
Search for Approximate Matches in Large Databases*

Eugene Fink
Language Technologies

Carnegie Mellon University
Pittsburgh, PA 15213
e.fink@cs.cmu.edu

Philip Hayes

DYNAMiX Technologies
12330 Perry Highway
Wexford, PA 15090

phayes@dynamixtechnologies.com

Aaron Goldstein
DYNAMiX Technologies
12330 Perry Highway
Wexford, PA 15090

agoldstein@dynamixtechnologies.com

Jaime G. Carbonell
Language Technologies

Carnegie Mellon University
Pittsburgh, PA 15213

jgc@cs.cmu.edu

* 0-7803-8566-7/04/$20.00 2004 IEEE.

Abstract – We present a system for indexing large sets
of records, and retrieving exact and approximate
matches for a given query. We define records, queries,
and matches between them, describe an indexing struc-
ture for fast identification of exact and approximate
matches, and give results of testing the system on a
database of hospital patients.

Keywords: Massive data, indexing and retrieval, ap-
proximate matches.

1 Introduction
 We have developed a data structure and search algo-
rithms for identifying exact and approximate matches in
a large set of records, and tested them on a database of
patients admitted to the Massachusetts hospitals in the
2001 and 2002 fiscal years. We explain the related rep-
resentation of records and queries (Section 2), describe
the developed technique for retrieval of records that
match a given query (Sections 3 and 4), and show how
its performance depends on the number of records,
query type, and size of the available memory (Sec-
tion 5).

2 Records and queries

We first define records and queries, and illustrate them
with an example of patient data. We specify a table of
records by a list of attributes; as a simplified example,
we can describe patients by their sex, age, and diagnosis.
A record includes a specific value for each attribute; for
example, it may indicate that a patient is female, her age
is 30, and her diagnosis is asthma. On the other hand, a

query may include multiple values for each attribute; that
is, it may include some set I1 of values for the first at-
tribute, some set I2 for the second attribute, and so on.
For example, if we need to retrieve all patients between
20 and 40 years old, who have either asthma or flu, we
can use the query ({male, female}, [20..40], {asthma,
flu}). We may specify a query attribute by a single value,
a numeric range, or a set of several values or ranges. An
n-attribute record (i1, i2,..., in) is an exact match for a
query (I1, I2,..., In) if i1 ∈ I1, i2 ∈ I2, and so on; that is,
every value in the record belongs to the respective set in
the query. If a query specifies one value for each attrib-
ute, it is called a point query; if it includes ranges or sets,
it is a region query.

The notion of approximate matches is based on dis-
tances between records. We specify a distance function
for each attribute, along with an n-argument function
that combines attribute distances into an overall distance.
An attribute distance is a two-argument function, with
nonnegative values, which must give zero for identical
arguments. The n-argument combination function must
give zero when all arguments are zeros, and it must be
monotonically increasing on each argument. The dis-
tance from a record to a region query is defined as the
smallest distance between the record and the region
specified by the query. In particular, if the record exactly
matches the query, the distance is zero. When looking
for approximate matches, we specify not only query
attributes, but also a distance function, number of
matches, and distance limit; note that we may use differ-
ent distance functions with different queries. If the data-
base includes more than the given number of matches
within the specified distance limit, the system retrieves
the given number of the closest matches; else, it returns
all matches within the distance limit.

3 Indexing structure
The system arranges all records into a tree, with height

equal to the number of attributes, as shown in Figure 1.
The root node encodes the first attribute, and its children
represent different values of this attribute. The nodes at
the second level divide the orders by the second attrib-
ute, and each node at the third level corresponds to spe-
cific values of the first two attributes. In general, a node
at level i divides records by the values of the ith attrib-
ute, and each node at level (i + 1) corresponds to all
records with specific values of the first i attributes.

Every node includes a red-black tree, which indexes its
children by the corresponding attribute; for example,
each “age” node in Figure 1 includes a red-black tree
that arranges its children by age values. This tree sup-
ports fast addition and deletion of children, as well as
fast retrieval of all children in a given range. The nodes
also include summary data that help to identify approxi-
mate matches; specifically, every node stores the mini-
mal and maximal value of each numeric attribute in the
corresponding subtree.

When the system adds a new record, it creates the ap-
propriate new branch in the indexing tree, and updates
the summary data of the ancestors of this branch. When
removing a record, it deletes the corresponding leaf
node, and updates the summary values of the ancestor
nodes. If the deleted leaf is the only leaf in some subtree,
the system removes this subtree; for example, the dele-
tion of the leftmost leaf in Figure 1 leads to the removal
of its parent.

