Natural Language Calendar Scheduling Agent

Anthony Tomasic, Robert Kraut, Jason Hong, John Zimmerman,

Giora Unger, Yuhua Li, Emily Leathers
1 Introduction

This document describes the requirements, user scenarios, architecture and functionality of an agent that assists a user in the negotiation of meetings and other events (e.g., weekly seminars) recorded in a calendar. The agent functions in several steps:

(1) receive an incoming natural language message,

(2) determine that the message involves calendar negotiation,

(3) associate the message with the corresponding negotiation (or create a new negotiation),

(4) determine the stage of negotiation as changed by the incoming message,

(5) determine the action to take (if any),

(6) compute the date and time constraints associated with the action,

(7) present the filled out reply to the user (or send automatically if the user trusts the agent),

(8) accept corrections from the user in terms of editing the reply, and

(9) send the reply message through email (or other message system).

Steps 2, 3, 4, 5, 6, and 8 involve learning. For the moment, the agent provides help with negotiating the date, time and duration of a meeting. The above steps refer to cases where incoming messages trigger action. There are also cases where the user triggers an action by requesting to send an outgoing message, e.g. when initiating a new meeting negotiation. In these cases, the flow is very similar, though slightly different.

2 Requirements

· System must reduce human-machine interaction time for meeting scheduling by at least 50%.

· System must reduce time to negotiate a meeting by at least 50%.

· System must be able to send/receive messages to/from users that do not have agents. Thus the system must understand and generate natural language.

3 Scenarios

Meetings are one of the following categories:

· “public” (a meeting with several attendees not explicitly scheduled to attend, such as a seminar)

· “multilateral” (many people)

· “bilateral” (two people)

· “unilateral” (one person). Unilateral meetings are not really meetings, and are used to add notes to a calendar or reserve time for personal work.

Please note that it’s not necessarily easy for the agent to understand what the category of a given meeting is. Specifically, extracting the number of participants is tricky, as people who shouldn’t attend the meeting (e.g. secretaries) might be in the “To” or “Cc” field. Additionally, a request for multilateral meeting sent to a mailing list can easily be misinterpreted as a bilateral meeting.

[I thought this general paragraph belongs here and not to section 5.3 (under ”Classify Negotiation Step”) where it previously was – Giora. TODO: remove this comment]

3.1 Bilateral
User A sends a natural language message to user B to schedule a meeting about subject S at date D, time T, location L and duration R [S, D, T, L, R are all optional but when specified they are constraints over a range of values in a domain, e.g. “RADAR hiring”, “next week”, “morning”, “on campus”, “short meeting”, etc.].

In a variation on this scenario, user A sends message to her agent A to meet with user B and gives a constraint for S, D, T, L, and/or R. Agent A sends a single message with two encodings to user B. One encoding is machine readable, the second encoding is natural language. If user B does not have an agent, that user processes the natural language encoding, otherwise agent A communicates with agent B via the machine readable version. In this latter case, user B’s agent reads the message, determines a reply, presents a composed message of the reply to user B. User B inspects the reply, perhaps edits it, and approves the message. The message is delivered to agent A.

Eventually, user B trusts his agent enough to permit the agent to reply automatically in certain situations. For example, in the case of agreement to a meeting, user B’s agent responds with “Hi! I’m virtual B. I analyzed your message and reserved a spot on B’s schedule to discuss S on D at T in L for R. But you might want to wait for confirmation from B.”

In the case of a negotiation message, user B’s agent responds with, for example, “Hi! I’m virtual B. I analyzed your message and B is currently unavailable to discuss S on D at T. However, he’s available for R1 on D1 at T1 or T2 and D2 at T3 or T4. Please reply to this message if you can move your meeting.”

In the case of rejection of a meeting negotiation, user B’s agent responds with, for example, “Hi! I’m virtual B. I analyzed your message and B currently doesn’t have time to discuss S.” Optionally, the agent might add “A recommends that you discuss S with user P.” [Ed. The association of subject S with P is learned over time from previous examples.]

3.2 Multilateral
User A interacts with agent and sends request to “Schedule meeting about topic T with at least B1, B2… Bi and perhaps C1, C2,…, Cj for duration D.” Agent must help decide location, date and time.

In a variation on this scenario, user A sends a natural language message to an agent server and CC’s the people in the meeting. People in the meeting that are not assisted by agents will reply to the message (thus informing the agent server) in natural language. People in the meeting that are assisted by an agent will have the message intercepted by their agent. The agent (and user) will process the intercepted message as described in the Classify Negotiation Step section. In this variation the agent represents the needs of the organizer of the meeting.

4 Functional Architecture

The functional architecture of the agent is a pipeline of multiple steps. These steps are illustrated in Figure 1, which presents the steps involved in processing e-mail messages, and Figure 2, which presents the full system. Shaded boxes represent data component (either a repository or simply a data structure) and circles represent algorithms. Arrows represent data flow from a data component to an algorithm (input) or from an algorithm to a data component (output). In Figure 2, dashed arrows represent data flowing from an algorithm to another algorithm with an implied data component. The implied data component is suppressed in the diagram to improve clarity.

[image: image1]
Figure 1: functional architecture of email messages processing

[image: image2]
Figure 2: Full Functional Architecture of an Agent

[Ed. Open issues:

1. “Learn NLP” is not necessarily after “Classify Message”, but rather in parallel or before it. Additionally, “Learn NLP” seems to need to receive only the “new portion” of the message, without quoted text etc., as this is the way TEA2 works.

