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Collective Support Recovery for Multi-Design
Multi-Response Linear Regression

Weiguang Wang, Yingbin Liang, Eric P. Xing

Abstract—The multi-design multi-response (MDMR) linear
regression problem is investigated, in which design matrices are
Gaussian with covariance matrices Σ(1:K) =

(
Σ(1), . . . ,Σ(K)

)
for K linear regression tasks. Design matrices across tasks
are assumed to be independent. The support union of K p-
dimensional regression vectors (collected as columns of matrix
B∗) is recovered using l1/l2-regularized Lasso. Sufficient and
necessary conditions on sample complexity are characterized
as a sharp threshold to guarantee successful recovery of the
support union. This model has been previously studied via
l1/l∞-regularized Lasso in [1] and via l1/l1 + l1/l∞-regularized
Lasso in [2], in which sharp threshold on sample complexity
is characterized only for K = 2 and under special conditions.
In this work, using l1/l2-regularized Lasso, sharp threshold on
sample complexity is characterized under standard regularization
conditions. Namely, if n > cp1ψ(B∗,Σ(1:K)) log(p − s) where
cp1 is a constant, and s is the size of the support set, then
l1/l2-regularized Lasso correctly recovers the support union;
and if n < cp2ψ(B∗,Σ(1:K)) log(p − s) where cp2 is a constant,
then l1/l2-regularized Lasso fails to recover the support union.
In particular, the function ψ(B∗,Σ(1:K)) captures the impact
of the sparsity of K regression vectors and the statistical
properties of the design matrices on the threshold on sample
complexity. Therefore, such threshold function also demonstrates
the advantages of joint support union recovery using multi-task
Lasso over individual support recovery using single-task Lasso.

I. INTRODUCTION

Linear regression is a simple but practically very useful
statistical model, in which an n-sample response vector

−→
Y

can be modeled as
−→
Y = X

−→
β +

−→
W

where X ∈ Rn×p is the design matrix containing n samples of
feature vectors,

−→
β = (β1, . . . , βp) ∈ Rp contains regression

coefficients, and
−→
W ∈ Rn is the noise vector. The goal is

to find the regression coefficients
−→
β such that the linear

relationship is as accurate as possible with regard to a certain
performance criterion. The problem is more interesting in high
dimensional regime with a sparse regression vector, in which
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the sample size n can be much smaller than the dimension p
of the regression vector.

In order to estimate the sparse regression vector, it is natural
to construct an optimization problem with an l0-constraint on−→
β , i.e., the number of nonzero components of

−→
β . However,

such an optimization problem is nonconvex and in general
very difficult to solve in an efficient manner as commented
in [3]. More recently, the convex relaxation (referred to as
Lasso) has been studied with an l1-constraint on

−→
β based on

the idea in some seminal works ( [4]–[6]). More specifically,
the regression problem can be formulated as:

min−→
β ∈Rp

1

n
‖
−→
Y −X

−→
β ‖2l2 + λn‖

−→
β ‖l1 .

The l1-regularized estimator has been proved in [7] to have
similar behavior to Dantzig Selector, which was proposed in
[8]. Various efficient algorithms have been developed to solve
the above convex problem efficiently (see a review monograph
[9]), although the objective function is not differentiable every-
where due to l1-regularization. Moreover, the l1-regularization
is critical to force the minimizer to have sparse components
as shown in [4]–[6].

A vast amount of recent work has studied the high dimen-
sional linear regression problem via l1-regularized Lasso under
various assumptions. For example, the studies [5], [10]–[14]
investigated the noiseless scenario and showed that recovery of
true coefficients could be guaranteed with certain conditions on
design matrices and sparsity. A number of studies focused on
using l1-regularization to achieve sparsity recovery for noisy
scenarios. Some work (e.g., [15]–[17]) focused on the problem
with deterministic design matrices, whereas other work (e.g.,
[18], [19]) studied the problem with random design matrices.
The work [20] investigated linear regression model via trace
norm. [21] and [22] studied linear regression model using a
fusion penalty (known as the total variational penalty).

Generalized from the l1-regularized linear regression prob-
lem which aims at selecting variables individually, group Lasso
is applied to regression vector

−→
β in the linear regression

model to select grouped variables (e.g., [23], [24]). The work
[25] and [26] applied group Lasso for studying empirical risk
minimization problems. The work [27] studied the least square
optimization problem with group Lasso.

