 7 8 9

2 3 4

D

C E

F H

G M
$13K $14K

$13,5K

$20K

$20.5K

I
$21K

J
$36K

L
$19.5K

1

10 12 13 14 15

Color

Year Year

MileageMileage

Color

Year

Mileage

$14K
A

$14K $30K

$37K$35K
K

$15K
N

Q

$20K
O

$19K

P

Camry Corvette

RedBlack

11
2001

Figure 7.3: Retrieval of matches for an order to buy six Camries or Mustangs made
after 1998. We show the matching nodes and retrieved orders by thick lines.

whose placement times are smaller than the time stamp.

If an order matches a large number of leaves, the retrieval may take considerable

time. To prevent this problem, we can impose a limit on the number of retrieved

leaves. For instance, if we allow at most three matches, and a user places an order

to buy any Camry, then the system retrieves the three leftmost leaves in Figure 7.3.

We use this limit to control the trade-off between the speed and quality of matches.

A small limit ensures the efficiency but reduces the chance of finding the best match.

After the system identifies all matching leaves, it selects the highest-quality

orders from these leaves, according to the quality function of the given order. In Fig-

ure 7.2, we give an algorithm for identifying best matches, which arranges matching

leaves in a priority queue by the quality of the best order in each leaf. At every step,

it processes the best match that has not yet been considered. For example, suppose

that a buyer places an order for six Camries or Mustangs made after 1998, and her

quality measure depends only on price (Figure 7.3). The system first retrieves or-

der A, with price $14,000 and size 2, then order B with price $14,500, then order N

with price $15,000 and size 2, and finally order O with price $19,000.
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7.2 Best-first search

If an order matches a large number of leaves, the depth-first search that identifies all

matches may take significant time, whereas the search with a limit on the number

of matches may not find the best match. We use best-first search to guarantee the

optimality without sacrificing the efficiency.

We define the lowest nonmonotonic level in the indexing tree as the level that

corresponds to the last nonmonotonic attribute. For instance, the first two attributes

in the car market are nonmonotonic, whereas the last two are monotonic; thus, level 2

is the lowest nonmonotonic level. A node’s quality estimate is an estimated quality

of the best order in the subtree rooted at this node. To compute this estimate, we

use the node’s summary data to construct the best possible order we could find in

the corresponding subtree, and determine the quality of this order. We can compute

it only if the node is below the lowest nonmonotonic level.

In Figures 7.4–7.7, we give the best-first search algorithm for a tree with sell

orders; the algorithm for a buy-order tree is similar. To find the best match for a buy

order with one Cartesian product, we arrange matching nodes into a priority queue

by their quality estimates. At each step, we expand the top node from the queue

and add its matching children to the queue; we repeat this process until finding

the best match. Note that we can add a node to the queue only if it is below the

lowest nonmonotonic level. Therefore, we first find all matching nodes at the lowest

nonmonotonic level, and add their matching children to the queue.

If a given buy order includes a union of several Cartesian products, we create

a separate priority queue for each product and arrange these queues into an “outer”

priority queue, sorted by the quality of their top nodes. At each step, the algorithm

expands the top node of the top “inner” queue. If it is a nonleaf node, the algorithm

identifies its matching children, calculates their quality estimates, and adds them to

the corresponding inner queue. If the node is a leaf, the algorithm uses the best-price

order from this leaf to generate a fill. If the given buy order is completely filled, the

search terminates. Otherwise, the algorithm takes the next matching order from the

leaf and calculate its quality. If this quality is no smaller than the highest quality

among other nodes, the algorithm uses the order to generate the next fill. After
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processing the leaf node, the algorithm sets its quality to the quality of the best

unprocessed order, and adds it back to the corresponding inner queue.
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best-first-search(order, root)
The algorithm inputs a given order and the root of the indexing tree.

It finds the highest-quality matches for the given order.