2. Attempt to refine “Instance” and come up with a more self-explanatory name.

3. Stripping off quoted text is currently not included in the architecture. Probably has to be executed before “Classify Negotiation Step”]

The functional architecture consists of these data components and algorithms:

· IMAP – the E-Mail IMAP server that stores incoming e-mail messages. We handle E-mail only right now, eventually other forms of natural language communication.

· Read E-mail – the process that polls incoming e-mail messages and delivers newly arrived messages.

· Incoming E-Mail – the newly arrived e-mail message

· Outgoing E-Mail – an email message that was sent by the user who uses this agent. Outgoing messages are written in natural language, and are intercepted and handled the same way incoming messages are handled.

· Classify Message – Learns to classify the message as related to meeting negotiation or not. The classification model is based on the history of messages and the true-label of these messages. The true label of these messages is extracted from the Reply GUI component and Reply User Interaction (below). If the message is not a meeting negotiation message, it is discarded or sent to another agent.

· Meeting E-Mail – the set of all e-mail messages that are meeting negotiation related

· Negotiation Database – the repository of current threads of discussions about meeting negotiation (and other things)

· Negotiation Detection (Entity Resolution) – the matching of the incoming message to a current negotiation or the establishment of a new negotiation.

· Updated Negotiation – the set of messages and state information corresponding to the negotiation thread. If no negotiation exists, a new negotiation is started.

· Classify Negotiation Step – classification of a new e-mail (in the context of its negotiation) into one of the transition edges of the negotiation model. Every message should be classified into some edge of the negotiation model, with the exception of messages classified as “late” or “absent” (see below).

· Instance [Ed. try and find a more self-explanatory name] (Updated Negotiation and Classification) – instance is the pair of the negotiation and the assigned class from Negotiation Step Classification algorithm.

· Learn NLP – NLP component that learns a model of translation of NLP into time constraints by considering past corrections to its learning of time constraints. With a model, the component reads the e-mail message, marks all time constraint expressions in the message (TEA1), groups time constraint expressions into related units, and generates a time calculus constraint expression (TEA2) that is the meaning of the time expression.
[Ed. Currently TEA2 does not provide this functionality of grouping time constraints]

· Instance, Constraints – the result of the Learn NLP algorithm is the instance and the associated time constraints.

· Action Reasoning – learn the correct action to take given the task
[TODO: Discuss with Anthony - I’m not sure what this “task” means – where is it extracted? by which algorithm? Only implicitly by which transition the incoming message was mapped to? If so – it still doesn’t encapsulate the case where an action is not triggered by an incoming message], the classification of the negotiation of the e-mail, the sender, the topic, the proposed times, etc.

· Constraint Reasoning – time calculus reasoning system takes as input the time constraints of the task, the action to take, and the preferred meeting time constraints. It then looks up free times in the calendar and generates a time calculus constraint expression representing times that the user is free.

· Calendar – the user’s calendar

· Available Time Constraints – time calculus constraint expression for times the user is free

· Generate Message – generates a natural language message as a reply, attaches a machine readable version to the message, and sends proposal to reply GUI.

· Reply GUI – presents the received e-mail and the reply in a GUI that allows fast correction of agent errors.

· Reply User Interaction – when the user views the automatic reply from the agent, the user interface detects this view and permits the user to correct the agents classification of a message into a particular transition. For example, with each correction of an error, the GUI may re-run the constraint reasoning system to generate a new proposal. (This feedback loop presents an incentive to the user to correct the original NLP analysis.) The corrected meeting negotiation step also updates the user calendar to indicate meetings under negotiation, scheduled meetings, etc. In addition, correction of the natural language text for counter-proposals allows the system to detect preferences in meeting times.

· Message True Label – the true classification of the incoming message as determined by the user.

· Negotiation True Label – the true negotiation classification of the incoming message

· Action True Label [dashed arrow] – the true action to take as indicated by the user

· Preference True Label – the true label of the meeting preferences as indicated by the user

· NLP True Label – the true labels of the constraints expressed in the incoming message

· Negotiation True Label – [dashed arrow] a UI that permits the user to correct the association of a message with a negotiation.

· Learn Preferred Constraints – a model that learns when users are willing to meet and who gets bumped for whom.

5 Implementation

In this section we describe the algorithms listed in the previous section.
5.1 Classify Message

Each incoming message must be classified as containing a meeting negotiation or not. Typically, messages contain three parts – the header information, the new text, and the quoted text. In some cases the new text is intermixed with the quoted text. We plan to try Yiming/Brian Klimt’s classifier and try the set of algorithms available for MinorThird.

Second, we assume that each message contains subsections and that subsections may contain meeting negotiations. In this case, the subsection is sent along. We ignore this fact for the rest of this document and assume that the entire message is a meeting negotiation.
5.2 Negotiation Detection

Negotiation detection is the problem of matching an incoming message to a current negotiation (a set of past messages). Typically, but not always, an incoming message contains good information that can easily link it to a negotiation. This information includes quoted text in the body of the message, the header of the message (e.g., “Subject” line contains an “RE” with the subject text of a previous message), the set of “To”/”From”/”Cc” people are consistent with the negotiation (see caveat above), etc. All of this evidence can be provided to a clustering algorithm (say, k-nearest neighbors) that clusters messages into negotiations. However, the clustering algorithm will not determine if the message is the start of a new negotiation or not. This fact will be determined by the Classify Negotiation Step algorithm below.

