Big ML Software for Modern ML Algorithms

Qirong Ho^ and Eric P. Xing*

^Institute for Infocomm Research, A*STAR
*Carnegie Mellon University
The First Encounter of Science with Big Data
Trees Falling in the Forest

“If a tree falls in a forest and no one is around to hear it, does it make a sound?” — George Berkeley

Data ≠ Knowledge

- Nobody knows what’s in data unless it has been processed and analyzed
 - Need a scalable way to automatically search, digest, index, and understand contents
Challenge #1 – Massive Data Scale

Familiar problem: data from 50B devices, data centers won’t fit into memory of single machine
Challenge #2 – Gigantic Model Size

Big Data needs Big Models to extract understanding
But ML models with >1 trillion params also won’t fit!
Challenge #3 – Inadequate ML library

Classic ML algorithms used for decades

K-means Logistic regression Decision trees Naive Bayes

And many more...
Challenge #3 – Inadequate ML library

But new tasks have emerged; demand today’s ML algos

- Topic models make sense of documents
- Deep learning make sense of images, audio
- Lasso regression find significant genes, predict stock market
Challenge #3 – Inadequate ML library

But new tasks have emerged; demand today’s ML algos

Latent space network models find communities in networks

Tree ensembles better than decision trees

Constrained matrix factorization collaborative filtering when negative values just don’t make sense

Where are these new algos in today’s Big Data tools?
Challenge #4 – ML algos iterative-convergent

ML algorithms = “engine” to solve ML models

Markov Chain Monte Carlo

Optimization
Hadoop not suited to iterative ML

ML algos iterative-convergent, but Hadoop not efficient at iterative programs
Iterative program => need many map-reduce phases => HDFS disk I/O becomes bottleneck
Alternatives to Hadoop later in this tutorial...
Why need new Big ML systems?

ML practitioner’s view

- Want correctness, [fewer iters to converge](#)
Why need new Big ML systems?

ML practitioner’s view

- Want correctness, **fewer iters to converge**
- ... but assume an **ideal system**

```plaintext
for (t = 1 to T) {
    doThings()
    parallelUpdate(x, θ)
    doOtherThings()
}
```
Why need new Big ML systems?

ML practitioner’s view

- Want correctness, **fewer iters to converge**
- ... but assume an **ideal system**

```plaintext
for (t = 1 to T) {
    doThings()
    parallelUpdate(x, θ)
    doOtherThings()
}
```

- Oversimplify systems issues
 - e.g. machines perform consistently
 - e.g. can sync parameters any time
Why need new Big ML systems?

Systems view

- Want more iters executed per second
Why need new Big ML systems?

Systems view

- Want more iters executed per second
- … but assume ML algo is a black box
Why need new Big ML systems?

Systems view

- Want more iters executed per second
- … but assume ML algo is a black box
- … or assume ML algo “still works” under different execution models

Slow-but-correct Bulk Sync. Parallel

Fast-but-unstable Asynchronous Parallel
Why need new Big ML systems?

Systems view

- Want more iters executed per second
- … but assume ML algo is a **black box**
- … or assume ML algo “still works” under different execution models

![Diagram showing slow-but-correct Bulk Sync. Parallel and fast-but-unstable Asynchronous Parallel execution models.](diagram.png)

- Oversimplify ML issues
 - e.g. assume ML algo “works” without proof
 - e.g. ML algo “easy to rewrite” in chosen abstraction: MapR, vertex program, etc.
Why need new Big ML systems?

ML practitioner’s view

- Want correctness, **fewer iters to converge**
- … but assume an **ideal system**

```java
for (t = 1 to T) {
    doThings()
    parallelUpdate(x, θ)
    doOtherThings()
}
```

- Oversimplify systems issues
 - e.g. machines perform consistently
 - e.g. can sync parameters any time

Systems view

- Want **more iters executed per second**
- … but assume ML algo is a **black box**
- … or assume ML algo “still works” under different execution models

- Oversimplify ML issues
 - e.g. assume ML algo “works” without proof
 - e.g. ML algo “easy to rewrite” in chosen abstraction: MapR, vertex program, etc.
Why need new Big ML systems?

ML practitioner’s view
- Want correctness, **fewer iters to converge**
- … but assume an ideal system

```java
for (t = 1 to T)
  doThings()
  parallelUpdate(x, θ)
  doOtherThings()
```

Systems view
- Want **more iters executed per second**
- … but assume ML algo is a black box
 - “still works” under different execution models

Alone, neither side has full picture ...

New opportunities exist in the middle!

Oversimplify systems issues
- e.g. machines perform consistently
- e.g. can sync parameters any time

Oversimplify ML issues
- e.g. assume ML algo “works” without proof
- e.g. ML algo “easy to rewrite” in chosen abstraction: MapR, vertex program, etc.
Solution: An Alg/Sys INTERFACE for Big ML

- Network switches
- Network attached storage
- Server machines
- GPUs
- Cloud compute (e.g., Amazon EC2)
- Virtual Machines
- Infiniband
- Flash storage
- Desktops/Laptops

Modern Machine Learning Models/Algorithms
- Graphical Models
- Nonparametric Bayesian Models
- Regularized Bayesian Methods
- Large-Margin
- Sparse Structured I/O Regression
- Sparse Coding
- Spectral/Matrix Methods
- Others

Sparse Structured I/O Regression
- Sparse Coding
- Spectral/Matrix Methods
- Others
Theory: Degree of parallelism, convergence analysis, sub-sample complexity …

System: Distributed architecture: DFS, parameter server, task scheduler …

Model: Generic building blocks: loss functions, structures, constraints, priors …

