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Abstract

We present a new method to fit grammar-based stochas-
tic models for biological structure to stacks of microscopic
images captured at incremental focal lengths. Providing
the ability to quantitatively represent structure and auto-
matically fit it to image data enables important biological
research. We consider the case where individuals can be
represented as an instance of a stochastic grammar, simi-
lar to L-systems used in graphics to produce realistic plant
models. In particular, we construct a stochastic grammar
of Alternaria, a genus of fungus, and fit instances of it to
microscopic image stacks.

We express the image data as the result of a generative
process composed of the underlying probabilistic structure
model together with the parameters of the imaging system.
Fitting the model then becomes probabilistic inference. For
this we create a reversible-jump MCMC sampler to traverse
the parameter space. We observe that incorporating spatial
structure helps fit the model parts, and that simultaneously
fitting the imaging system is also very helpful.

1. Introduction

The function of an object is often closely related to its
structural form. As a result, the process of understand-
ing what a novel item is or does frequently begins with
an inspection of its structure. This is particularly true in
biology, where scientific inquiries of microscopic speci-
mens focus on observing and quantifying structure in im-
ages under varying experimental conditions to test hypothe-
ses of specimen functionality. However, manually obtain-
ing such results is expensive and time-consuming. In this
paper we present a new method to automatically infer bio-
logical structure from microscopic images using grammar-
based models for biological growth.

Many biological structures comprise a set of connected
substructures that are recursively related and can be de-
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scribed by a formal set of rules explaining their growth.
The set of rules is a grammar for growth and is similar to
Lindenmayer-systems [9] used in graphics. By stochasti-
cally and recursively applying these rules, an instance of the
grammar is generated. We consider such a grammar as a ba-
sis for building a probabilistic specimen model to infer from
data. The model is constructed so that repeated application
of the grammar rules can generate a parameterization of it.
Thus, our approach focuses on fitting a complete model of
the specimen, unlike previous methods that fit only individ-
ual and independent substructures of specimen [1, 13].

Images formed under a transmitted-light microscope
contain a significant amount of blur due to the high mag-
nification and shallow depth-of-field in the optics. This
makes accurate localization of structure in the images dif-
ficult. Rather than try to eliminate the blur from the im-
ages through deblurring methods [3, 7], we model the opti-
cal system in order to understand the image formation pro-
cess and unlock structural information captured in the im-
age blur. Combining a grammar-based structure model for
a specimen with a model for the optics of the imaging sys-
tem is an innovative and powerful way to understand micro-
scopic images accurately.

Inferring such models is analytically very difficult; the
number of parameters, their interdependence, and the fact
that the dimensions of the model is itself a parameter, cre-
ate a space that is prohibitively complex to work with. Thus,
we create a Markov chain Monte Carlo sampler [2, 11] to
efficiently explore the parameter space in search of a likely
set of parameters that generated the data. The moves of the
sampler that guide its search through the model parameter
space effectively embody the rules of the grammar for the
specimen. Furthermore, the sampler infers both the struc-
ture and imaging models simultaneously so that each can
benefit from an improved fit of the other. Since the dimen-
sionality of the model is unknown, we further construct a
reversible-jump MCMC sampler to handle model selection
and traverse the multi-dimensional parameter spaces.



1.1. Scientific motivation

Understanding the morphological structure of an object
by modeling it and automatically fitting it to data yields
valuable quantitative information that creates further insight
into its function. For a biologist interested in analyzing mi-
croscopic specimen, automatically inferred structure can be
used in a high-throughput data analysis system to improve
experimental efficiency and increase the frequency of scien-
tific discoveries. Furthermore, since the function of a spec-
imen is often captured in other modes of data, such as gene
expression data, we can couple this with structural informa-
tion obtained in the fitting process. Multi-model data link-
ing can reveal new functional information that was not pre-
viously possible to obtain because of limitations in manual
structure quantification. Finally, our model is of the com-
plete structure and, once fit to data, can be used for visual-
ization in virtual environments and three-dimensional print-
ing for tactile exploration.