Negotiation detection is at the level of messages. We do not do negotiation detection on subsections of a message. [Ed. This restriction might be a problem since people mix meeting negotiation with other forms of communication. However, people may change behavior to accommodate the agent in this case.]

In some cases the problem of negotiation detection is more difficult because the message does not contain a large quantity of information. For example, the message “John, sorry I can’t make our meeting this week, I’m traveling. See you next week …” is not part of the previous negotiation thread. In this case, deep semantic analysis is required to understand the reference to a meeting. We plan to perform this analysis in the future. In the meantime, fortunately, an analysis of our corpus indicates that these messages are rare.

5.3 Classify Negotiation Step

[Ed. Consider splitting this section into multiple parts – one depicting the data structures representing a meeting and its related negotiations, the second elaborates about the classification techniques (e.g. stacking a binary classifier when “accept” is the result of the k-way classifier, to decide whether it should be “accept” or “confirm”), and the third to present the state-machine and describe it in detail.
TODO: discuss with Anthony]

This section elaborates about the representation of a meeting and its related negotiation in the system. It also deals with the closely related aspect of classifying an email message (incoming or outgoing) into one of several types. These types, for the most part, are translated into transitions in the state-machine that represents a meeting, and to required actions that are invoked.

We model meeting negotiation as a finite state machine. A specific meeting is modeled by an instance of a state machine, where the state represents the current negotiation stage of the meeting. Transitions are caused by messages between meeting participants (either incoming messages or outgoing messages), by timeouts or by direct manipulation of the human user. In the future we might also keep track of the fact which was the previous state, a fact that might sometime help in deciding upon future actions, but at the moment this feature is not planned to be implemented.

The system operates under the implicit assumption that each meeting has a meeting-organizer, who is responsible for coordinating the meeting schedule. A distinction between a meeting-organizer and a meeting participant is especially significant in a “multilateral meeting” (see above). The underlying assumption is that the sender who sent an “open” message for a meeting is the meeting-organizer.
When detecting an “open” message, the agent decides that its sender is the meeting-organizer. In case this “open” message is outgoing, that is the sender is the user who owns the agent, the agent prepares itself to maintaining a full list of the meeting participants, as well as the time constraints for each of them and their current negotiation status. It should be noted that an agent of a meeting participant, i.e. a person who is not the meeting-organizer, is not tracking the time constraints and negotiation status for other participants. Furthermore, such an agent changes its state-machine based on only its own messages and messages from the meeting-organizer; messages from other meeting participants do not trigger any change of the state machine, and are used only for keeping track of the general time-constraints attributed to the sender of the message (see elaboration below, in the definition of an “absent” message).

A meeting may be of type either “standing” (for repeated meetings) or “singular”. Meetings are classified into one of these two types. [Ed. We believe that a few key phrases identify a meeting as one or the other so this classification should be detected with high accuracy.]

A “standing meeting” would be represented by a single state-machine, instead of separate data structures and state machines for each of the specific meetings it consists of. That said, exceptions with regard to a specific meeting, for example rescheduling a weekly meeting for a specific week only, will be modeled as well. Continuing with this example, the specific rescheduled meeting will be modeled by a separate state-machine.

It should be noted, however, that given a rescheduling message for a standing meeting, it is sometimes very difficult to determine whether the rescheduling refers to the whole series or to a specific meeting only. The agent is likely to be confused with this task, and not to be able to reliably understand the intention of such a “reschedule” message.

In addition to a state-machine, the agent maintains a data structure representing each meeting. This data structure stores the location of the meeting, its subject, duration, type (“standing” or “singular”), category (“public”, “multilateral”, “bilateral” or “unilateral”). As said above, in the case of a meeting-organizer, the agent should also maintain a full list of the meeting participants, as well as the time constraints for each of them and their current negotiation status (accepted, rejected or didn’t respond). Furthermore, these constraint are to be stored carefully, relating each participant’s status and constraint to the most updated time-slot negotiated, as in typical meeting negotiation several time-slots may be discussed .

Please note also that the category of a meeting should be understood by the agent based on features of the negotiation messages for the meeting, such as the number of people in the “To”, “From” and “Cc” fields and the use of mailing lists to announce seminar type talks. As said above, this task is not at all easy, and the agent is not guaranteed to correctly identify the number of participants in a given meeting. Thus, even the seemingly simple task of distinguishing between a multilateral meeting and a bilateral meeting is not guaranteed to succeed. This is one of the reasons why we decided not to model bilateral meetings using a different, simpler state-machine.

Figure 3: Negotiation State Transition Diagram.

5.3.1 State-Machine for Modeling Meeting Negotiation

Each agent models the state of the negotiation for a given meeting using a state-machine. Edges in this state-machine typically correspond to incoming messages, but not necessarily – in the case where sufficient information about the meeting has been received a transition may not be triggered by an incoming message. For example, a meeting initiator might decide that a meeting participant who didn’t respond is not necessary, and move the meeting to a “SCHEDULED” state. Note, however, that every incoming and outgoing message is necessarily mapped to an edge in this state-machine.

