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Abstract – We present a system for indexing large sets 
of records, and retrieving exact and approximate 
matches for a given query. We define records, queries, 
and matches between them, describe an indexing struc-
ture for fast identification of exact and approximate 
matches, and give results of testing the system on a 
database of hospital patients. 

Keywords: Massive data, indexing and retrieval, ap-
proximate matches. 

 
1 Introduction 
 We have developed a data structure and search algo-
rithms for identifying exact and approximate matches in 
a large set of records, and tested them on a database of 
patients admitted to the Massachusetts hospitals in the 
2001 and 2002 fiscal years. We explain the related rep-
resentation of records and queries (Section 2), describe 
the developed technique for retrieval of records that 
match a given query (Sections 3 and 4), and show how 
its performance depends on the number of records, 
query type, and size of the available memory (Sec-
tion 5). 
 
2 Records and queries 

We first define records and queries, and illustrate them 
with an example of patient data. We specify a table of 
records by a list of attributes; as a simplified example, 
we can describe patients by their sex, age, and diagnosis. 
A record includes a specific value for each attribute; for 
example, it may indicate that a patient is female, her age 
is 30, and her diagnosis is asthma. On the other hand, a 

query may include multiple values for each attribute; that 
is, it may include some set I1 of values for the first at-
tribute, some set I2 for the second attribute, and so on. 
For example, if we need to retrieve all patients between 
20 and 40 years old, who have either asthma or flu, we 
can use the query ({male, female}, [20..40], {asthma, 
flu}). We may specify a query attribute by a single value, 
a numeric range, or a set of several values or ranges. An 
n-attribute record (i1, i2,..., in) is an exact match for a 
query (I1, I2,..., In) if i1 ∈ I1, i2 ∈ I2, and so on; that is, 
every value in the record belongs to the respective set in 
the query. If a query specifies one value for each attrib-
ute, it is called a point query; if it includes ranges or sets, 
it is a region query. 

The notion of approximate matches is based on dis-
tances between records. We specify a distance function 
for each attribute, along with an n-argument function 
that combines attribute distances into an overall distance. 
An attribute distance is a two-argument function, with 
nonnegative values, which must give zero for identical 
arguments. The n-argument combination function must 
give zero when all arguments are zeros, and it must be 
monotonically increasing on each argument. The dis-
tance from a record to a region query is defined as the 
smallest distance between the record and the region 
specified by the query. In particular, if the record exactly 
matches the query, the distance is zero. When looking 
for approximate matches, we specify not only query 
attributes, but also a distance function, number of 
matches, and distance limit; note that we may use differ-
ent distance functions with different queries. If the data-
base includes more than the given number of matches 
within the specified distance limit, the system retrieves 
the given number of the closest matches; else, it returns 
all matches within the distance limit. 
 



3 Indexing structure 
The system arranges all records into a tree, with height 

equal to the number of attributes, as shown in Figure 1. 
The root node encodes the first attribute, and its children 
represent different values of this attribute. The nodes at 
the second level divide the orders by the second attrib-
ute, and each node at the third level corresponds to spe-
cific values of the first two attributes. In general, a node 
at level i divides records by the values of the ith attrib-
ute, and each node at level (i + 1) corresponds to all 
records with specific values of the first i attributes. 

Every node includes a red-black tree, which indexes its 
children by the corresponding attribute; for example, 
each “age” node in Figure 1 includes a red-black tree 
that arranges its children by age values. This tree sup-
ports fast addition and deletion of children, as well as 
fast retrieval of all children in a given range. The nodes 
also include summary data that help to identify approxi-
mate matches; specifically, every node stores the mini-
mal and maximal value of each numeric attribute in the 
corresponding subtree. 

When the system adds a new record, it creates the ap-
propriate new branch in the indexing tree, and updates 
the summary data of the ancestors of this branch. When 
removing a record, it deletes the corresponding leaf 
node, and updates the summary values of the ancestor 
nodes. If the deleted leaf is the only leaf in some subtree, 
the system removes this subtree; for example, the dele-
tion of the leftmost leaf in Figure 1 leads to the removal 
of its parent. 

If the tree size is smaller than the size of the available 
memory, the system keeps the entire tree in memory; 
otherwise, it divides the tree into fixed-size blocks and 
stores them on disk. We usually use 1-Kbyte blocks, 
which means that the total size of nodes in a block must 
be at most 1 Kbyte. In Figure 1, we show blocks by 
dashed boxes; a block may include a single node, several 
adjacent nodes, or part of a large node that does not fit 
into a block. If a block includes multiple nodes, they 
form a tree, which is part of the indexing tree. The over-
all block structure is also a tree, where the edges between 
blocks correspond to the cross-block edges of the index-
ing tree. This structure supports addition and deletion of 
records, which involves dynamic splitting of overfull 
blocks and dynamic merging of adjacent underfull 
blocks. 
 
4 Search for matches 

We use two algorithms that retrieve matches for a 
given query; the first is depth-first search, which identi-
fies exact matches, and the second is best-first search, 
which finds approximate matches. 