This line of research is further generalized to block-
regularization for high-dimensional multi-response (i.e., multi-
task) linear regression problem, (see, e.g., [28], [29] and
references therein). For a multi-task regression problem, we
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have the following model:

Y = XB∗ +W (1)

where Y ∈ Rn×K of which each column corresponds to
the output of one task, X ∈ Rn×p is the design matrix, the
regression matrix B∗ ∈ Rp×K has each column corresponding
to the regression vector for one task, and W ∈ Rn×K has
each column corresponding to the noise vector of one task.
For each column

−→
Y (k) of the matrix Y , it is clear that−→

Y (k) = X
−→
β ∗(k) +

−→
W (k), where

−→
β ∗(k) and

−→
W (k) are the

corresponding columns in B∗ and W . Then each column
is a single-task linear regression problem and can be solved
individually. However, the K individual problems (i.e., tasks)
can also be coupled together via a block regularized Lasso and
solved jointly in one problem.

Various types of block regularization have been proposed
and studied. In the work [29], the l1/l2-regularization was
adopted to recover the support union of the regression vectors.
More specifically, the following problem was studied

min
B∈Rp×K

1

2n
|||Y −XB|||2F + λn‖B‖l1/l2 , (2)

where ‖ · ‖la/lb is defined in (7) in section II-A. Sufficient
and necessary conditions for correct recovery of the support
union (i.e., the union of the supports of all columns of B∗)
were characterized. Block regularized Lasso (as well as group
Lasso) has also been applied to study various other models. For
example, the lp/lq-regularization was studied for a determin-
istic and noiseless model in [30]. The l1/lq-regularized Lasso
was adopted for learning structured linear regression model
in [31]. The l1/l∞-regularized Lasso was used to investigate
a multi-response regression model in [32], [33]. The l1/l2-
regularization was used for studying empirical risk minimiza-
tion problems in [34], multi-task feature problems in [35], and
multichannel sparse recovery in [36]. The l1/lq-regularized
Lasso was adopted to analyze normal means model in [37].
Blockwise sparse regression was used to study a general
loss function in [38]. In addition to regularized optimization
methods, greedy algorithms such as p-thresholding and p-
simultaneous matching pursuit [39] have also been studied.

In the multi-response linear regression problem given in
(1), the design matrix is identical for all tasks, i.e., X is
the same for all column vectors of Y and B∗. However, in
many applications, it is often the case that different output
variables may depend on design variables that are different or
distributed differently. Thus, the resulting model includes K
linear regression models with different design matrices and is
given by: −→

Y (k) = X(k)−→β ∗(k) +
−→
W (k) (3)

for k = 1, . . . ,K, where
−→
Y (k) ∈ Rn, X(k) ∈ Rn×p,

−→
β ∗(k) ∈

Rp, and
−→
W (k) ∈ Rn. We refer to the above problem as the

multi-design multi-response (MDMR) linear regression model,
and the goal is to recover

−→
β ∗(k) for k = 1, . . . ,K jointly. For

fixed matrices X(1), . . . , X(K), the problem has been studied
in [40], [41] via the l1/l2-regularized Lasso and via a variant
of orthogonal matching pursuit in [41]. For random design
matrices, this model has been studied via l1/l∞-regularized

Lasso in [1] and via l1/l1 + l1/l∞-regularized Lasso in [2] for
incorporating both row sparsity and individual sparsity.

In this paper, we study the MDMR problem for random
design matrices via l1/l2-regularized Lasso. Although this may
seem to only likely offer expected results similar to those
in [29], [1], and [2], our exploration turns out to provide
more insights which were not captured in previous studies.
We discuss these in depth in Section I-B. In our model, it is
assumed that the design matrices are Gaussian distributed and
are independent across tasks. Furthermore, the distributions of
design matrices are also different across tasks. For each task
k, the row vector of X(k) is Gaussian with mean zero and the
covariance matrix Σ(k) for k = 1, . . . ,K. The noise vectors
and hence the output vectors are also Gaussian distributed and
independent across tasks. We are interested in joint recovery
of the union of the support sets (i.e., the support union) of
regression vectors

−→
β ∗(1), . . . ,

−→
β ∗(K). We collect these vectors

together as a matrix B∗ =
[−→
β ∗(1), . . . ,

−→
β ∗(K)

]
.

We adopt the l1/l2-regularized Lasso problem for recovery
of the support union via the following optimization problem:

min
B∈Rp×K

1

2n

K∑
k=1

∥∥∥−→Y (k) −X(k)−→β (k)
∥∥∥2

2
+ λn ‖B‖l1/l2 (4)

where B =
[−→
β (1), . . . ,

−→
β (K)

]
. In this way, the K linear

regression problems are coupled together via the regularization
constraint. We show that this approach is advantageous as
opposed to individual recovery of the support set for each
linear regression problem. This is because the K regression
models may share their samples in joint support recovery so
that the total number of samples needed can be significantly
reduced compared to performing each task individually.