Please note also, that modeling a meeting negotiation using a state-machine may help identifying error conditions, whenever a “forbidden” edge is received. For example, if an agent regards a meeting as if it was in state “DISCUSS”, and an “open” message arrives for this meeting, the agent knows that some error occurred in the system, in one of the previous steps.
As far as a meeting-organizer is concerned, the state of a meeting negotiation consists of the set of people involved in the negotiation and the set of positive and negative constraints associated with each of them. In addition, the state consists of a label of one of four states detailed in the next section. A meeting participant (i.e. a person who is not the meeting-organizer) is concerned only with this label, and doesn’t keep track of the constraint of the other meeting participants. Since multiple negotiation participants have agents, there may be inconsistency between agents about the state of a negotiation. In addition, different agents may have different interpretations about a negotiation. For example, for a multi-lateral meeting, if an individual rejects the meeting, the negotiation state for that individual is “DEAD”, but other individuals may accept the meeting and have a negotiation state of “SCHEDULED”.
5.3.2 Negotiation States

· NULL – initial state before negotiation starts. Actually, this is usually a virtual state, as a meeting in “NULL” state usually doesn’t have an instantiated state-machine. An exception to this is when receiving a “query” message about a meeting that wasn’t negotiated at all. In such a case a state-machine for this meeting will be instantiated and placed in a “NULL” state, implicitly expecting an “open” message to follow.

· DISCUSS – a meeting is under negotiation.

· SCHEDULED – a meeting has an agreed set of members, subject, date, time, duration, and location.

· DEAD – either meeting never was scheduled, or time has passed for a scheduled meeting.

5.3.3 Negotiation Edges

An edge in the state-machine represents transition from a state to another state or to itself (self edge). Typically, edges correspond to email messages (incoming or outgoing), but transitions can also be triggered by other events – an expired timeout or direct manipulation by the human user. Hence, the state-machine must provide a mechanism for such direct manipulation.

Most messages are classified directly into an edge, such as an “open” message, “query” message etc. However, some messages are processed in a higher level outside the state-machine, for example “absent” and “late” (see elaboration below).

Essentially, every type listed in the following subsections corresponds to a potential class in the output of the classifier employed in the Classify Negotiation Step algorithm. According to the determined class, the state-machine is handled and the required action is invoked.

5.3.3.1 Messages processed outside the state-machine

Some email messages do not necessarily correspond directly to edges in a specific state-machine (e.g. “absent”) or have no impact whatsoever on the state (e.g. “late”). Such messages are handled outside the state-machine, essentially in a higher-level, based on the classification given by the classifier.

· Absent – An announcement by a participant or automatic reply stating that a participant will be away for a given period of time.
Each agent maintains a data structure, in which all the information about time constraints of other users is maintained. It should be emphasized that this information is not necessarily attributed to a specific meeting, and that these persons are not necessarily participants of a specific meeting.
When the agent of user A receives an “absent” message from a person B, it is interested in applying this information to all the meetings, for which the following conditions hold:
1. User A is the meeting-organizer.
2. User B is a participant in the meeting.
For each such meeting, the agent interprets the “absent” message as a “reject” message (in the case of a standing meeting) or as a “reschedule” message (in the case of a singular meeting), and injects the appropriate message to the relevant state-machine.
There is another extreme case, where a meeting-organizer, instead of canceling a specific meeting, simply notifies that she will be away, thus implicitly canceling a meeting. This case will not be handled by the agent.

· Late – a notification that a participant will be late in arriving to a scheduled meeting. As this message has no impact whatsoever on the state-machine, it is simply ignored. It should be noted that ideally “late” messages wouldn’t be at all classified as meeting emails, however as the wording in such messages is very similar to other meeting emails, the agent is likely to regard them as meeting emails.

5.3.3.2 Messages corresponding to edges

As said above, most email messages correspond directly to a transition in the state-machine. The various types such messages are listed below. It should be emphasized again, that this concept may help identifying error conditions, whenever a “forbidden” edge is received; in these cases the agent knows that some error occurred in the system, in one of the previous steps.
· Open – Opening a meeting negotiation, suggesting that a meeting be held. The e-mail may contain a specific (“Can you meet tomorrow at 2 pm for ½ hour.”) or a general constraint (“Can you meet sometime to discuss fishing?”).
[Following a discussion with Emily, we decided that seminar announcement, as well as meetings that have no “DISCUSS” state, cannot be open, as they should take you from state “NULL” to state “SCHEDULED”. I moved these cases to be in “Announce”, which is the new name for “Remind” – Giora]

· Accept – a user accepts the current proposal for a meeting, typically with an additional designation of the particular time desired. A confirmation that the meeting time and place are suitable or an RSVP to an announced event. See “confirm” below, which is essentially a special case of “accept”.

· Reject – a participant rejecting the desire to meet in some way. In the case of multilateral meetings, the e-mail is simply a rejection of a person of the meeting. In the case of a one-on-one meeting, the rejection may contain a forwarding pointer to another person. Reject expresses (a) the inability to attend a meeting, (b) inability to attend a meeting at a proposed time without suggesting an alternative, (c) cancellation one's own involvement in a previously agreed upon meeting, or (d) one’s own inability to attend a particular standing meeting (but not the cancellation of the standing meeting). Expression of the inability to attend a meeting but proposing alternative constraints is classified as Negotiate. See “cancel” below, which is essentially a special case of “reject”.