Algorithm: Parallelizable and stochastic MCMC, VI, Opt, Spectral learning …

Representation: Compact, informative features

Programming model & Interface: High: Toolkits Med: Matlab/R/Python Low: C/Java

Hardware: GPU, flash storage, cloud …

The Big ML “Stack” - More than just software
2 parallelization strategies
2 parallelization strategies

Data Parallel

Model Parallel
2 parallelization strategies

\[\theta^{t+1} = \theta^t + \Delta_f \theta(D) \]

New Model = Old Model + Update(Data)

- Data Parallel
- Model Parallel
2 parallelization strategies

\[\hat{\theta}^{t+1} = \hat{\theta}^t + \Delta_f \hat{\theta}(D) \]

New Model = Old Model + Update(Data)

\[D \equiv \{ D_1, D_2, \ldots, D_n \} \]
2 parallelization strategies

\[\tilde{\theta}^{t+1} = \tilde{\theta}^t + \Delta f \tilde{\theta}(D) \]

New Model = Old Model + Update(Data)

Data Parallel

Model Parallel

\[D \equiv \{ D_1, D_2, \ldots, D_n \} \]

\[\tilde{\theta} \equiv [\tilde{\theta}_1^T, \tilde{\theta}_2^T, \ldots, \tilde{\theta}_k^T]^T \]
Modern ML Parallelism: Topic Models

Source: D. Blei (2012)
Modern ML Parallelism:
Topic Models

\[\tilde{\theta}^{t+1} = \tilde{\theta}^t + \Delta_f \tilde{\theta}(D) \]
Modern ML Parallelism: Topic Models

\[\bar{\theta}^{t+1} = \bar{\theta}^t + \Delta_f \bar{\theta}(D) \]
Modern ML Parallelism: Topic Models

\[\theta^{t+1} = \theta^t + \Delta_f \theta(D) \]
Modern ML Parallelism: Topic Models

Model (Topics)

- gene 8.04
dna 8.02
genetic 8.01...

- life 8.02
evolve 8.01
organism 8.01...

data 8.02
number 8.02
computer 8.01...

Update (MCMC algo)

\[\tilde{\theta}^{t+1} = \tilde{\theta}^t + \Delta_f \tilde{\theta}(D) \]

Data (Docs)
Modern ML Parallelism: Topic Models

Model (Topics)
- gene 8.04
- dna 8.02
- genetic 8.01
- ...
- life 8.02
- evolve 8.01
- organism 8.01
- ...
- data 8.02
- number 8.02
- computer 8.01
- ...

Data (Docs)

Update (MCMC algo)

BIG DATA (billions of docs)

\[\theta^{t+1} = \theta^t + \Delta_f \theta(D) \]
Modern ML Parallelism: Topic Models

Data-parallel strategy for topic models

\[\mathcal{D} \equiv \{ \mathcal{D}_1, \mathcal{D}_2, \ldots, \mathcal{D}_n \} \]
Modern ML Parallelism: Topic Models

Data-parallel strategy for topic models

\[D = \{ D_1, D_2, \ldots, D_n \} \]

Worker machines with local data
Modern ML Parallelism: Topic Models

Data-parallel strategy for topic models

Global shared model

Worker machines with local data
Modern ML Parallelism: Lasso Regression

Lasso outputs sparse parameter vectors (few non-zeros) => Easily find most important features
Modern ML Parallelism:
Lasso Regression

\[\tilde{\theta}^{t+1} = \tilde{\theta}^{t} + \Delta_f \tilde{\theta}(D) \]
Modern ML Parallelism: Lasso Regression

Model (Parameter Vector)

$$\hat{\theta}^{t+1} = \hat{\theta}^{t} + \Delta_f \hat{\theta}(D)$$
Modern ML Parallelism: Lasso Regression

Model (Parameter Vector)

Data (Feature + Response Matrices)

\[\vec{\theta}^{t+1} = \vec{\theta}^t + \Delta f \vec{\theta}(D) \]
Modern ML Parallelism: Lasso Regression

Model (Parameter Vector)

Data (Feature + Response Matrices)

Update (CD algo)

$$\theta^{t+1} = \theta^t + \Delta_f \bar{\theta}(D)$$
Modern ML Parallelism: Lasso Regression

Model (Parameter Vector)

Data (Feature + Response Matrices)

Update (CD algo)

BIG MODEL (100 billions of params)

\[\theta^{t+1} = \theta^t + \Delta_f \tilde{\theta}(D) \]
Modern ML Parallelism: Lasso Regression

Model-parallel strategy for Lasso

\[\hat{\theta} \equiv [\hat{\theta}_1^T, \hat{\theta}_2^T, \ldots, \hat{\theta}_k^T]^T \]
Modern ML Parallelism: Lasso Regression

Model-parallel strategy for Lasso

\[\Delta \theta_1(D), \Delta \theta_2(D), \Delta \theta_3(D) \]

\[\hat{\theta} \equiv [\theta_1^T, \theta_2^T, \ldots, \theta_k^T]^T \]

Worker machines with local model
Modern ML Parallelism: Lasso Regression

Model-parallel strategy for Lasso

Not as easy as this picture suggests - will see why later

\[\hat{\theta} \equiv [\theta_1^T, \theta_2^T, \ldots, \theta_k^T]^T \]
A General Picture of ML Iterative Algos

Iterative Algorithm
\[\Delta = \Delta(A^{(t-1)}, D) \]
\[A^{(t)} = F(A^{(t-1)}, \Delta) \]

\(F() \) Aggregate + Transform
\(\Delta \) Intermediate Updates
Data Parallelism

\[\Delta_1 = \Delta(A^{(t-1)}, D_1) \]
\[\Delta_2 = \Delta(A^{(t-1)}, D_2) \]
\[\Delta_3 = \Delta(A^{(t-1)}, D_3) \]