A good example of a biological specimen whose struc-
ture is recursive in nature is Alfernaria, a microscopic genus
of fungus. The general form of Alternaria is tree-like with
species-dependent branching patterns. It is composed of
tubular filaments, hyphae, and ellipsoid-shaped reproduc-
tive spores that are darkly pigmented. Species of Alternaria
are frequently found in soil and organic debris and are esti-
mated to contribute to 25-50% of agricultural spoilage [17].
These species are among the most common potent airborne
allergens [16] and one of the most prodigious producers of
toxic chemicals, some of which have been linked to forms
of cancer [5]. Thus, Alternaria is heavily analyzed by my-
cologists in order to better understand its functionality and
discover methods to ameliorate its effects.

To aid in the analysis of Alternaria and illustrate our
ideas for structure modeling and inference, we developed
a grammar-based model for Alternaria and sampling meth-
ods to fit the model to three-dimensional microscopic im-
ages stacks. The image stacks are three-dimensional in the
sense that the mycologist who captured them continuously
imaged the specimen while increasing the focal length of
the microscope. Figure 1 shows images from two of these
stacks, A; and A,. Notice the significant blur in the images,
a result of the optics in the transmitted-light microscope.

2. Stochastic grammar for structure

L-systems were invented by the biologist A. Linden-
mayer as a mathematical tool to model cellular interactions
in plants [8]. L-systems are a type of formal grammar simi-
lar to Chomsky grammars with the exception that all rewrit-
ing rules are applied in parallel and simultaneously replace
all letters in a word [12]. A parametric stochastic context-
free L-system is a tuple
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Figure 1. Images from Alternaria 3D data sets A; and As. In each
image, the point-spread function of the brightfield transmitted-
light microscope generated blur from nearby focal planes.

where V' is the alphabet, o is the set of formal parameters,
w 1s the axiom, consisting of letters from the alphabet, P is
a set of production rules, and 7 : P — [0, 1] is a probability
distribution [12]. Applying the set of production rules to
the axiom recursively replaces each letter with other letters
from the alphabet, producing a more complex, self-similar
structure.

2.1. Alternaria L-system

A fungus from the genus Alternaria grows similarly to a
plant—it has a long vegetative hyphae with branches that
have a three-dimensional sporulation pattern [15]. Each
branch is a primary conidiophore development which is a
type of hypha capable of producing spores. The hyphae
cells in a branch can develop another hypha cell through
apical growth or a spore from its tip. After a spore devel-
ops, several structures can occur, depending on the species:
another spore, a lateral intra-conidium hypha branch com-
ing from one cell of the spore, an apical conidium terminus
hypha branch, coming from the tip, or a sub-conidium coni-
diophore hypha branch coming from the hypha cell imme-
diately before the spore.

In general, the fungus produces a new hypha cell or a



spore, which in turn develops more hyphae cells or spores,
defining a recursive growth pattern with self-similar struc-
ture. To model this growth process we use a parametric,
stochastic and context-free L-system.

In our grammar the set of parameters and probability dis-
tributions are determined from the morphological character-
istics obtained by plant pathologists from observation of the
structure. For example, the following rule represents how
the long vegetative hyphae grows and develops branches:

V_hypha — H(my, 7o, R) [ Branch |V _hypha  (2)

where H (71,79, R) represents a number of hyphae cells,
obtained from a probability distribution 71, each cell with
length drawn from probability distribution 75, and each cell
at an angle R(6, ¢) with respect to the previous structure. A
branch is replaced by

Branch — H(rw1, 7, R) Cd 3)

where Cd is one of several conidiophore developments - a
possible sub-conidium hypha, C'd3, followed by a spore; or
a hypha cell, h(, R); or no change:

Cd — P, ([Cd3] Spore Cda, h(m,R) Cd, Cd) (4)

where P, represents the probabilities of creating each of the
developments.

We complete our grammar for Alternaria with the fol-
lowing rules:

Cdy — Pr(Spore Cdsy, Apical Cd, (5)
Lateral Cd, Cdy)
Cds — Py(h(m,R) Cd, Cds) 6)

Figure 2 shows instances generated by this L-system.

