Year of Publication :
[2017] [2016] [2015] [2014] [2013] [2012] [2011] [2010] [2009] [2008] [2007] [2006] [2005] [2004] [2003] [2002] [2001] [Pre-2000]

Type of Publication :
[Show all] [Theses] [Book & book chapters] [Journal] [Conference] [Tech reports] [Workshop] [arXiv manuscripts]

Broad Content :
[Show all] [Machine Learning] [Parallel ML Systems] [Network and Social Media] [Computational Biology] [IR, NLP & Vision]

Research Area :
[Statistical Genetics] [Evolutionary & Regulatory genomics] [Systems Biology] [Structural Biology]

[Prababilistic Models] [Probablistic Inference] [Distributed Machine Learning] [Deep Learning] [Bayesian nonparametrics] [High-Dim Inference & Sparsity]
[Graphs & networks] [Joint max-entropy/max-margin learning] [Topic & latent space models] [Learning metrics, kernels, and embeddings] [Optimization]
[Natural Language Processing] [Computer Vision] [Miscellaneous]

    ALL Publications (in Chronical Order):

  • Z. Hu, Z. Yang, X. Liang, R. Salakhutdinov and E. P. Xing, Controllable Text Generation, The 34th International Conference on Machine Learning. (ICML 2017).

  • A. Dubey, J. Oliva, A. Wilson, E. P. Xing, B. Poczos, and J. Schneider, Bayesian Nonparametric Kernel-Learning, Proceedings of the 19th International Conference on Artificial Intelligence and Statistics. (AISTATS 2016).

  • A. Wilson, C. Lucas, C. Dann and E. P. Xing, The Human Kernel, Advances in Neural Information Processing Systems 29 (eds. Daniel Lee and Masashi Sugiyama), MIT Press, 2015. (NIPS 2015).
  • Z. Hu, P. Huang, Y. Deng, Y. Gao and E. P. Xing, Entity Hierarchy Embedding, 53rd Annual Meeting of the Association for Computational Linguistics. (ACL 2015).
  • J. Oliva, W. Neiswanger, B. Poczos, E. P. Xing and J. Schneider, Fast Function to Function Regression, Proceedings of the Seventeenth International Conference on Artificial Intelligence and Statistics. (AISTATS 2015).

  • J. B. Oliva, W. Neiswanger, B. Poczos, J. Schneider and E. P. Xing, Fast Distribution To Real Regression, Proceedings of the 17th International Conference on Artificial Intelligence and Statistics (AISTATS 2014).

  • J. Zhu and E. P. Xing, Sparse Topical Coding, Proceedings of the 27th International Conference on Conference on Uncertainty in Artificial Intelli- gence (UAI 2011).
  • A. Ahmed, Q. Ho, J. Eisenstein, E. P. Xing, A. Smola and C. H. Teo, Unified Analysis of Streaming News, Proceedings of the International World Wide Web Conference (WWW 2011).

  • A. F.T. Martins, D. Das, N. A. Smith, and E. P. Xing, Stacking Dependency Parser, Proceedings of Conference on Empirical Methods in Natural Language Processing, (EMNLP 2008).
  • A. Martins, M. Figueiredo, P. Aguiar, N. A. Smith and E. P. Xing, Nonextensive Entropic Kernels, Proceedings of the 25th International Conference on Machine Learning (ICML 2008). (A longer version is available soon in CMU-MLD Technical Report 08-106 with the same title.)
  • W. Wu and E. P. Xing, A Survey of cDNA Microarray Normalization and a Comparison by k-NN Classification, in Methods in Microarray Normalization (Ed. S. Phillip), CRC Press. p81-120, 2008.


  • F. Guo, W. Fu, Y. Shi and E. P. Xing, Reverse engineering temporally rewiring gene networks, The NIPS workshop on New Problems and Methods in Computational Biology (NIPS2006).
  • E.M. Airoldi, D.M. Blei, S.E. Fienberg, E.P. Xing, Latent mixed-membership allocation models of relational and multivariate attribute data, Valencia & ISBA Joint World Meeting on Bayesian Statistics (2006).

  • E.P. Xing, R. Sharan and M.I Jordan, Bayesian Haplotype Inference via the Dirichlet Process. Proceedings of the 21st International Conference on Machine Learning (ICML2004),  (eds. Greiner and Schuurmans), ACM Press, 879-886, [ps]. An earlier version of this paper also appeared as a book chapter in Lecture Notes in Bioinformatics, Special issue for 2nd RECOMB Satellite Workshop on Computational Methods for SNPs and Haplotypes, 2004. (ps).


  • E.P. Xing, C. Kulikowski, I. Muchnik, I. Dubchak, D. Wolf, S. Spengler and M. Zorn, Analysis of ribosomal RNA sequences by combinatorial clustering, Proceedings, The Seventh International Conference on Intelligence Systems for Molecular Biology (ISMB99), (Eds. T. Lengauer et al.) AAAI/MIT Press, Menlo Park, CA. P. 287-296, 1999.

Back to top

Last updated 07/10/2016