· Negotiate – a counter offer in a meeting negotiation. The e-mail consists of an optional rejection of an existing constraint (“I can’t meet on Tuesday”) and a statement of alternative constraints (“I’m free on Wednesday”). Thus, any response that develops the details of a meeting time and place is classified as a negotiate message.
[Ed. it’s not at all clear how we’re going to understand the contents of a “negotiate” message when in DISCUSS state. Currently TEA alone does not support it, and the agent is likely to fail to understand what’s the required subsequent action to take.]
[Ed. This class can possibly be split into one section ("SUGGEST") with only positive ideas and a second ("COUNTER") that also includes negative information.]

· Query – A request for a reminder of the time or place of a meeting, or whether one is happening at all, or why a meeting didn’t happen.
A special case should be noted: receiving a “query” message about a meeting that wasn’t negotiated at all. In such a case a state-machine for this meeting will be instantiated and placed in a “NULL” state, implicitly expecting an “open” message to follow.

· Announce - A factual announcement of a previously agreed-upon meeting.
This includes seminar announcements and meetings for which there is no negotiation about timing or location, as well as notifications that a meeting will start late.

· Reschedule – the request of a participant to reschedule a scheduled meeting. A statement of desire to move or postpone a singular meeting. Occasionally standing meetings are moved for one meeting only from a regular location or time-slot. This type of email message should be interpreted as a “skip” transition and an “open” transition. As mentioned above, such a case is fairly complex, and probably will not be addressed and handled correctly by the agent.

[Ed. We should examine how, in a multilateral meeting in a SCHEDULED state, a “reschedule” message from a participant is to be interpreted? According the current model, it automatically moves the meeting to DISCUSS, however it’s not clear that the meeting-organizer will necessarily want to do so just because one of the participants expressed his will. We might want , in a multilateral meeting, to treat a “reschedule” message in a similar way to “confirm” – if in SCHEDULED state, consider whether it is to be interpreted as a “reject” (and stay in state SCHEDULED) or as a “rescheduled, and indeed move to state DISCUSS]

· Skip – a participant (usually the meeting-organizer) states that a standing meeting will be skipped (usually skipped once).

5.3.3.3 Special Transitions
In the subsections above, the transitions almost fully correspond to specific types of messages. However, there are also transitions that do not directly correspond to incoming or outgoing messages, for two reasons:

1. Transitions between states can also occur following timeout expiration, or external decision of the human user and a subsequent direct manipulation.

2. Some transitions are indeed caused by a message, but only in specific circumstances – see elaboration about “confirm” and “cancel” below.

· Confirm – this is the transition from DISCUSS state to SCHEDULED state. As said above it can be traversed due to an expired timeout or human user’s direct manipulation. However, it can also be traversed following an “accept” message. Please note that there is no actual “confirm” email message! In other words, when a meeting is in DISCUSS state and an “accept” message is received, the system has to decide whether to stay in DISCUSS state or to traverse to SCHEULED. The current design puts this decision under the responsibility of the classifier: using additional features and information, such as the number of participants who accepted so far etc., the classifier has to decide whether the incoming message is to be classified as “accept” or as “confirm”.
Another point to be mentioned is that if the meeting-organizer doesn’t send a message confirming a meeting, the other participant might never be able to understand that the meeting should be in SCHEDULED state. We claim that the cost of such a scenario is not high, as the calendar of these participants will include the meeting, only with incorrect status. Such occasions are not rare also in the current way used by people to communicate meetings.
[Ed. Please note that an alternative design decision would be to always classify such messages as “accept”, and to invoke a subsequent decision component. In other words – reasoning about the correct action not within the classifier, but using different methods outside the classifier, possibly a binary classifier stacked on top of the k-way classifier]

· Cancel – these are the transitions to DEAD sate, both from DISCUSS and SCHEDULED states. The case is very similar to the one described for the “confirm” transition, only here the system should distinguish between “reject” that traverses a self-edge and “cancel” that traverses to the DEAD state. Again the current design put the responsibility for this decision on the shoulder of the classifier.
[Ed. Exactly as with the “confirm” message, an alternative design decision would be to always classify such messages as “reject”, and to invoke a subsequent decision component, using different methods outside the classifier]

5.4 Classify Negotiation – Experiment

As an initial experiment, we classified 175 messages into categories (a few messages are classified into multiple categories) and classified them purely based on the words. [Ed. FIXME how many raw messages and what cases lead to double classification?] Table 1 shows the results of the best classifier: AdaBoost Decision Tree on the “stripped” corpus. (We also tried multinomial Naïve Bayes and SVM.) The stripped corpus has reply discussions removed from the messages. Note that this table is a lower bound on performance.

	
	BDT
	BDT Stripped

	Edge
	#
	Precision
	Recall
	F1
	Precision
	Recall
	F1

	Absent
	7
	0.2
	1
	0.333333
	1
	1
	1

	Accept
	26
	1
	0.333
	0.499625
	0.454
	0.416
	0.43417

	Late
	1
	N
	0
	--
	N
	0
	--

	Negotiate
	57
	0.482
	0.608
	0.537717
	0.545
	0.521
	0.53273

	Open
	47
	0.272
	0.115
	0.161654
	0.416
	0.192
	0.262737

	Query
	5
	N
	0
	--
	N
	0
	--

	Reject
	5
	N
	0
	--
	0
	0
	--

	Remind
	11
	0
	0
	--
	0.333
	0.142
	0.199099

	Reschedule
	9
	0.285
	0.5
	0.363057
	0.5
	0.25
	0.333333

	Skip
	17
	0.833
	0.625
	0.714163
	0.833
	0.625
	0.714163

Table 1: AdaBoost Decision Tree binary classification performance

5.5 Learn NLP

Every meeting also has attached the current set of time and date constraints broadcast by the members negotiating about the meeting.