Additive Updates
\[\Delta = \sum_{p=1}^{3} \Delta_p \]

\[A^{(t)} = F(A^{(t-1)}, \Delta) \]
Model Parallelism

$\Delta_1 = \Delta_1(S_1 \in S, A^{(t-1)}, D)$

$\Delta_p = \Delta_p(S_p \in S, A^{(t-1)}, D)$

$\Delta = \{\Delta_p\}$

$A^{(t)} = F(A^{(t-1)}, \Delta)$

Scheduling Function

$S = S(A^{(t-1)}, D)$

$S_1 \in S$

$S_2 \in S$

$S_3 \in S$

$A^{(t-1)}$

model parameters not updated in this iteration
Modern ML Parallelism: Deep Neural Networks

Source: University of Bonn
Modern ML Parallelism: Deep Neural Networks

\[
\theta^{t+1} = \theta^t + \Delta_f \bar{\theta}(D)
\]
Modern ML Parallelism: Deep Neural Networks

Model (edge weights)

\[\vec{\theta}^{t+1} = \vec{\theta}^t + \Delta_f \vec{\theta}(D) \]
Modern ML Parallelism: Deep Neural Networks

\[
\hat{\theta}^{t+1} = \hat{\theta}^t + \Delta_f \hat{\theta}(D)
\]
Modern ML Parallelism: Deep Neural Networks

Model (edge weights)

Update (backpropagation)

Data (images)

$$\vec{\theta}_t + 1 = \vec{\theta}_t + \Delta_f \vec{\theta}(D)$$
Modern ML Parallelism: Deep Neural Networks

Data and Model can both be big! Millions of images, Billions of weights
What to do?

Model (edge weights)

Update (backpropagation)

Data (images)

\[\hat{\theta}^{t+1} = \hat{\theta}^{t} + \Delta_f \hat{\theta}(D) \]
Modern ML Parallelism: Deep Neural Networks

Data-and-Model-parallel strategy for DNN

\[D \equiv \{ D_1, D_2, \ldots, D_n \} \]

\[\bar{\theta} \equiv [\theta_1^T, \theta_2^T, \ldots, \theta_k^T]^T \]
Modern ML Parallelism: Deep Neural Networks

Data-and-Model-parallel strategy for DNN

\[
\begin{align*}
D &\equiv \{D_1, D_2, \ldots, D_n\} \\
\vec{\theta} &\equiv [\vec{\theta}_1^T, \vec{\theta}_2^T, \ldots, \vec{\theta}_k^T]^T
\end{align*}
\]
Modern ML Parallelism: Deep Neural Networks

Data-and-Model-parallel strategy for DNN

“All-pairs” of data and model chunks

\[\Delta \theta_1(D_1), \Delta \theta_2(D_2), \ldots, \Delta \theta_k(D_n) \]

\[D \equiv \{D_1, D_2, \ldots, D_n\} \]

\[\vec{\theta} \equiv [\theta_1^T, \theta_2^T, \ldots, \theta_k^T]^T \]
Modern ML Parallelism: Deep Neural Networks

Data-and-Model-parallel strategy for DNN

“All-pairs” of data and model chunks

Parameter Synchronization Channel

\[
\Delta \tilde{\theta}_1(D_1), \Delta \tilde{\theta}_1(D_2), \ldots, \Delta \tilde{\theta}_k(D_n)
\]

\[
D \equiv \{D_1, D_2, \ldots, D_n\}
\]

\[
\tilde{\theta} \equiv [\tilde{\theta}_1^T, \tilde{\theta}_2^T, \ldots, \tilde{\theta}_k^T]^T
\]
Is data/model-parallelism that easy?

- Not always - certain conditions must be met

- Data-parallelism generally OK when data IID (independent, identically distributed)
 - Very close to serial execution, in most cases

- Naive Model-parallelism doesn’t work - will see why later!
 - NOT equivalent to serial execution of ML algo

- What about software to write data/model-parallel ML easily, quickly?
Modern Systems for Big ML

- Just now: basic ideas of data-, model-parallelism in ML
- What systems allow ML programs to be written, executed this way?
Modern Systems for Big ML

- Just now: basic ideas of data-, model-parallelism in ML
- What systems allow ML programs to be written, executed this way?

GraphLab

Spark

PETUUM
Spark Overview

- General-purpose system for Big Data processing
 - Shell/interpreter for Matlab/R-like analytics

- MLlib = Spark’s ready-to-run ML library
 - Implemented on Spark’s API
Spark Overview

- Key feature: **Resilient Distributed Datasets (RDDs)**
 - Data processing = lineage graph of transforms
 - RDDs = nodes
 - Transforms = edges

Source: Zaharia et al. (2012)
Spark Overview

- Benefits of Spark:
 - **Fault tolerant** - RDDs immutable, just re-compute from lineage
 - **Cacheable** - keep some RDDs in RAM
 - Faster than Hadoop MR at iterative algorithms
 - Supports **MapReduce** as special case

Source: Zaharia et al. (2012)
Start Spark Shell
```
cd ~/spark-1.0.2/
bin/spark-shell
```

// Scala code starts here
```
import org.apache.spark.SparkContext
import org.apache.spark.mllib.classification.SVMWithSGD
import org.apache.spark.mllib.evaluation.BinaryClassificationMetrics
import org.apache.spark.mllib.regression.LabeledPoint
import org.apache.spark.mllib.linalg.Vectors
import org.apache.spark.mllib.util.MLUtils

// Load training data in LIBSVM format.
val data = MLUtils.loadLibSVMFile(sc, "data/mllib/sample_linear_regression_data.txt")

// Split data into training (60%) and test (40%).
val splits = data.randomSplit(Array(0.6, 0.4), seed = 11L)
val training = splits(0).cache()
val test = splits(1)
```
Spark Demo in Linux VM