To facilitate the process of examining how the parame-
ters define each species, we created an on-line tool which
scientists can use to explore a 3D VRML model of the fun-
gus after modifying the parameters and the probability dis-
tributions !.

3. Modeling

Our generative model for 3D microscopic image data of
Alternaria combines a grammar-based structure representa-
tion with a model of the imaging system. This enables us
to accommodate the burring effects of the microscope and
more accurately infer structure. What follows is a descrip-
tion of each component in our model.

Uhttp://vision.cs.arizona.edu/taralove/lsystem.html
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(a) 3 iterations (b) 12 iterations

(c) An instance of vegetative hypha with branches

Figure 2. 3D models generated by the L-system, showing growth
of simple structures (a), one branch (b), and an instance of the
model (c).

3.1. Grammar-based structure

We model the structure of Alfernaria based on its gram-
mar for growth. We represent its hyphae and spores as an
ordered set of ellipsoids and cylinders, and enforce connect-
edness among these substructures to one apical growth and
multiple lateral branches. The model has a root position and
direction of growth given by (p,, ., ¥, ), where the posi-
tion is in the 3D imaging window Y. The growth direction
is defined by two Euler angles for symmetric objects, i.e.,
ellipsoids and cylinders. Denote the space containing all
root position and orientations by P.

The i apical hypha with m;, number of branch hyphae
is defined as a collection of structure parameters and de-
scendant growth indices.

hgmh) = (law7@a19a)‘7taj7k17'"7k7nh)' (7)
The length and width of the hypha cylinder is [, w; its ori-
entation is given by two Euler angles relative to the growth
direction of its apical parent; A € [0, 1] represents the aver-
age opacity of the substructure in the image; and ¢ > 0 is
the integer branch level of the hypha. The index j specifies
its apical growth, and the lateral branches are indexed by k.

The spore and branch hypha substructures sg.ms) and



Figure 3. An example of a spore s;, lateral branch by, and apical
hypha h;, and how they are connected in the model of Alternaria.

b;ﬂmb) are similarly defined (see figure 3). A lateral branch

hypha has an additional parameter, d € [0, 1], specifying
the normalized position along the major axis of its parent
where the branch is located. The position of all descendant
substructures is determined by their size and relative orien-
tation to their parent. The root substructure of the model
has a base orientation and position as previously described.

Let n = (np,ns,np) be the number of substructures in
the model. Then the number of branch hypha per substruc-
ture lies in the space

N

M= {M : imm + st,i + zb:mb,i = nb} - (8)
i=1 i=1 i=1

The parameterization of all ordered sets of nj, apical hypha
with my, branches is given by

H(noman) — Hl(m””l) X oo X H,(LTh’n”). )
The parameterizations over all sets of spores and branches
are similarly defined as S("s™+) and B("e-m)

By combining the subspaces for root position and ori-
entation, branch hypha distribution, and ordered sets of n
substructures, we define the space over all Alternaria mod-
els as

U = | ] Px ) x §rame) s glrem) - (10)
MeM

The construction of the space is such that an instance of a
grammar for Alternaria can be mapped into it.
3.2. Imaging system

The image formation process in a microscope is a con-
volution of the true unobserved 3D image with the point

spread function, or impulse response, of the imaging sys-
tem. The PSF is the 3D response h(x, y, z) of a point source
of light in the system. Schlecht er al. [13] developed a
model for the PSF of a transmitted light microscope using
constraints from previous empirical observations [14]. They
found that fitting it simultaneously with an independent and
individual spore model improves the accuracy of detection
in image stacks of Alternaria.

The z, y-plane in the space containing the PSF model is
defined to be parallel to the focal plane, and the z-axis is
aligned with the optical axis of the microscope. It is defined
as a mixed function

- al?!
hz,y, 2) = e
2m (B2l +7)

with 2,y € R? and z € Z. The parameter + is the base vari-
ance for a stack of z-axis aligned 2D Gaussians, 3 scales the
distance from the x, y-plane, and « is the base in a geomet-
ric distribution used to weight each Gaussian.