Create an empty outer priority queue, outer-queue
For i = 1 to the number of Cartesian products in the union I[order]:

Create a new empty priority queue, inner-queue, for the ith product
num[inner-queue] := i
mono-nodes(i, order, root, inner-queue)
Enqueue(outer-queue, inner-queue)

While quality[top-node[top-queue[outer-queue]]] ≥ 0 and Max[order] ≥ Min[order]:
inner-queue := Dequeue(outer-queue)
node := Dequeue(inner-queue)
If node is not a leaf, then:

i := num[inner-queue]
k := level[node]
Identify all node’s children that match the kth element of the ith Cartesian product
For each matching child:

If latest-addition-time[child] > time-stamp[order], then:
quality[child] := quality-estimate(child, Qual[order])
If quality[child] ≥ 0, then Enqueue(inner-queue, child)

If node is a leaf and Filter[order](node) = true, then:
matching-orders(order, node,

max(quality[top-node[top-queue[outer-queue]]], quality[top-node[inner-queue]]))
If Max[order] ≥ Min[order] and priority[node] ≥ 0,

then Enqueue(inner-queue, node)
Enqueue(outer-queue, inner-queue)

If Max[order] ≥ Min[order], then set time-stamp[order] to the current time
Else, remove order from the market

Figure 7.4: Retrieval of the highest-quality matches.
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matching-orders(order, leaf, min-quality)
The algorithm inputs a given order, a matching leaf, and a quality value. It finds matching

orders in the leaf whose quality values are no smaller than the given quality.

While Max[order] ≥ Min[order] and quality[leaf] ≥ min-quality:
best-order := current-order[leaf]
current-order[leaf] := next-by-price[current-order[leaf]]
quality[leaf] := Qual[order](item[leaf], price[current-order[leaf]])
If placement-time[best-order] > time-stamp[order], then:

size := fill-size(Max[order], Min[order], Step[order],
Max[best-order], Min[best-order], Step[best-order])

If size > 0, then:
Generate a fill for order and best-order
Max[order] := Max[order] − size
Max[best-order] := Max[best-order] − size
If Max[best-order] < Min[best-order], then remove best-order from the market

Figure 7.5: Retrieval of matches from a leaf node.

mono-nodes(i, order, node, inner-queue)
The algorithm inputs the number of a Cartesian product, a given order, a node at or above the

lowest nonmonotonic level, and a priority queue. It finds the matching children of the node,

recursively processes the respective subtrees, and adds the matching nodes below the lowest

nonmonotonic level to the priority queue.

If latest-addition-time[node] < time-stamp[order], then terminate
Identify all children of node that match the corresponding element of the ith product
If node is above the lowest nonmonotonic level, then:

For each matching child:
Call mono-nodes(i, order, child, inner-queue)

If node is at the lowest nonmonotonic level, then:
For each matching child:

If latest-addition-time[child] > time-stamp[order], then:
quality[child] := quality-estimate(child, Qual[order])
If quality[child] ≥ 0, then Enqueue(inner-queue, child)

Figure 7.6: Adding matching nodes to a priority queue.
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quality-estimate(node, Quality)
The algorithm inputs a node of the indexing tree and a quality function.

It computes the quality estimate for the node.

For i = 1 to level [node ] − 1:
Set item[i ] to the corresponding attribute value

For i = level [order ] to n:
Set item[i ] to the corresponding best value in the summary data

Return Quality(item, min-price[node])

Figure 7.7: Calculating the quality estimate for a node.
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Chapter 8

Performance

We compare the efficiency of the best-first search algorithm with the earlier depth-

first search versions of the system. We give results for artificial market data, and then

show the performance for two real-world markets.

8.1 Artificial markets

We describe the results of controlled experiments, which show the system’s efficiency

for different search strategies and market sizes.

Control variables. We have implemented an experimental setup that allows con-

trol over five parameters: search strategy, number of attributes, number of alternative

values for an attribute, number of orders, and average number of matches per order.

Search strategy: We have compared the best-first search with two versions of

the depth-first strategy. The first version of the depth-first algorithm searches for all

matching orders. In the second version, we limit the number of retrieved matches;

specifically, the system finds at most ten matching leaves in the indexing tree and

retrieves at most ten orders from each leaf.

Attributes: The number of market attributes determines the complexity of

traded items. We have considered markets with one, three, and ten attributes.