Logistic Regression (Spark Shell)

```scala
// Run training algorithm to build the model
val numIterations = 100
val model = SVMWithSGD.train(training, numIterations)

// Clear the default threshold.
model.clearThreshold()

// Compute raw scores on the test set.
val scoreAndLabels = test.map { point =>
  val score = model.predict(point.features)
  (score, point.label)
}

// Get evaluation metrics.
val metrics = new BinaryClassificationMetrics(scoreAndLabels)
val auROC = metrics.areaUnderROC()

println("Area under ROC = " + auROC)

// More info @ https://spark.apache.org/docs/latest/mllib-linear-methods.html
```
GraphLab Overview

- System for Graph Programming
 - Think of ML algos as graph algos

- Comes with ready-to-run “toolkits”
 - ML-centric toolkits: clustering, collaborative filtering, topic modeling, graphical models
GraphLab Overview

- Key feature: Gather-Apply-Scatter API
 - Write ML algos as vertex programs
 - Run vertex programs in parallel on each graph node
 - Graph nodes, edges can have data, parameters

Source: Gonzalez (2012)
GraphLab Overview

- GAS Vertex Programs:
 - 1) Gather(): Accumulate data, params from my neighbors + edges
 - 2) Apply(): Transform output of Gather(), write to myself
 - 3) Scatter(): Transform output of Gather(), Apply(), write to my edges

Source: Gonzalez (2012)
GraphLab Overview

- GAS Vertex Programs:
 - 1) Gather(): Accumulate data, params from my neighbors + edges
 - 2) Apply(): Transform output of Gather(), write to myself
 - 3) Scatter(): Transform output of Gather(), Apply(), write to my edges

Source: Gonzalez (2012)
GraphLab Overview

- GAS Vertex Programs:
 - 1) Gather(): Accumulate data, params from my *neighbors* + edges
 - 2) Apply(): Transform output of Gather(), write to *myself*
 - 3) Scatter(): Transform output of Gather(), Apply(), write to my *edges*

Source: Gonzalez (2012)
GraphLab Overview

- Benefits of Graphlab
 - Supports asynchronous execution - fast, avoids straggler problems
 - Edge-cut partitioning - scales to large, power-law graphs
 - Graph-correctness - for ML, more fine-grained than MapR-correctness

Source: Gonzalez (2012)
GraphLab Demo in Linux VM

Topic Modeling (Linux shell)

```bash
cd ~/graphlab-master/release/toolkits/topic_modeling

# Run Topic Model on sample dataset, continuous output to screen
./cgs_lda --corpus ./daily_kos/tokens --dictionary ./daily_kos/dictionary.txt --ncpus=4

# Run Topic Model on sample dataset, save output to disk
./cgs_lda --corpus ./daily_kos/tokens --dictionary ./daily_kos/dictionary.txt --ncpus=4 \
   --word_dir word_counts --doc_dir doc_counts --burnin=60

# More info @ http://docs.graphlab.org/topic_modeling.html
```
Petuum Overview

• System for iterative-convergent ML algos
 o Speeds up ML via data-, model-parallel insights

• Ready-to-run ML programs
 o Now: Topic Model, DNN, Lasso & Logistic Regression, MF
 o Soon: Tree ensembles, Metric Learning, Network Models, CNN, more
Petuum Overview

- Key modules
 - Parameter Server for data-parallel ML algos
 - Scheduler for model-parallel ML algos

- "Think like an ML algo"
 - ML algo = (1) update equations + (2) run those eqns in some order
Petuum Overview

- **Parameter Server**
 - Enables **data-parallelism**: model parameters become global
 - Special type of Distributed Shared Memory (DSM)

```javascript
// Single Machine
ProcessDataPoint(i) {
  for j = 1 to M {
    old = model[j]
    delta = f(model, data(i))
    model[j] += delta
  }
}

// Distributed with PS
ProcessDataPoint(i) {
  for j = 1 to M {
    old = PS.read(model, j)
    delta = f(model, data(i))
    PS.inc(model, j, delta)
  }
}
```
Petuum Overview

- Parameter Server benefits:
 - ML-tailored consistency model: Stale Synchronous Parallel (SSP)
 - Asynchronous-like speed, BSP-like ML correctness guarantees
Petuum Overview

- Scheduler
 - Enables **correct** model-parallelism
 - Can analyze ML model structure for best execution order

```plaintext
schedule() {
  // Select U vars x[j] to be sent
  // to the workers for updating
  ...
  return (x[j_1], ..., x[j_U])
}

push(worker = p, vars = (x[j_1], ..., x[j_U])) {  
  // Compute partial update z for U vars x[j]
  // at worker p
  ...
  return z
}

pull(workers = [p], vars = (x[j_1], ..., x[j_U]),
     updates = [z]) {  
  // Use partial updates z from workers p to
  // update U vars x[j]. sync() is automatic.
  ...
}
```
Petuum Overview

- Scheduler benefits:
 - ML-tailored execution engine: Structure-Aware Parallelization (SAP)
 - Scheduled ML algos require less computation to finish

![Diagram showing dynamic block structures, re-grouping, and dispatching blocks to workers.](image)

![Graph showing a sharp drop in Objective value.](image)
Petuum Demo in Linux VM

Deep Neural Network (Linux shell)

```
cd ~/petuum-release_0.93/apps/dnn

# Generate N=10,000 simulated dataset (args: #samples, #features, #classes, #partitions)
scripts/gen_data.sh 10000 440 1993 3 datasets

# Run 6-layer, 2M-param DNN on simulated dataset (args: #threads_per_machine, staleness)
scripts/run_dnn.sh 4 5 machinefiles/localserver datasets/para_imnet.txt \
  datasets/data_ptt_file.txt weights.txt biases.txt

# More info @ https://github.com/petuum/public/wiki/ML-App:-Deep-Neural-Network
```
Science of BigML: Principles, design, theory

- Just saw Spark, GraphLab, Petuum in action

- Each has distinct technical innovations
 - How suited are they to Big ML problems?
 - How do they enable Data, Model-Parallel execution?