Alternaria in the 3D image data occupy a relatively small
region of the imaging window. Hence, many pixels in the
data are saturated with the intensity of light used by the
brightfield microscope. We define the background inten-
sity of the imaging system over the range [0, 1] and denote
it as v.

We combine the space over all PSF models and back-
ground intensities into ¢, and let a parameterization of it be
an imaging model given by

22442
e BT (11)

¢ =(a,8,7,v). (12)

3.3. Generative data model

Let ©™ = (" x & be the parameter space over all
Alternaria and imaging models, and let ™ = (4)()| ¢) be
an instance of that space. Then the solution space spanning
all model configurations is

0= U nx 0, (13)

neNs

For any (n,0™) € €, we generate a model scene
Iy (i, 4, k), which is a hypothesis of the unobserved 3D im-
age data. Background pixels in the model scene have the
highest saturation with value v, and pixels belonging to a
substructure with opacity A have the value v (1 — \).

Given a model scene, pixels in the 3D image data
1(i,j, k) are modeled as i. i. d. Gaussian with means and
variances defined by

Iy * % * il, (14)
C'/”'Ie(iaj7k)v (15)
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where  x % denotes 3D convolution and £ is the quantized
PSF model in (11).

The mean value for a pixel in I(+) is a weighted average
of the model scene pixel intensities by the PSF model. The
constant ¢ scales the variance to approximate pixel intensity
variations due to Poisson noise in the imaging system.

4. Bayesian inference

Given a stack of Alternaria image data I(i, j, k) in the
3D window W, we want to find the model (n, ™)) € Q
that best fits the data. We formulate this as a Bayesian sta-
tistical inference problem by defining a probability distribu-
tion over the model space given the image data and find a
maximum. Specifically, we define a posterior

p (n,e(n> | 1) =k, L (1 | n,9<n>) n(n,e<n>) (16)

where k), is a normalization constant, L(- | -) is the likeli-
hood of the image data, and 7(+) is the model prior.

The independence assumption among pixels in the
model of the image data results in a product of Gaussians for
the likelihood function. Using the image model means (14)
and variances (15), the likelihood is defined as

[N

ol _ [I(i,j,w—we(i,j,k)r
L(I\n,a(“)) ] = 71 a7
V2

1,5,k
4.1. Priors

The prior over the model space €2 assumes independence
between the structure and imaging models and is defined as

w(n,ﬂ(")> - Wq,(n,w(“)> o (). (18)

The priors for the imaging parameters ¢ are modeled as
i. i. d. Gaussian. The position of the Alternaria root ranges
uniformly over the image 3D window WW. Since the orien-
tation and position of a substructure in Alfernaria is deter-
mined by the configuration of its parent and its own internal
parameters, we model each substructure as conditionally in-
dependent given its parent.

The density function for each substructure is composed
of independent subdensities defined over its parameters. For
all types of substructures, the Euler angle ¢ is Gaussian
distributed over [0, 7], and ¥ is uniformly distributed over
[—2m, 27]; width w and length [ are Gaussian distributed;
and opacity \ is uniformly distributed over [0, 1]. The prob-
ability a substructure is added either laterally or apically is
Dn, Ds, Py- The lateral position d of a branch hypha is Gaus-
sian distributed over [0, 1], and the probability that a branch
is created at depth ¢ is geometrically distributed.

Let j be the index of the parent substructure of hypha h;
in 9/ Then the density function for hyphae is given by a
set of independent subdensities

Fn(i13) = pn fuwi(i19) Fo (] 5) 21 )- (19)

The density functions for spores and branches are similar,
but with branches having an extra term for the level ¢ sub-
density.

Finally, we restrict the interaction between substructures
so they do not intersect. This is done by not allowing any
of the substructures to geometrically overlap, which is not
possible in the actual data. The prior probability for an Al-
ternaria model is then

np

mo(n,0®) = k2 T (b # hyirs.b € 6®)

=1

I (i|parent(i)) H e H N 1))
=1 =1

where k]! is a normalization constant for the truncated sub-
density functions, - denotes geometric intersection, and
X(+) is the characteristic function giving 1 for true and 0
otherwise.