To extract these constraints from members, NLP analysis is performed. The analysis consists of application of TEA1 and TEA2 from the NLP group to acquire the constraints, plus some additional analysis to connect the constraints to the statements about them. For example, “I am unavailable after 2 pm tomorrow” means that the associated constraint marks unavailable times in the negotiation space, but “I am available after 2 pm tomorrow” marks available times in the negotiation space.

[Ed. We should consider employing stronger NLP tools to assist the system in the various classification stages]

5.6 Action Reasoning

When processing an incoming message, this algorithm always first performs an update of the meeting state by moving the meeting along the transition diagram edge corresponding to the incoming message. It is then computing new constraints for the negotiation and for the message sender from the derived NLP constraints of the incoming message. Thus, constraints are attached to people and the intersection of those constraints is attached to a particular negotiation.

[NOTE: currently there is no elaboration about Action Reasoning when the triggering event is NOT an incoming message, but a user’s request to compose a message, e.g. initiating a new meeting. Possibly this was the intention with “compose-creation”?! If so, there are two distinct composing events, as I see it – as a response to an incoming message and following a user’s decision to compose a message. I do NOT think these two cases are identical – Giora.]

The system can execute one of the following four actions:

1. auto-reply - executed in response to an incoming message.

2. notify - is used to inform the meeting organizer’s agent that a previously declared tentative slot of this user is now unavailable (note that users do not receive notify messages, only agents - this is the one case where an agent possesses more information than a human).

3. compose-creation - invoked when a user creates a new meeting negotiation or replies to an existing meeting negotiation.

4. none - is used when no action is required of the agent. Note however that, in this case, constraints are still updated.

Auto-reply comes in several flavors: “query”, “accept*”, “reject*”, “negotiate”, and “absent*”. The flavor of the auto-reply dictates the text in the auto-reply. Auto-reply:query gives the answer to a query. Auto-reply:accept* accepts a meeting. Auto-reply:reject* rejects a meeting. Auto-reply”negotiate counter proposes constraints on the meeting. Auto-reply:absent* reports that the user is away on vacation or for work.

Every auto-reply and composed message is also associated with a transition edge in the meeting state diagram. The “notify” and “none” actions do not cause state transition.

The system should learn preferences of the user for meeting times, days, locations, durations, (theoretically, people?). What is the language of preferences? How do preferences differ from constraints?

The “auto-reply” and “none” action decisions are taken based on the following table:

	#
	Edge (Received Message)
	From / To

Negotiation State
	Public / Bi / Multi
	Organizer?
	Standing / Singular
	Action

	1
	Open
	Null / Discuss
	Any
	n/a
	either
	multiple

	2
	Absent
	Null
	any
	n/a
	n/a
	none

	3
	Query
	Null
	any
	n/a
	either
	auto-reply:query

	4
	Absent, accept, negotiate, reject
	Discuss
	Public / Multi
	No
	Either
	none

	5
	accept, negotiate
	Discuss
	Bilateral
	No
	Either
	auto-reply:accept*

	6
	absent, reject
	Discuss
	Bilateral
	No
	Either
	Auto-reply:reject*

	7
	Absent, accept, negotiate, reject
	Discuss
	Public / multi
	Yes
	Either
	multiple

	8
	Query
	Discuss
	Any
	No
	Either
	none

	9
	Query
	Discuss
	Any
	Yes
	Either
	Auto-reply:query

	10
	Reschedule
	Scheduled
	Any
	No
	Either
	Multiple

	11
	Reschedule
	Scheduled
	Any
	Yes
	Either
	Multiple

	12
	Skip
	Scheduled
	Any
	No
	n/a
	None

	13
	Skip
	Scheduled
	Any
	Yes
	n/a
	Multiple

	14
	Remind
	Scheduled
	Any
	Any
	Either
	None

	15
	Reject
	Scheduled
	Any
	No
	Either
	None

	16
	Reject
	Scheduled
	Any
	Yes
	Either
	Auto-reply:reject*

The column definitions are as follows:

Edge (Received Message) – the classification of the received message.

From Negotiation State – the state of the negotiation before the transition implied by the edge.

Public / Bi / Multi – the classification of the meeting as a public, bilateral, multilateral or unilateral meeting. Note that unilateral meetings are sent to oneself.

Organizer – true if the meeting has been organized by the user.

Standing / singular – the classification of the meeting as standing or singular.

Action – the algorithm executed by the agent, as follows:

(1) This case involves a machine learning algorithm that chooses reject, absent, negotiate, or agree transition from the current “discuss” state. The evidence for rejecting a meeting based on the person requesting the meeting includes the list of people in the meeting, the organizer of the meeting, the social network of the user, a history of the people the user has attending meetings. Open and unilateral meetings are never rejected. The absent edge is chosen if the times for the meeting overlap with vacation / travel time in the calendar of the user. [Ed. This requires that vacation and travel time is marked differently in the calendar.] The negotiate edge is taken if the meeting is not rejected and the free times for the meeting do not intersect the free times of the user. The accept edge is taken if the meeting is not rejected and there is an overlapping free time. The user may select a threshold for executing an auto-reply rejection message.