Values: We have controlled the number of values per attribute; we have exper-

imented with 2, 16, and 1,024 values.

Orders: We have varied the number of orders from four to 218, that is, 262,144.

Recall that the system’s top-level loop involves processing new orders and matching

old pending orders (Figure 6.3). We have controlled the total number of orders;

the number of new orders in the input queue has been the same as the number of

pending orders. For example, when experimenting with a four-order market, we have
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placed two pending orders and two new orders. We have randomly generated new

and pending orders, which include an equal number of buys and sells.

Matching density: We define the matching density as the mean percentage of

sell orders that match a given buy order; in other words, it is the probability that a

randomly selected buy order matches a randomly chosen sell. We have experimented

with four density values: 0.001, 0.01, 0.1, and 1.

Measured variables. We have considered three search strategies, three different

settings for the number of attributes, three settings for the number of values per at-

tribute, seventeen settings for the number of orders, and four settings for matching

density. For each combination of these settings, we have run two independent exper-

iments and measured the time of processing new orders, time of matching old orders,

and maximal throughput of the system.

Processing time: We have measured the time of processing new orders, which is

the first part of the system’s main loop (Figure 6.3). This time is proportional to the

number of new orders; it also depends on several other factors, including the number

of attributes and pending orders.

Matching time: We have also measured the time of matching old orders, which

is the second part of the main loop (Figure 6.3). The total of processing and matching

time is the overall length of the main loop, which determines the system’s speed.

Maximal throughput: We have determined the maximal acceptable frequency

of placing new orders. If the system gets more orders per second, the number of

unprocessed orders keeps growing, and the matcher eventually has to reject some of

them.

Summary graphs. We show the dependency of the system’s performance on each

of the control variables in Figures 8.1–8.6. We use two performance measurements:

the time of one pass through the system’s main loop, and the system’s throughput.

For each control variable, we consider three settings of the other three variables. For

each of the three settings, we give two graphs with the dependency of the performance

of the three search strategies on the selected variable; the first graph is in logarithmic

scale, and the second is in linear scale. We also give a more detailed summary of
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these experiments in Appendix A.

In Figures 8.1 and 8.2, we show how the performance depends on the number

of orders. The main-loop time is approximately linear in the number of orders. The

throughput in small markets grows with the number of orders; it reaches an upper

limit when the market grows to about two hundred orders, and then decreases with

further increase in the number of orders.

In Figures 8.3 and 8.4, we give the dependency of the performance on the number

of attributes. The main-loop time is super-linear in the number of attributes, whereas

the throughput is in inverse proportion to the same super-linear function.

In Figures 8.5 and 8.6, we show how the system’s behavior changes with the

matching density. We have not found any monotonic dependency between the density

and the performance; the increase of the matching density sometimes leads to faster

matching and sometimes slows down the system.

The best-first search strategy is much faster than the depth-first search that

identifies all matches; the saving factor for large markets is between 1.0 and 750.0,

and its mean value is 121.8. Thus, the new system is more effective for finding optimal

matches than the old depth-first version.

The speed of the best-first search is usually close to that of the depth-first search

with a limit on the number of matches; that is, the optimal-matching system is as

fast as the old system that could not find optimal matches. A notable exception is

the performance in ten-attribute markets with large number of values per attribute.

For these markets, the best-first search is slower than the limited depth-first search

by a factor of ten to hundred.
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(a) Tests with one attribute, two values per attribute, and matching density of 0.001.
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(b) Tests with three attributes, sixteen values per attribute, and matching density of 0.01.
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(c) Tests with ten attributes, 1,024 values per attribute, and matching density of 1.

Figure 8.1: Dependency of the total matching time on the number of orders. We show
the performance of the best-first search (solid lines), depth-first search that identifies
all matches (dashed lines), and depth-first search with a limit on the number of
matches (dotted lines). The graphs on the left are in logarithmic scale, whereas the
graphs on the right are in linear scale.
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(b) Tests with three attributes, sixteen values per attribute, and matching density of 0.01.
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(c) Tests with ten attributes, 1,024 values per attribute, and matching density of 1.