5. Sampling

Inferring the most likely model given Alternaria image
data is a challenging task; the posterior (16) is a complex
distribution virtually impossible to evaluate analytically or
numerically. Thus, we employ MCMC sampling to explore
the model solution space in search of a maximum under the
posterior [2, 11].

The sampler iteratively generates random, unbiased
model samples from the solution space €. It consists of a set
of moves, or Markov chain, that create new model propos-
als by proposing changes to parameters in a previous sam-
ple. The sampler moves fall into two categories: changes to
Alternaria substructures, the PSF, or the background; and
changes to the number of substructures in the model. The
latter are commonly referred to as diffusion moves and the
former jump moves.

At each iteration of the sampler, the m*® move is se-
lected for execution with probability (m) and a new model
(n,§™)) is proposed. In this paper, we use a uniform distri-
bution for r(-). Depending on how likely the new model is
under the posterior and to have been proposed, it is accepted
or rejected. Specifically, we use the Metropolis-Hastings
(MH) algorithm for MCMC [6, 10], and it is used for both
diffusion and jump moves.

th



5.1. Diffusion moves

The diffusion moves for modifying a substructure in
(n,0™) and proposing a new model are rotate, resize,
opacity, shift, and lateral-d. We define moves to update the
PSF and background parameters, as well. The proposal dis-
tributions for diffusion moves are obtained by modifying
the prior (18). For parameters updated in a move, we re-
place their subdensity in the prior with a Gaussian that has
means equal to corresponding parameters in the previously
accepted model.

For example, the proposal distribution for randomly se-
lecting the i*" hypha with parent index j and rotating it is

1 W(n 9<n>) o33
nn feu(ilj) 2w

— i)+ (9; — 9:)°
;@D
20?19

(9(“) | 9<n>)
e [_ (s

where cr . 1s a small variance. The proposal distributions
for other dlffusmn moves are similarly constructed.

Under the MH algorithm for the rotate’” diffusion move,
the acceptance probability for a proposed model is

o (n,é(n)) _ min {1’ p(n, 0™ | 1) Qrot@(n) |6™)
p(n7 f(n) | I) qrot(a(n) | 9(“))
(22)
The definition is derived to maintain a detailed balance con-
dition in the Markov chain, which is a sufficient condition
for convergence to the posterior [11].

By expansion, most of the terms in (22) cancel, most no-
tably the normalization constants and all of the non-rotation
subdensities. As with the proposal distributions, the ac-
ceptance probabilities for other diffusion moves are similar;
hence, their definitions are omitted.

5.2. Jump moves

The jump moves in the sampler implement model selec-
tion by changing the dimensionality of the model and ac-
cepting or rejecting. A set of birth/death moves add and
remove substructures at apical or lateral positions. For api-
cally connected hyphae and spores, merge/split moves join
together or break apart two substructures. A lateral branch
can be merged or split with its parent, as well. Finally, a
set of switch moves transition one or more hypha to a spore
and vise versa. These sampler moves embody the grammar
rules for Alternaria.

For a hypha birth move, the proposal distribution for a
new h; apically attached to a parent at h; is defined as the
normalized hypha density function (19) in the model prior

oirth (hi | hj) = kr fa(i, 7). (23)
During a death move, a spore is randomly selected for dele-
tion, so a proposal distribution is not needed. The proposal
distributions for merge/split and switch are similarly based
on their prior subdensities.