The depth-first algorithm begins by identifying all 
children of the root that match the first attribute of the 
query, and then recursively processes the respective 
subtrees. For example, suppose that we are looking for 
30-year old patients of both sexes with asthma or ulcer, 
and the indexing tree is as shown in Figure 1. The algo-

rithm determines that both children of the root match the 
first attribute of the query, and then processes the respec-
tive subtrees. It identifies two matching nodes for the 
second attribute, and three matching leaves for the third 
attribute; we show these nodes by thick boxes. 

The best-first algorithm uses a node’s summary data to 
estimate the distance to the closest possible match in the 
node’s subtree. It arranges nodes into a priority queue by 
their distance estimates; at each step, it processes the 
smallest-estimate node. If this node is a leaf, it returns 
the respective record; else, it adds the node’s children 
that match the next attribute of the query to the priority 
queue. 
 
5 Experiments 

We have experimented with a medical database, ob-
tained from the Massachusetts Health Data Consortium, 
which contains a list of all patients admitted to the Mas-
sachusetts hospitals in the 2001 and 2002 fiscal years, 
that  is, from October 2000 to September 2002. These 
data are anonymous, which means that the database does 
not contain enough personal information to identify 
individual patients. The database includes 1.6 million 
patient records, described by seventy attributes; we have 
used twenty-one of these attributes to build an indexing 
tree. The size of the tree that includes all 1.6 million 
records is 890 MBytes. We have used a 2.4-GHz Xeon 
computer with 400-MHz bus, and we have run the sys-
tem with five different sizes of the main memory: 64 
MBytes, 128 MBytes, 256 MBytes, 512 MBytes, and 
1,024 MBytes.  

In Figure 2, we show the dependency of the retrieval 
time on the number of records, using logarithmic scale. 
We have measured the speed of retrieving exact matches 
for point queries (dotted lines), exact matches for region 
queries (dashed lines), and approximate matches (solid 
lines). If the memory size is 1,024 Mbytes, the system 
stores all 1.6 million records in memory; if the memory 
is smaller, the system stores part of the indexing tree on 
disk. The graphs show that, when the tree grows beyond 
the memory size, the retrieval time increases sharply. In 
Figure 3, we give a different view of the same results; 
specifically, we plot the dependency of the retrieval time 
on the memory size for three fixed sizes of the indexing 
tree. 

The results show that the disk indexing is 10 to 50 
times slower than the memory indexing. When the sys-
tem keeps the tree in memory, the retrieval of matches 
for exact point queries is 2 to 5 times faster than that for 
region and approximate queries. When the system uses 
the disk indexing, exact point queries are 50 to 200 times 
faster than region and approximate queries. 

The retrieval time for exact point queries is propor-
tional to the logarithm of the number of records; that is, 
its time complexity is O(lg N), where N is the number of 
records. On the other hand, the time of region and ap-



proximate queries is proportional to a low power of the 
number of records; specifically, it is approximately 
O(N 0.2) for the memory indexing, and O(N 0.5) for the 
disk indexing. 

We have also measured the disk utilization, that is, the 
ratio of the actual tree size to the total size of disk 
blocks; it varies from 54% to 58%, with mean at 55%. 
 
6 Conclusions 
The reported work is a step toward the development of 
tools for fast identification of patterns in large databases. 
It is part of a joint project involving Carnegie Mellon 
University and DYNAMiX Technologies, aimed at finding 
both known and surprising patterns in massive data 
streams [3]. The described system supports fast access to 
available data, and serves as a tool for the development 
of data-mining algorithms. 
 The experiments have confirmed that the system 
scales to large databases, which do not fit into the main 
memory; however, the observed time complexity of 
retrieval for such databases is O(N 0.5), which means that 
the retrieval time grows fairly quickly with the database 
size, hence restricting the system’s scalability. 
 To improve the retrieval speed, we are working on 
the integration of the current indexing tree with k-d trees 
[1, 5] and PATRICIA trees [4], and on techniques for 
determining the most effective ordering of attributes in 
the tree. We also plan to enhance scalability by improv-
ing the disk utilization and developing a distributed 
version of the system. The long-term goal is to scale the 
system to databases with tens or hundreds of billions of 
records. 
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Figure 1: Indexing tree with patient records. The solid boxes are nodes of the tree, and the large dashed boxes are blocks 
used in the disk indexing. We use thick boxes to show the retrieval of 30-year old asthma and ulcer patients of both sexes. 
 

 
Figure 2: Dependency of the retrieval time on the number of records; the scale of both horizontal and vertical axes is loga-
rithmic. We give the results of experiments with five sizes of the main memory: 64 MBytes, 128 MBytes, 256 MBytes, 
512 MBytes, and 1,024 MBytes. For every memory size, we show the time of retrieving exact matches for point queries 
(dotted lines), exact matches for region queries (dashed lines), and approximate matches (solid lines). 
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Figure 3: Dependency of the retrieval time on the size of the main memory; the scale of both horizontal and vertical axes is 
logarithmic. We show the dependency for three sizes of the indexing tree: 100,000 records, 400,000 records, and 1,600,000 
records. For every size, we plot the retrieval time for exact point queries (dotted lines), exact region queries (dashed lines), 
and approximate queries (solid lines). 
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