- **Key insight**: ML algos have special properties
 - Error-tolerance, dependency structures, uneven convergence
 - How to harness for faster data/model-parallelism?
Refresher: data, model-parallel

\[\bar{\theta}^{t+1} = \bar{\theta}^t + \Delta_f \bar{\theta}(D) \]

New Model = Old Model + Update(Data)

Data Parallel

Model Parallel

\[D \equiv \{D_1, D_2, \ldots, D_n\} \]

\[\bar{\theta} \equiv [\bar{\theta}_1^T, \bar{\theta}_2^T, \ldots, \bar{\theta}_k^T]^T \]
ML algos are iterative-convergent

- **“Hill-climbing”**
 - Repeat update function until no change
 - True for sequential, as well as data/model-parallel ML algos

- **Why are ML algos I-C?**
 - Vast majority of ML algos are optimization or MCMC-based (and both are I-C procedures)
Contrast: Non-iterative-convergent

Example: Merge sort

Sorting error: 2 after 5

Error persists and is not corrected
Why not Hadoop?

- Hadoop can execute iterative-convergent, data-parallel ML...
 - map() to distribute data samples \(i \), compute update \(\Delta(D_i) \)
 - reduce() to combine updates \(\Delta(D_i) \)
 - Iterative ML algo = repeat map()+reduce() again and again
- But reduce() writes to HDFS before starting next iteration’s map() - very slow iterations!

[Image source: dzone.com]
Properties of I-C ML algos

- (1) “Self-healing” and error-tolerant
 - Model parameters a bit wrong => won’t affect final outcome

Topic Models, Lasso Regression, DNNs, all essentially do this:
Properties of I-C ML algos

- (2) Block-structured dependencies
 - Model parameters NOT independent, form blocks
 - Inside a block: should update sequentially
 - Between blocks: safe enough to model-parallelize
Properties of I-C ML algos

• (3) Non-uniform convergence
 o Some model parameters converge much faster!

Pagerank is a famous example.

Also applies to many ML algos, especially Lasso Regression and DNN
ML Properties vs BigML Platforms

● Data/Model-parallel ML algos are:
 o Iterative-convergent
 ▪ (1) Self-healing/error-tolerant
 ▪ (2) Have block-structured dependencies
 ▪ (3) Exhibit non-uniform convergence

● How do Spark, GraphLab, Petuum fit the above?
Spark: I-C done faster than Hadoop

- Hadoop’s problem: can’t execute many MapR iterations quickly
 - Must write to HDFS after every reduce()
Spark: I-C done faster than Hadoop

- Spark’s solution: **Resilient Distributed Datasets (RDDs)**
 - Input data → load as RDD → apply transforms → output result
 - RDD transforms strict superset of MapR
 - RDDs cached in memory, avoid disk I/O

Source: ebaytechblog.com
Spark: I-C done faster than Hadoop

- Spark ML library uses data-parallel ML algos, like Hadoop
 - Spark and Hadoop: comparable first iter timings…
 - But Spark’s later iters are much faster

Zaharia et al. (2012)
GraphLab: Model-parallel graphs

- Graph-structured problems really model-parallel
 - Common reason: graph data not IID; data-parallel style poor fit
 - In ML: sparse MatrixFact, some graphical models, pagerank

- How to correctly parallelize graph ML algos?

Source: M. Wainwright
GraphLab: Model-parallel graphs

- GraphLab **Graph consistency models**
 - Guide search for “ideal” model-parallel execution order
 - ML algo correct if input graph has all dependencies
 - Similar to “block structures”: Graph = “hard” deps, Blocks = “soft”

Source: Low et al. (2010)
GraphLab: Model-parallel graphs

- GraphLab supports asynchronous (no-waiting) execution
 - Correctness enforced by graph consistency model
 - Result: GraphLab graph-parallel ML much faster than Hadoop

Source: Low et al. (2012)
Petuum: ML props = 1st-class citizen

- Idea: ML properties expose new speedup opportunities

- Can data/model-parallel ML run faster if we
 - Allow error in model state? (error-tolerance)
 - Dynamically compute model dependencies? (block structure)
 - Prioritize parts of the model? (non-uniform convergence)
Petuum: ML props = 1st-class citizen

- Error tolerance via Stale Sync Parallel (SSP) Parameter Server (PS)
 - ML Insight 1: old, cached params = small deviation to current params
 - ML Insight 2: deviation strictly limited => ML algo still correct
Petuum: ML props = 1st-class citizen

- Error tolerance via Stale Sync Parallel **Parameter Server (PS)**
 - System Insight 1: ML algos bottleneck on network comms
 - System Insight 2: More caching => less comms => faster execution

![Diagram showing network waiting time and compute time with more caching (more staleness)]
Petuum: ML props = 1st-class citizen

- Harness Block dependency structure via **Scheduler**
 - Model-parallel execution = update many params at same time
 - ML Insight 1: Correctness affected by inter-param dependency
 - ML Insight 2: Even w/o explicit graph, can still computedeps
Petuum: ML props = 1st-class citizen