(2) This case corresponds to someone informing you of a trip or vacation independent of any meeting.

(3) This case corresponds to someone asking if we have a meeting. Here, since we think this case is rare and accurate machine learning is difficult, the auto-reply states the set of bilateral meetings with the user and the status of standing meetings organized by this person. (e.g. “Is the CSCW group meeting this week?).

(4) This case corresponds to information received about some other participant in a meeting where the user is not the organizer. No action is taken.

(5) Bilateral meeting where you’ve reach agreement with the other party, even though the user didn’t organize the meeting. The agreement is reached based on the message received.

(6) Bilateral meeting where the user do not reach agreement with the other party. The lack of agreement is based on the message received.

(7) Here the user is the meeting organizer. In this case the user must decide to do nothing (wait for more information), auto-reply:accept*, auto-reply:reject* and auto-reply:negotiate based on the number and importance of the people that have accepted so far and the existence of a common intersection among the important people.

(8) Someone asking about the status of a meeting negotiation that the user has not organized. In this case, do nothing.

(9) Someone asking about the status of a meeting negotiation that the user has organized. In this case, reply with the current state of the negotiation.

(10) Someone asking for a meeting to be rescheduled. In this case, add the users constraints to the current set. Note that this reduces to case 1 technically, assuming that the fact that the meeting has already been scheduled does not influence the question of reject, etc.

(11) Again reduces to case 1, apparently it doesn’t matter if the user is the meeting organizer in the reschedule case.

(12) A user indicating that they, personally, cannot make a meeting. Do nothing.

(13) The meeting organizer indicating that the meeting is skipped. Mark the skipped meeting as cancelled, but keep the standing meeting.

[Ed. We assume some user interface that permits the user to correct auto-reply messages.]

[Ed. Not clear how the “*” label is applied. Where does this happen?]

The compose creation action is taken when the user directly manipulates the e-mail interface.

5.7 Constraint Reasoning

The constraint reasoning component computes the intersection of the current set of proposed meeting times of the participants in the negotiation. Note that the constraint language is slightly complicated by including expressions with various levels of granularity: an interval over some minutes, an interval over a day, or an interval over a week, etc. The constraint language also contains negations.

5.8 Reply GUI

Requirements

Provides feedback to all other learning components.

We imagine a user interface that marks up the message with interpreted information. Hovering the mouse over a piece of text creates a pull down menu that can correct the inference made on that part of the incoming message text.

Change this information may cause the reply text to change.

The same feature is provided on the reply text to delete some constraints, change message to a rejection message, etc.
5.9 Learn Preferred Constraints

This component must learn when a user prefers to schedule new meetings.

5.10 Timeouts

There are two different types of timeouts (a.k.a. alarms) in the system. One of them is used to make sure that other users replied to previous messages, and the other is used to maintain a state of a meeting after its scheduled time has passed:

5.10.1 Timeouts for an awaited reply from another person

In real life, when negotiating meetings, people do not always reply in a timely fashion. Sometimes they are merely delayed, other times they forget to answer and there are also cases where email messages are lost and are never answered. Naturally, our agent is based on receiving replies to meeting negotiation messages, especially when the state-machine for a given meeting is in the DISCUSS state. These are the two cases when a timeout is set:

1. A meeting participant sent an “accept” to a meeting-organizer, and is awaiting her reply (“accept” or “reschedule”) telling him whether the meeting indeed takes place. A timeout is set to expire after a certain amount of time, in which case the meeting participant may either set an additional timeout or send a “query” message to the meeting organizer, asking about the meeting.

2. A meeting-organizer, who sent an “open” message to several participants, awaits a reply from them. A timeout is set to expire after a certain amount of time, after which he’ll query those who didn’t answer (by sending a “query” message or another copy of the previously sent “open” message), or decide whether to give up these participants.

Please note that these two examples may contain transitions in the meeting state-machine which are not triggered by email messages! The fact that such transitions exist was already mentioned above, and in such cases the system will use the same interface to the state-machine, which is provided for human user’s direct manipulation. Furthermore, some actions might be invoked as a result of timeout expiration, that is.

Additionally, the system will have to be able to determine the way timeouts are to be set (amount of time), how many times can a timeout go off for a meeting before its status is changed to DEAD etc.

5.10.2 Timeouts for meetings whose time has passed

The second type of a timeout is used for maintaining a correct state of a meeting. Here the term time-out is self explanatory… Such a timeout occurs when the meeting time has passed, that is - when real-world time passes the last constraint time included the meeting negotiation. Such a timeout is modeled as moving the state of the negotiation to from SCHEDULED to DEAD.

5.11 Learning Difficulty

In this section we list all the learning problems and briefly comment on the estimated level of difficulty.
6 System Errors

While every large software system has multiple potential error conditions, it seems like the system described in this document has an exceptional number of potential error conditions. Among the reasons for this one can count the large number of machine-learning components included, natural language processing, extensive interaction with human users and the mere fact that meeting negotiation often yields ambiguity and uncertainty.
6.1 Cascading Failures

Cascading failures means that the output of one machine learning component becomes the serial input to another component and those errors from the first component are propagated to the second component. For example, an incoming message may be incorrectly classified as a meeting negotiation message. Depending on the user interface, the user may never deal with the message and thus she will not generate a negative feedback for the classifier that incorrectly classified the message as a meeting negotiation. This type of failure lowers the user’s trust in the system.