Figure 8.2: Dependency of the throughput on the number of orders. The legend is
the same as in Figure 8.1.
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(a) Tests with two values per attribute, 512 orders, and matching density of 0.001.
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(b) Tests with sixteen values per attribute, 16,384 orders, and matching density of 0.01.
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(c) Tests with 1,024 values per attribute, 131,072 orders, and matching density of 1.

Figure 8.3: Dependency of the total matching time on the number of attributes. The
legend is the same as in Figure 8.1.
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(a) Tests with two values per attribute, 512 orders, and matching density of 0.001.
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(b) Tests with sixteen values per attribute, 16,384 orders, and matching density of 0.01.
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(c) Tests with 1,024 values per attribute, 131,072 orders, and matching density of 1.

Figure 8.4: Dependency of the throughput on the number of attributes. The legend
is the same as in Figure 8.1.
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(b) Tests with three attributes, sixteen values per attribute, and 16,384 orders.
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(c) Tests with ten attributes, 1,024 values per attribute, and 131,072 orders.

Figure 8.5: Dependency of the total matching time on the matching density. The
legend is the same as in Figure 8.1.
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(b) Tests with three attributes, sixteen values per attribute, and 16,384 orders.
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(c) Tests with ten attributes, 1,024 values per attribute, and 131,072 orders.

Figure 8.6: Dependency of the throughput on the matching density. The legend is
the same as in Figure 8.1.
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8.2 Real markets

We have applied the system to an extended used-car market and to a commercial-

paper market.

Used cars. We have considered a car market that includes all models offered by

AutoNation (www.autonation.com), defined by eight attributes:

(1) Transmission (2 values): Manual, automatic.

(2) Number of doors (3 values): Two, three, four.

(3) Interior color (7 values): Black, gray, white, tan, brown, blue, red.

(4) Exterior color (52 values): All colors offered by AutoNation.

(5) Model (257 values): All models offered by AutoNation.

(6) Year (106 values): Integers from 1896 to 2001.

(7) Option package (1,024 values): Standard packages offered by AutoNation.

(8) Mileage (500,001 values): Integers from 0 to 500,000.

We have run experiments with up to 262,144 orders; the control variables have

included the search strategy, number of orders, and matching density. We have con-

sidered the three search strategies, seventeen settings for the number of orders, and

four settings for matching density. For each combination of settings, we have run two

experiments; we show the results in Figures 8.7 and 8.8, and plot the dependency of

the system’s performance on the control variables in Figure 8.9–8.12.

The results in the car market are similar to the artificial-test results. The

system supports markets with 262,144 orders, and it usually processes 40 to 4,000

new orders per second. The best-first search is more efficient than the depth-first

search that identifies all matches; the saving factor in large markets varies from 1.0

to 8.4, with mean at 3.5. For markets with low matching density, the speed of the

best-first strategy is close to that of the depth-first search with limited number of

matches. On the other hand, for large high-density markets, the best-first search

strategy is about hundred times slower than the limited depth-first search.
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Figure 8.7: Performance in the car market for matching density of 0.001 (left) and
0.01 (right). We show the performance of the best-first search (solid lines), depth-first
search that identifies all matches (dashed lines), and depth-first search with a limit
on the number of matches (dotted lines).
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Figure 8.8: Performance in the car market for matching density of 0.1 (left) and
1 (right). The legend is the same as in Figure 8.7.
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Figure 8.9: Dependency of the total matching time on the number of orders. We give
the results for the best-first search (solid lines), depth-first search that identifies all
matches (dashed lines), and depth-first search with a limit on the number of matches
(dotted lines). The graphs on the left are in logarithmic scale, whereas the graphs on
the right are in linear scale.
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(c) Tests with matching density of 1.

Figure 8.10: Dependency of the throughput on the number of orders. The legend is
the same as in Figure 8.9.
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Figure 8.11: Dependency of the total matching time on the matching density. The
legend is the same as in Figure 8.9.

55



10
−3

10
−2

10
−1

10
0

10
0

10
2

10
4

matching density

or
de

rs
 p

er
 s

ec

0.2 0.4 0.6 0.8 1

0

1000

2000

3000

4000

matching density

or
de

rs
 p

er
 s

ec

(a) Tests with 512 orders.