- Harness Block dependency structure via **Scheduler**
 - System Insight 1: Pipeline scheduler to hide latency
 - System Insight 2: Load-balance blocks to prevent stragglers
Petuum: ML props = 1st-class citizen

- Exploit Uneven Convergence via Prioritizer
 - ML Insight 1: “Steepest descent” - progress correlated with last iter
 - ML Insight 2: Complex model deps => params converge at diff rates
Petuum: ML props = 1st-class citizen

- Exploit Uneven Convergence via **Prioritizer**
 - System Insight 1: Prioritize small # of vars => fewer deps to check
 - System Insight 2: Great synergy with **Scheduler**

![Diagram showing the process of prioritizing variables and parameters for update.](image)
Open research topics

- Early days for data-, model-parallelism
 - New properties, principles still undiscovered
 - Potential to accelerate ML beyond naive strategies

- Deep analysis of BigML systems limited to few ML algos
 - Need efforts at deeper, foundational level

- Major obstacle: lack common formalism for data/model parallelism
 - Model of ML execution under error due to imperfect system?
 - Model not just “theoretical” ML costs, but also system costs?
No Ideal Distributed System!

- Two distributed challenges for ML:
 - Networks are slow
 - “Identical” machines rarely perform equally

Unequal performance

Low bandwidth, High delay

![Graph showing compute time vs network waiting time](chart.png)
Recall Data Parallelism

\[\Delta_1 = \Delta(A^{(t-1)}, D_1) \]

\[\Delta_2 = \Delta(A^{(t-1)}, D_2) \]

\[\Delta_3 = \Delta(A^{(t-1)}, D_3) \]

Additive Updates

\[\Delta = \sum_{p=1}^{3} \Delta_p \]

\[A^{(t)} = F(A^{(t-1)}, \Delta) \]
High-Performance Consistency Models for Fast Data-Parallelism

- Recall **Stale Synchronous Parallel (SSP)**
 - Asynchronous-like speed, BSP-like ML correctness guarantees
 - Guaranteed age bound (staleness) on reads
 - C.f.: no-age-guarantee **Eventual Consistency** seen in Cassandra, Memcached

![Diagrams](image.png)

Thread 1 will always see these updates

Thread 1 may not see these updates (limited error)
The BSP-Async dichotomy

- **BSP**
 - Barrier after every iteration; wait for stragglers
 - Since all comms occur at barrier, the barrier itself can be slow

- **Async**
 - No barriers, but risk unlimited straggler duration

- Want best of BSP (slow, correct) and Async (fast, no guarantees)
SSP is best-of-both-worlds

- "Partial" synchronicity
 - Spread network comms evenly (don’t sync unless needed)
 - Threads usually shouldn’t wait – but mustn’t drift too far apart!

- Straggler tolerance
 - Slow threads can catch up by reducing network comms
Why Does SSP Converge?

- When a thread reads a parameter, # of “missing updates” is bounded
- Partial, but bounded, loss of serializability
- Hence numeric error in parameter also bounded

\[\epsilon \leq C(2s - 1) \]
SSP Convergence Theorem

- **Goal**: minimize convex \(f(x) = \frac{1}{T} \sum_{t=1}^{T} f_t(x) \)
 - (Example: Stochastic Gradient)
 - \(L \)-Lipschitz, \(T \) is num iters, problem diameter \(F^2 \)
 - Staleness \(s \), using \(P \) threads across all machines
 - Use step size \(\eta_t = \frac{\sigma}{\sqrt{t}} \) with \(\sigma = \frac{F}{L \sqrt{2(s+1)P}} \)

- SSP converges according to

\[
R[X] := \left[\frac{1}{T} \sum_{t=1}^{T} f_t(\tilde{x}_t) \right] - f(x^*) \leq 4FL \sqrt{\frac{2(s+1)P}{T}}
\]

- Note the RHS interrelation between \((L, F)\) and \((s, P)\)
 - An interaction between theory and systems parameters
Eager SSP (ESSP)

- **Better SSP protocol**
 - Use spare bandwidth to push fresh params sooner

- Figure shows difference in stale reads between SSP and ESSP

- ESSP has fewer stale reads; lower variance
ESSP has faster convergence

- **Theorem:** Given lipschitz objective f_t and step size η_t,
 \[
P \left[\frac{R[X]}{T} - \frac{1}{\sqrt{T}} \left(\sigma L^2 + \frac{F^2}{\sigma^2} + 2\sigma L^2 \epsilon_m \right) \geq \tau \right] \leq \exp \left\{ \frac{-T \tau^2}{2\tilde{\sigma}_T \epsilon_v + \frac{2}{3} \sigma L^2 (2s + 1) P \tau} \right\}
\]

 where

 $R[X] := \sum_{t=1}^{T} f_t(\tilde{x}_t) - f(x^*)$

 L is a lipschitz constant, and ϵ_m and ϵ_v are the mean and variance of the observed staleness.