If the tree size is smaller than the size of the available
memory, the system keeps the entire tree in memory;
otherwise, it divides the tree into fixed-size blocks and
stores them on disk. We usually use 1-Kbyte blocks,
which means that the total size of nodes in a block must
be at most 1 Kbyte. In Figure 1, we show blocks by
dashed boxes; a block may include a single node, several
adjacent nodes, or part of a large node that does not fit
into a block. If a block includes multiple nodes, they
form a tree, which is part of the indexing tree. The over-
all block structure is also a tree, where the edges between
blocks correspond to the cross-block edges of the index-
ing tree. This structure supports addition and deletion of
records, which involves dynamic splitting of overfull
blocks and dynamic merging of adjacent underfull
blocks.

4 Search for matches

We use two algorithms that retrieve matches for a
given query; the first is depth-first search, which identi-
fies exact matches, and the second is best-first search,
which finds approximate matches.

The depth-first algorithm begins by identifying all
children of the root that match the first attribute of the
query, and then recursively processes the respective
subtrees. For example, suppose that we are looking for
30-year old patients of both sexes with asthma or ulcer,
and the indexing tree is as shown in Figure 1. The algo-

rithm determines that both children of the root match the
first attribute of the query, and then processes the respec-
tive subtrees. It identifies two matching nodes for the
second attribute, and three matching leaves for the third
attribute; we show these nodes by thick boxes.

The best-first algorithm uses a node’s summary data to
estimate the distance to the closest possible match in the
node’s subtree. It arranges nodes into a priority queue by
their distance estimates; at each step, it processes the
smallest-estimate node. If this node is a leaf, it returns
the respective record; else, it adds the node’s children
that match the next attribute of the query to the priority
queue.

5 Experiments

We have experimented with a medical database, ob-
tained from the Massachusetts Health Data Consortium,
which contains a list of all patients admitted to the Mas-
sachusetts hospitals in the 2001 and 2002 fiscal years,
that is, from October 2000 to September 2002. These
data are anonymous, which means that the database does
not contain enough personal information to identify
individual patients. The database includes 1.6 million
patient records, described by seventy attributes; we have
used twenty-one of these attributes to build an indexing
tree. The size of the tree that includes all 1.6 million
records is 890 MBytes. We have used a 2.4-GHz Xeon
computer with 400-MHz bus, and we have run the sys-
tem with five different sizes of the main memory: 64
MBytes, 128 MBytes, 256 MBytes, 512 MBytes, and
1,024 MBytes.

In Figure 2, we show the dependency of the retrieval
time on the number of records, using logarithmic scale.
We have measured the speed of retrieving exact matches
for point queries (dotted lines), exact matches for region
queries (dashed lines), and approximate matches (solid
lines). If the memory size is 1,024 Mbytes, the system
stores all 1.6 million records in memory; if the memory
is smaller, the system stores part of the indexing tree on
disk. The graphs show that, when the tree grows beyond
the memory size, the retrieval time increases sharply. In
Figure 3, we give a different view of the same results;
specifically, we plot the dependency of the retrieval time
on the memory size for three fixed sizes of the indexing
tree.

The results show that the disk indexing is 10 to 50
times slower than the memory indexing. When the sys-
tem keeps the tree in memory, the retrieval of matches
for exact point queries is 2 to 5 times faster than that for
region and approximate queries. When the system uses
the disk indexing, exact point queries are 50 to 200 times
faster than region and approximate queries.

The retrieval time for exact point queries is propor-
tional to the logarithm of the number of records; that is,
its time complexity is O(lg N), where N is the number of
records. On the other hand, the time of region and ap-

proximate queries is proportional to a low power of the
number of records; specifically, it is approximately
O(N 0.2) for the memory indexing, and O(N 0.5) for the
disk indexing.

We have also measured the disk utilization, that is, the
ratio of the actual tree size to the total size of disk
blocks; it varies from 54% to 58%, with mean at 55%.