10
−3

10
−2

10
−1

10
0

10
0

10
2

10
4

matching density

or
de

rs
 p

er
 s

ec

0.2 0.4 0.6 0.8 1

0

200

400

600

matching density

or
de

rs
 p

er
 s

ec

(b) Tests with 16,384 orders.

10
−3

10
−2

10
−1

10
0

10
0

10
2

matching density

or
de

rs
 p

er
 s

ec

0.2 0.4 0.6 0.8 1

0

20

40

60

80

matching density

or
de

rs
 p

er
 s

ec

(c) Tests with 262,144 orders.

Figure 8.12: Dependency of the throughput on the matching density. The legend is
the same as in Figure 8.9.
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Commercial paper. When a large company needs a short-term loan, it may issue

commercial paper, which is a fixed-interest “promissory note” similar to a bond. The

company sells commercial paper to investors for a certain period of time, and later

returns their money with interest; the payment day is called the maturity date. The

main difference from bonds is duration of the loan; commercial paper is issued for

a short term, from one week to nine months. The appropriate interest depends on

the current rate of US Treasury bonds, company’s reputation, and paper’s time until

maturity.

After investors buy a commercial paper, they may resell it on a secondary market

before the maturity date. For example, suppose that Katie has bought a three-month

paper in May, and then decided that she needs money in June. Then, she may resell

the paper and keep part of the interest; if the rate has not changed, she will get

one-month interest. On the other hand, if the interest rate of the company’s paper

has changed, the sale price may be different. If Katie is lucky, she may get more than

one-month interest, but in an unfavorable case she may get smaller interest or even

lose part of her investment.

We have described commercial paper by two attributes:

(1) Company (5000 values): 5000 US companies.

(2) Maturity date (2550 values): Business days from year 2001 to 2010.

We have run experiments with up to 524,288 orders; we show the results in Fig-

ures 8.13 and 8.14, and plot the dependency of the system’s performance on the

control variables in Figures 8.15–8.18. The experiments have confirmed that the sys-

tem scales to large markets, and that its performance in real-life markets is close to

the artificial-test results.

The best-first search system usually processes 100 to 10,000 new orders per

second; it outperforms the depth-first search that identifies all matches by a factor

of 2.3 to 8.8, with mean at 4.5. On the other hand, it is slower than the limited

depth-first search; thus, the search for optimal matches takes more time than the

suboptimal matching. This speed difference is especially significant in markets with

high matching density; in particular, if the density is 1, the best-first search is hundred

times slower than the limited depth-first search.
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Figure 8.13: Performance in the commercial-paper market for matching density of
0.001 (left) and 0.01 (right). We show the performance of the best-first search (solid
lines), depth-first search that identifies all matches (dashed lines), and depth-first
search with a limit on the number of matches (dotted lines).
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Figure 8.14: Performance in the commercial-paper market for matching density of
0.1 (left) and 1 (right). The legend is the same as in Figure 8.13.
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Figure 8.15: Dependency of the total matching time on the number of orders. We give
the results for the best-first search (solid lines), depth-first search that identifies all
matches (dashed lines), and depth-first search with a limit on the number of matches
(dotted lines). The graphs on the left are in logarithmic scale, whereas the graphs on
the right are in linear scale.
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(b) Tests with matching density of 0.01.
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(c) Tests with matching density of 1.

Figure 8.16: Dependency of the throughput on the number of orders. The legend is
the same as in Figure 8.15.
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Figure 8.17: Dependency of the total matching time on the matching density. The
legend is the same as in Figure 8.15.
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(b) Tests with 16,384 orders.
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Figure 8.18: Dependency of the throughput on the matching density. The legend is
the same as in Figure 8.15.
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Chapter 9

Concluding remarks

Although researchers have long realized the importance of exchange markets, they

have not applied the exchange model to trading complex commodities. The reported

work is a step toward the development of automated complex-commodity exchanges,

based on the formal model proposed by Johnson [2001] and Hu [2002].