- **Intuition:** Under ESSP, distance between current param and optimal value decreases exponentially with more iters => guarantees faster convergence than normal SSP.
ESSP has steadier convergence

- Theorem: the variance in the ESSP estimate is

\[
\text{Var}_{t+1} = \text{Var}_t - 2\eta_t \text{cov}(x_t, E^A_t(t) [g_t]) + O(\eta_t \xi_t) \\
+ O(\eta_t^2 \rho_t^2) + O_{\epsilon_t}
\]

where
\[
\text{cov}(v_1, v_2) := E[v_1^T v_2] - E[v_1^T] E[v_2]
\]
and \(O_{\epsilon_t}\) represents 5th order or higher terms

- Intuition: under ESSP, parameter variance decreases near the optimum
- Lower variance => less oscillation in estimate => more confidence in estimate quality and stopping criterion
(E)SSP: Async Speed + BSP Guarantees

- Massive **Data** Parallelism
- Effective across different algorithms
(E)SSP Scales With # Machines

- Double # machines: → 78% speedup
- → converge in 56% time

(E)SSP: linear scaling with # machines
Model Parallelism

\[\Delta_1 = \Delta_1(S_1 \in S, A^{(t-1)}, D) \]

\[\Delta_p = \Delta_p(S_p \in S, A^{(t-1)}, D) \]

\[\Delta = \{\Delta_p\} \]

\[A^{(t)} = F(A^{(t-1)}, \Delta) \]

Scheduling Function

\[S = S(A^{(t-1)}, D) \]

- \(S_1 \in S \)
- \(S_2 \in S \)
- \(S_3 \in S \)

- model parameters not updated in this iteration
Challenges in Model Parallelism
Lasso as case study

\[
\min_{\beta} \|y - X\beta\|_2^2 + \lambda \sum_{j} |\beta_j|
\]

Huge # of parameters, e.g. \(J = 100M \)
Update elements of \(\beta \) in parallel
Model Dependencies in Lasso

- Concurrent updates of β may induce errors

Sequential updates

$$\beta_1 \downarrow \beta_2$$

Concurrent updates

$$\beta_1 \rightarrow \beta_2 \rightarrow \beta_1$$

Sync

Induces parallelization error

$$\beta_1^{(t)} \leftarrow S(x_1^T y - x_1^T x_2 \beta_2^{(t-1)}, \lambda)$$

Need to check $x_1^T x_2$ before updating parameters
The model-parallelism dichotomy

- **Ideal**: compute dependency graph, then partition the graph
 - Expensive and not practical; $O(J^2)$ computation just to find all dependencies

- **Naive**: randomly partition
 - Very fast, but risks parallelization error and algo instability/divergence!

- **Is there a balanced middle ground?**
Structure-Aware Parallelization (SAP) as a middle ground

1. Prioritization
2. Dependency-Checking
3. Load Balancing; Dispatching
SAP for Lasso

- **Prioritizer:**
 \[\mathcal{U} = \{ \beta_j \} \sim \left(\delta \beta_j^{(t-1)} \right)^2 + \eta \]
 Select a few vars which are changing quickly

- **Dependency checker:**
 \[|x_j x_k| < \rho \text{ for all } j \neq k \in \mathcal{U} \]
 Very fast - only need to check (few) prioritized vars
 Vars which violate above must be updated sequentially

- **Dispatcher:**
 Construct \(\{ \beta_j \} \) sets according to sequential constraints
 Load-balance \(\{ \beta_j \} \) sets, and dispatch to workers
SAP versus Naive partitioning

\[p(j) \sim \left(\delta \beta_j^{(t-1)} \right)^2 + \eta \]

- 100M features
- 9 machines

SAP prioritizer

Sharp drop

\[p(j) \sim \text{uniform} \]
Theoretical Guarantee on SAP

Guaranteed optimality on Lasso:

\[\beta_1 \quad \beta_2 \]
\[\beta_3 \quad \beta_4 \quad \beta_5 \]

Select parameters to update following \(p(j) \)

\[\beta_1 \quad \beta_2 \]

Theorem 1 Suppose \(\mathcal{P} = \{v_l\}_{l=1}^L \) is the set of indices of coefficients updated in parallel at the \(t \)-th iteration, and \(\rho \) is sufficiently small such that \(\rho \delta \beta_i^{(t)} \delta \beta_j^{(t)} < \epsilon \), for all \(i \neq j \in \mathcal{P} \), where \(\epsilon \) is a small positive constant. Then, the distribution \(p(j) \propto \left(\delta \beta_j^{(t)} \right)^2 \) approximately maximizes a lower bound \(\mathcal{L} \) to the expected decrease in the objective function \(F(\beta^{(t)}) \) after updating coefficients indexed by \(\mathcal{P} \), where \(\mathcal{L} \) is defined as

\[\mathcal{L} \leq E_\mathcal{P} \left[F(\beta^{(t)}) - F(\beta^{(t)} + \Delta \beta^{(t)}) \right]. \]
Convergence

- SAP achieves better speed and objective
SAP: Scales With # Machines

Increase # of machines; time to reach fixed objective decreases

![Graph showing STRADS LDA with 2.5M vocab, 5K topics](image)

- STRADS (16 machines)
- STRADS (32 machines)
- STRADS (64 machines)
- STRADS (128 machines)
SAP: Bigger Models Now Manageable

- Massive **Model** Parallelism
- Effective across different models
Another model-parallel idea: Block Scheduling (Gemulla ’11)

Partition data & model into $d \times d$ blocks

This example: $d=3$ strata

In strata: Process blocks with different colors in parallel
Between strata: Process strata sequentially
Fugue: Slow-Worker Agnosticism to solve the straggler problem

- **In real distributed systems:**
 - Slow workers force fast workers to wait

- **Idea: fast workers keep working**
 - Keep updating same block
 - Until slowest worker completes block

- **Strong theoretical guarantees**
 - Faster convergence
 - Lower variance (stable convergence)
Acknowledgements

Garth Gibson Greg Ganger
Phillip Gibbons James Cipar
Convergence: The Fugue updates and the exact gradient descent updates converge to the same set of limit points asymptotically given that the noise terms form a **martingale difference sequence**

Remark: a Martingale difference sequence is a **weaker** assumption than noise terms being independent and is easily satisfied
Fugue Theorem (2):