6 Conclusions
The reported work is a step toward the development of
tools for fast identification of patterns in large databases.
It is part of a joint project involving Carnegie Mellon
University and DYNAMiX Technologies, aimed at finding
both known and surprising patterns in massive data
streams [3]. The described system supports fast access to
available data, and serves as a tool for the development
of data-mining algorithms.
 The experiments have confirmed that the system
scales to large databases, which do not fit into the main
memory; however, the observed time complexity of
retrieval for such databases is O(N 0.5), which means that
the retrieval time grows fairly quickly with the database
size, hence restricting the system’s scalability.
 To improve the retrieval speed, we are working on
the integration of the current indexing tree with k-d trees
[1, 5] and PATRICIA trees [4], and on techniques for
determining the most effective ordering of attributes in
the tree. We also plan to enhance scalability by improv-
ing the disk utilization and developing a distributed
version of the system. The long-term goal is to scale the
system to databases with tens or hundreds of billions of
records.

Acknowledgements
We are grateful to Johny Mathew for his extensive help
with experiments. We thank Dwight Dietrich and Ga-
nesh Mani for their valuable comments and suggestions.
This work has been partially supported by the Advanced
Research and Development Activity (ARDA), Novel
Intelligence from Massive Data Program.

References
[1] Jon Louis Bentley. Multidimensional binary search
trees used for associative searching. Communications of
the ACM, 18(9), pages 509–517, 1975.

[2] Dan Gusfield. Algorithms on Strings, Trees, and
Sequences: Computer Science and Computational Biol-
ogy. Cambridge University Press, Cambridge, United
Kingdom, 1997.

[3] Chun Jin and Jaime G. Carbonell. ARGUS: Rete +
DBMS = efficient continuous profile matching on large-
volume data streams. Language Technologies Institute,
Carnegie Mellon University, 2004. Technical Report
CMU-CS-04-181.

[4] Donald R. Morrison. PATRICIA—practical algo-
rithm to retrieve information coded in alphanumeric.
Journal of the ACM, 15(4), pages 514–534, 1968.

[5] Jack A. Orenstein. Multidimensional tries used for
associative searching. Information Processing Letters,
14(4), pages 150–157, 1982.

[6] Stuart J. Russell and Peter Norvig. Artificial Intel-
ligence: A Modern Approach. Prentice Hall, Upper
Saddle River, NJ, second edition, 2003.

[7] Hanan Samet. Applications of Spatial Data Struc-
tures: Computer Graphics, Image Processing, and GIS.
Addison-Wesley, Reading, MA, 1990.

[8] Hanan Samet. The Design and Analysis of Spatial
Data Structures. Addison-Wesley, Reading, MA, 1990.

Figure 1: Indexing tree with patient records. The solid boxes are nodes of the tree, and the large dashed boxes are blocks
used in the disk indexing. We use thick boxes to show the retrieval of 30-year old asthma and ulcer patients of both sexes.

Figure 2: Dependency of the retrieval time on the number of records; the scale of both horizontal and vertical axes is loga-
rithmic. We give the results of experiments with five sizes of the main memory: 64 MBytes, 128 MBytes, 256 MBytes,
512 MBytes, and 1,024 MBytes. For every memory size, we show the time of retrieving exact matches for point queries
(dotted lines), exact matches for region queries (dashed lines), and approximate matches (solid lines).

diagnosis

male, 30,
asthma

female, 30,
asthma

male, 40,
flu

female, 50,
flu

female, 30,
ulcer

female, 30,
fracture

diagnosis diagnosis diagnosis

ageage

sex
male female

3040 50 30

asthma flu fracture ulcerasthma flu

101

102

104

103

100

102 103 104 105 106

64-MByte memory

number of records

retrieval
time

(msec)
101

102

104

103

100

102 103 104 105 106

128-MByte memory

number of records

101

102

104

103

100

102 103 104 105 106

256-MByte memory

number of records

101

102

104

103

100

102 103 104 105 106

512-MByte memory

number of records

101

102

104

103

100

102 103 104 105 106

1,024-MByte memory

number of records

retrieval
time

(msec)

retrieval
time

(msec)

retrieval
time

(msec)

retrieval
time

(msec)

Figure 3: Dependency of the retrieval time on the size of the main memory; the scale of both horizontal and vertical axes is
logarithmic. We show the dependency for three sizes of the indexing tree: 100,000 records, 400,000 records, and 1,600,000
records. For every size, we plot the retrieval time for exact point queries (dotted lines), exact region queries (dashed lines),
and approximate queries (solid lines).

101

102

104

103

100

64 128 256 512 1,024

100,000 records

memory size (MByte)

101

102

104

103

100

64 128 256 512 1,024

400,000 records

memory size (MByte)

101

102

104

103

100

64 128 256 512 1,024

1,600,000 records

memory size (MByte)

retrieval
time

(msec)

retrieval
time

(msec)

retrieval
time

(msec)