We have defined price and quality functions, which allow traders to specify

price constraints and preference among potential trades, and developed algorithms

for fast identification of highest-quality matches between buy and sell orders. These

algorithms help to maximize the satisfaction of traders and enforce “fair” choices

among available matches, which are consistent with financial-industry rules of fair

trading.

The implemented system supports markets with up to 300,000 orders, and it

processes hundreds of new orders per second. Its speed is close to the speed of the

earlier versions of the system, which did not use price and quality functions and did

not guarantee finding best matches.
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Appendix A

Artificial markets

We give detailed results of artificial-market experiments described in Section 8.1.

A.1 Processing time

We show the mean time of processing new orders in the first half of the system’s

top-level loop (Figure 6.3) for various settings of the control variables. We also mark

the minimal and maximal values of the time measurements.
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(c) Market with ten attributes.

Figure A.1: Time of processing the new orders for matching density of 0.001. We
consider markets with 2 values per attribute (left), 16 values per attribute (middle),
and 1,024 values per attribute (right). We show the dependency of the processing
time on the number of orders for the best-first search (solid lines), depth-first search
that identifies all matches (dashed lines), and depth-first search with a limit on the
number of matches (dotted lines). Both horizontal and vertical scales are logarithmic,
and the vertical bars mark the minimal and maximal values of the time measurements.
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(c) Market with ten attributes.

Figure A.2: Time of processing the new orders for matching density of 0.01. The
legend is the same as in Figure A.1.
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(c) Market with ten attributes.

Figure A.3: Time of processing the new orders for matching density of 0.1. The
legend is the same as in Figure A.1.
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(c) Market with ten attributes.

Figure A.4: Time of processing the new orders for matching density of 1. The legend
is the same as in Figure A.1.
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A.2 Matching time

We give the mean time of matching all pending buy orders in the second half of the

system’s top-level loop (Figure 6.3), along with the minimal and maximal values of

the time measurements.
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Figure A.5: Time of matching the pending orders for matching density of 0.001. We
consider markets with 2 values per attribute (left), 16 values per attribute (middle),
and 1024 values per attribute (right). We show the dependency of the matching time
on the number of orders for the best-first search (solid lines), depth-first search that
identifies all matches (dashed lines), and depth-first search with a limit on the number
of matches (dotted lines). Both horizontal and vertical scales are logarithmic, and
the vertical bars mark the minimal and maximal values of the time measurements.
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(b) Market with three attributes.
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(c) Market with ten attributes.

Figure A.6: Time of matching the pending orders for matching density of 0.01. The
legend is the same as in Figure A.5.
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(a) Market with one attribute.
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(b) Market with three attributes.
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(c) Market with ten attributes.

Figure A.7: Time of matching the pending orders for matching density of 0.1. The
legend is the same as in Figure A.5.
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(a) Market with one attribute.
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(b) Market with three attributes.
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(c) Market with ten attributes.

Figure A.8: Time of matching the pending orders for matching density of 1. The
legend is the same as in Figure A.5.
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A.3 Maximal throughput

We show the limit on the number of new orders per second. If the matcher gets more

orders, it rejects some of them.
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(a) Market with one attribute.
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(b) Market with three attributes.
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(c) Market with ten attributes.

Figure A.9: Maximal number of orders per second for matching density of 0.001. We
consider markets with 2 values per attribute (left), 16 values per attribute (middle),
and 1,024 values per attribute (right). We show the dependency of the system’s
throughput on the number of orders for the best-first search (solid lines), depth-first
search that identifies all matches (dashed lines), and depth-first search with a limit
on the number of matches (dotted lines). Both horizontal and vertical scales are
logarithmic.
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(b) Market with three attributes.
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(c) Market with ten attributes.

Figure A.10: Maximal number of orders per second for matching density of 0.01. The
legend is the same as in Figure A.9.
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(c) Market with ten attributes.

Figure A.11: Maximal number of orders per second for matching density of 0.1. The
legend is the same as in Figure A.5.
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(b) Market with three attributes.
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(c) Market with ten attributes.

Figure A.12: Maximal number of orders per second for matching density of 1. The
legend is the same as in Figure A.5.
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