Intra-subepoch variance: Within blocks, suppose we update the parameters ψ using n_i data points then the variance of ψ after those n_i updates is:

\[
Var(\psi^{t+n_i}) = Var(\psi^t) - 2\eta_t n_i \Omega_0 Var(\psi^t) - 2\eta_t n_i \Omega_0 Cov(\psi_t, \delta_t) + \eta^2_t n_i \Omega_1 + \mathcal{O}(\eta^2_t \rho_t) + \mathcal{O}(\eta^2_t \rho^2_t) + \mathcal{O}(\eta^3_t) + \mathcal{O}(\eta^2_t \rho^2_t)
\]

Remarks: How does it help?
• The higher order terms are negligible and thus variance decreases in every sub-epoch
• This leads to decrease in variance due to extra work done while waiting
Inter-subepoch variance: Variance between successive sub-epochs decreases making the solution trajectory stable. Specifically, the variance at the end of subepoch S_{n+1} and S_n is

$$\text{Var}(\Psi_{S_{n+1}}) = \text{Var}(\Psi_{S_n}) - 2\eta_{S_n} \sum_{i=1}^{w} n_i \Omega_0^i \text{Var}(\psi^i_{S_n}) - 2\eta_{S_n} \sum_{i=1}^{w} n_i \Omega_0^i \text{Covar}(\psi^i_{S_n}, \delta^i_{S_n}) + \eta_{S_n}^2 \sum_{i=1}^{w} n_i \Omega_1^i + \mathcal{O}(\Delta_{S_n})$$

Remarks: How does it help?
- The higher order terms are negligible
- This leads to decrease in variance every epoch
A New Framework for Large Scale Parallel Machine Learning
(Petuum.org)
Spark Overview

- Limitations of RDDs:
 - No asynchronous operation
 - RDDs good for fault tolerance, but maybe straggler problem
 - No fine-grained writes
 - Substitute: Spark API has accumulators, broadcast variables

Source: Zaharia et al. (2012)
BIG-ML Architecture
Resource Allocators
Fault Tolerance
Programming Models
API, Tools, UI, Libraries
Practitioner (direct call),
ML Researcher (Matlab-style),
Power User (Low-level API)

: A General-Purpose Big-ML Framework
On Model Parallelism:
Genome-Wide Association Mapping via Structured Sparse Regression

\[\hat{\theta} = [\hat{\theta}_1^T, \hat{\theta}_2^T, \ldots, \hat{\theta}_k^T]^T \]

\[\arg \max_{\beta} \equiv \mathcal{L}(\{x_i, y_i\}; \beta) + \Omega(\beta) \]
Model Parallelism

- Determine the degree of parallelization according to system resources

- Non-uniform execution/update policies
 - Within group – synchronous (i.e., sequential) update
 - Inter-group – asynchronous update

Intra-Group domain
Synchronous Execution/Update domain

G0 = \{b0, b1, b2, b3, b4, b5\}
G1 = \{b6, b7, b8, b9, b10, b11\}

Inter-Group domain
Asynchronous Execution/Update domain

Whole data = \{G0, G1\}
A General Framework

Maintaining model consistency

Scheduling updates of variables/params

Partitioning data and/or models
Structure-aware Dynamic Scheduler (STRADS)

- Blocks of variables are dispatched to workers taking into account dynamic structures of the problems.

Steps:
1. Check Variable Dependency
2. Generate Blocks of Variables
3. Sample Variables to be Updated $\sim p(j)$
4. All Variables

Worker 1
Worker 2
Worker 3
Worker 4

Rou
Rou
Rou
Rou

Blocks of variables

Synchronization barrier
Memory Bottleneck in ML Mitigated

STRADS LDA

STRADS effectively partitions models and data
- STRADS’s memory usage per machine decreases as the number of machines increases
- YahooLDA uses the fixed amount of memory per machine, as each machine stores a duplicated copy of word-topic table
An Algorithmic and System Interface of A General-Purpose Big-ML Framework

Algorithmic Building Blocks
- Graphical Models
- Nonparametric Bayesian Models
- Regularized Bayesian Methods
- Large-Scale Learning Algorithms
- Sparse Structured I/O Regression
- Sparse Coding
- Spectral/Matrix Methods
- Others

System Building Blocks
- Network switches
- Infiniband
- Network attached storage
- Flash storage
- Server machines
- Desktops/Laptops
- NUMA machines
- GPUs
- Cloud compute (e.g. Amazon EC2)
- Virtual Machines

Machine Learning Families
- Nonparametric
- Bayesian Models
- Graphical Models
- Sparse Structured I/O Regression
- Sparse Coding
- Spectral/Matrix Methods
- Others

Algorithms Building Blocks
- Distributed MC
- Graph Propagation
- Convex Optimization
- Spectral Algorithms
- Stochastic Inference

Programming Interface
- Dynamic Scheduling
- Adaptive Load-Balancing
- Client Autonomicity
- Fault tolerance
- Bounded Consistency
- Scheduler-PS Integration

Big Model System
- For ML practitioners
- For ML scientists
- APIs for Power users

Big Data System
- Data Partitioning
- Parameter Server
- Thread-Level Caching
- Multi-instance

APIs for Power users
- Bounded Consistency
- Scheduler-PS Integration

Fault tolerance
- Dynamic Scheduling
- Adaptive Load-Balancing
- Client Autonomicity

Stochastic Inference
- Distributed MC
- Graph Propagation
- Convex Optimization
- Spectral Algorithms
Naïve Parallel vs Error-controlled Parallel

Error Controlled Parallel

Naïve Parallel

Seconds to converge

of cores/scheduling scheme

70/STRADS 120/STRADS 70/Rand 120/Rand

Diverge