6.2 Potential Error Condition

Following is a list of the error conditions identified by us at this stage. It is by no means a full list of the possible errors in the system. [Ed. Complete this list]:

1. Classification of a message as meeting-related though it's not.

2. Classification of a message as non-meeting-related though it is.

3. Wrong classification into a thread of meeting negotiation.

4. Within a specific meeting negotiation, wrong classification into
the type of message (e.g. classifying a "negotiate" message as
"accept").
5. A message, after all classification stages, is inconsistent with the
state known to the system. This can come in several variants:
a. Due to previous errors of the system (likely, in light of the above)
b. Due to information that wasn't exchanged through the email (e.g. -
verbally, on the phone, instant messenger, other email address etc.)
6. Failure of the agent to extract information from a message (“Agent parses incorrectly”):
a. Wrong subject.
b. Wrong meeting participants.
c. Wrong meeting location. [Ed. – currently agent is not even trying to extract it]
d. Wrong duration location. [Ed. – currently agent is not even trying to extract it]

7. Bad temporal constraint derivation: the time constraints understood by the agent are not those expressed in the email message that was processed.

8. Agent sends email that is incorrect:
a. Ok to schedule, when it's not
b. Not ok to schedule, when it is
9. Agent visualization of scheduling-related emails is incorrect.

6.3 Error Handling

[Ed. complete this section]

· The agent should provide to the human user information about what happened (i.e. how do they even know there's an error)?

· Mark messages with the agent is unsure as "low confidence"

· Send auto-scheduling emails to the human user (with “Cc”), to provide monitoring option. [Ed. this also might be a burden on the user]

· Provide info about on how user can fix, so it won't happen again?

· Provide a link to (or inline) the original email text

· Provide a dialog box for correcting bogus parsing /classification [Ed. need to be defined in more details]

· Highlight on top of original message, showing parsed results and what text it parsed to get those results (i.e. guide people towards understanding what works and doesn't) [Ed. again, using mainly classifiers makes this option pretty complex and possible not feasible]

· Show parsing results for own scheduling emails as they are being written [Ed. same comment as above]

7 Open Problems

a) figure out how learning of preferences works

b) ignore bumping

c) write up list of research objectives and milestones and prototypes that can be useful (what kind of labeling can we ask a user to do?)

[Propose meeting times, then update with new times]

[Delay a standing meeting]

[Difference between question and statement? “can we delay”, vs “let’s delay”]

[Cancel instance of standing meeting]

[Cancel standing meeting]

[Addition meetings in calendar that are not attended]

[Add members to a meeting]

[Subtract members from a meeting]

[Share extractors between people – suppose you fill out a form consisting of a database of seminar talks.]

[Build set of extractors to extract dates, times, locations, build a template of Boolean expressions (the NLP problem), e.g. I can meet Thursday 9am to 4 pm except 1-2.]

[How is this related to the research idea of shared agents in the machine learning?]

Can we integrate the e-mail reply agent into this system? If we reject meeting proposals with a standard message, we should be able to learn when to reject and use the previous text of the message to reject the new message.

Also, when we forward messages to other people (non-meeting related), we should be able to learn the forwarding.

Compare and contrast to CMRADAR implementation and results

We do not explicitly model bumping of meetings or the connection to the bumping reasoning of CMRADAR.

We do not explicitly model social networks that would help in answering the question: “Do I want to meet with this person?”

Sources of information for learning preferences – observe previous meeting negotiations, analyze calendar history, analyze edits to a pre-composed message, aggregate across multiple users, aggregate across class preferences (never schedule a graduate student before 11 am)

Might use the social network to determine class of person, probability of rejection of request, etc.

8 Milestones

This section describes the set of milestones that implement a set of research and system objectives that are steps towards a final system.
9 Future Work

This agent is similar to the seminar management agent since people must be slotted into seminar dates, so some meeting negotiation occurs.

This agent could help decide the membership of a meeting, perhaps with a social network.

The briefing agent could help manage documents, agendas, minutes, reports, and task tracking.

The radar-location-finding agent could find a location for the meeting.

The cm-radar agent could help bump meetings.

10 Related Work

CMRADAR papers

Lau work on e-mail UI

Lau work on classification of workflows

Meeting

E-mail

IMAP

Read E-mail

Incoming E-mail

Negotiation Detection

Negotiation Database

Updated

Negotiation

Classify Negotiation Step

Instance

Learn NLP

Instance & Constraints

Constraint Reasoning

Calendar

Generate Message

Reply GUI

Reply User Interaction

Negotiation True Label

Available Time Constraints

Classify Message

Meeting E-mail

Preferences True Label

Learn Preference Constraints

NLP True Label

Message True Label

Action Reasoning

Action Reasoning

Classify Message

Available Time Constraints

Generate Message

Constraint Reasoning

Instance & Constraints

Learn NLP

Instance

Classify Negotiation Step

Updated

Negotiation

Negotiation Database

Negotiation Detection

Incoming E-mail

Read E-mail

IMAP

Outgoing E-mail

announce, reject, query, accept, skip

reschedule

query

announce

query

cancel

cancel

confirm

open

negotiate, accept, reject, query

DEAD

DISCUSS

SCHEDULED

NULL

PAGE
1