In order to use the MH algorithm for jump moves, we re-
define the acceptance probability. Following the guidelines
for reversible-jump MCMC [4], the acceptance probability
for a hypha birth move becomes

a (n +1 é<n+1>) = min {1 p+1,600 | 1)
r(death)

p(n, 0™ | 1)
- . (24)
T‘(bil’th) Qbirth(hi | hj) }

8(§(n+1))
(0™ hy)

Since the change in dimensionality is a one-to-one map-
ping from (h;,0®™) — 61 and a uniform distribution
is used for r(-), the Jacobian is 1 and the move probabili-
ties cancel; thus, the equation reduces considerably. Since
birth/death moves are dual, the acceptance probability for
a death move is the inverse of the second argument to the
minimum function in (24). The acceptance probabilities for
the other jump moves are similarly constructed.

As with the diffusion moves, the jump move acceptance
probabilities maintain the detailed balance condition [4].
Thus, the posterior will be the stationary distribution of the
trans-dimensional Markov chain followed by the sampler.

5.3. Data-driven MCMC

The spore structures in the data are much larger than the
hypha and more darkly pigmented. However, we have ob-
served that it is difficult for the sampler to correctly switch
a substructure proposal from hypha to spore. Thus we im-
prove the birth and switch moves by doing preliminary data
analysis to construct a more informative proposal distribu-
tion (data-driven MCMC [18]).

The replacement proposal distribution is similar to what
has been used for independent spore detection in Al-
ternaria [13]. We use a gradient-based surface point de-
tection algorithm and a very coarse Hough transform for
ellipsoids to obtain rough estimates of spores in the data.
The estimates are collected into a spore likelihood table,
which is normalized and used as the new proposal distribu-
tion. Although the estimates from the Hough transform are
very coarse, it is tolerable because diffusion moves in the
sampler will perfect the fit of proposed spores.

We also used data-driven methods in the sampler to
speed-up the initial estimate of the base structure in the
model. We follow the assumption that the imaged growth
of Alternaria begins at the bottom of the microscopic im-
age stack and proceeds upward.
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Figure 4. The sampler was run on data sets A1 and A from 10 random starting states. The first row shows a rendering of surface points
from the gradient-based detection for data-driven proposals (a) from set A; and four of the inferred models (b)—(e). The second row shows
similar results for set Ao (f)—(j). We are clearly fitting Alternaria structure in the data. If we continue to run the sampler, more of the
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structure would be fit, particularly in the case of As.

6. Results

We evaluated the effectiveness of the model sampler on
Alternaria image sets A; and As, shown in figure 1. A; is
composed of 102 images of size 800 x 800 pixels and As
has 82 images of size 700 x 700. Since the data are so large,
we down-sample them along rows and columns to 20% of
their original size. However, since the number of images in
each stack is already disproportionately small, we did not
decrease the resolution in depth.

We ran the sampler from 10 random starting states on
both data sets, each for 20, 000 iterations. Figure 4 shows
four of the ten models fit to each data set. The sampler had
a more difficult time fitting the structure in As; a narrow
lateral hypha spawned very large areas of structure. With
more iterations we would expect to begin to fit more of it.

The average inferred background intensity for A; and A,
was 0.74 and 0.72 with a negligible standard deviation. Ta-
ble 1 gives the inferred PSF model parameters for the data
sets. The PSF parameters for A, have larger variance be-
cause not as much structure was fit in the images as A;.

Figure 5 shows two images from A; at different depths
compared to corresponding inferred model scene images.
We construct the model scene images by optically section-
ing the Alternaria model and convolving it with the point-
spread function. From these images we observe that simul-
taneously fitting structure and imaging models closely re-
sembles the image formation process, enabling us to obtain
a more accurate fit to the data.

o B v
mean stdev mean stdev mean stdev
A1 0.99 0.001 0.91 0.08 0.75 0.26
Ay 0.84 0.14 0.68 04 0.64 0.24

Table 1. Mean PSF model parameters inferred from the Alternaria
data from 10 random starting states. The larger variance in the
parameters for the second set is most likely from not fitting as
much structure.

7. Conclusion

Learning the structure of an object is one of the first steps
in trying to understand its function. Biologists recognize
this fact and conduct many experiments that require ana-
lyzing images of microscopic structures. We have shown
that combining a grammar-based specimen model with an
imaging model is useful to automatically obtain quantitative
information for biological structures in microscopic image
stacks.
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