A. Main Contributions

In the following, we summarize the main contributions of
this work. Our results contain two parts: the achievability
and the converse, corresponding respectively to sufficient and
necessary conditions under which the l1/l2-regularized Lasso
problem recovers the support union for the MDMR linear
regression problem. Our proof adapts the techniques developed
in [18] and in [29], but involves nontrivial development to deal
with the differently distributed design matrices across tasks.
This also leads to interesting generalization of the results in
[29] as we articulate in Section I-B.

More specifically, we show that under certain conditions
that the distributions of the design matrices satisfy, if n >
cp1ψ(B∗,Σ(1:K)) log(p − s), where ψ(·) is defined in (8) in
Section II-A and cp1 is a constant, then the l1/l2-regularized
Lasso recovers the support union for the MDMR linear re-
gression problem; and if n < cp2ψ(B∗,Σ(1:K)) log(p − s),
where cp2 is a constant, then the l1/l2-regularized Lasso fails
to recover the support union. Thus, ψ(B∗,Σ(1:K)) log(p− s)
serves as a sharp threshold on the sample size.

In particular, ψ(B∗,Σ(1:K)) captures the sparsity of B∗ and
the statistical properties of the design matrices, which are im-
portant in determining the sufficient and necessary conditions
for successful recovery of the support union. The property of
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ψ(B∗,Σ(1:K)) also captures the advantages of the multi-task
Lasso over solving each problem individually via the single-
task Lasso. We show that when the K tasks share the same
support sets (although the design matrices can be differently
distributed), ψ(B∗,Σ(1:K)) = 1

K max1≤k≤K ψ(
−→
β ∗k,Σ

(k)).
This means that the number of samples needed per task
for multi-task Lasso to jointly recover the support union
is reduced by K compared to that of single-task Lasso to
recover each support set individually. On the other hand, if
the K tasks have disjoint support sets, then ψ(B∗,Σ(1:K)) =

max1≤k≤K ψ(
−→
β ∗(k),Σ(k)). This implies that the multi-task

Lasso does not provide gain in the sample size needed per task
for support recovery compared to single-task Lasso. Between
these two extreme cases, tasks can have overlapped support
sets with different overlapping levels, and the impact of these
properties on the sample size for recovery of the support union
is quantitatively captured by ψ(B∗,Σ(1:K)).

B. Comparison to Previous Results

As we mentioned before, the MDMR model has also been
studied in [1] and [2], in which l1/l∞ and l1/l1 + l1/l∞-
regularization were adopted for support union recovery, re-
spectively. In these studies, sharp threshold on sample com-
plexity is characterized only for K = 2 and under special con-
ditions on 1

nX
(k)T
Sk

X
(k)
Sk

. In our work, using l1/l2-regularized
Lasso, we are able to characterize the sharp threshold under
standard regularization conditions.

The MDMR model (with differently distributed design
matrices across tasks) can be viewed as generalization of
the multi-response model (with an identical design matrix
across tasks) studied in [29]. It is thus interesting to compare
our results to the results in [29]. For the scenario when
the tasks share the same regression vector, it is shown in
[29] that the major advantage of jointly solving a multi-task
Lasso problem over solving each single-task Lasso problem
individually is reduction of effective noise variance by the
factor K. But the sample size needed per task for recovery
of the support union via multi-task Lasso is the same as
that needed for recovery of each support set individually via
single-task Lasso. This implies that multi-task Lasso does not
offer benefit in reducing the sample size (in the order sense)
for this case. Our result, on the other hand, shows that the
benefit in sample complexity by using multi-task Lasso for
recovery of support union arises when the design matrices are
independently distributed across tasks. For such a case, the
sample size needed per task is reduced by K via multi-task
Lasso compared to recovery of each support set individually
via single-task Lasso. Consequently, our result is a nontrivial
generalization of the result in [29]. For the scenario when the
tasks have disjoint support sets, our result is consistent with
the result in [29], which suggests that there is no advantage of
performing multi-task Lasso as opposed to performing single-
task Lasso for each task.

C. Relationship to Jointly Learning Multiple Markov Net-
works

One application of the MDMR linear regression model is to
jointly learning multiple Gaussian Markov network structures.
In this context, it solves a multi-task neighbor selection
problem. This is also a natural scenario, in which features
and their distributions vary across tasks.

We consider K Gaussian Markov networks, each with p+ 1
nodes represented by X

(k)
1 , . . . , X(k)

p+1 for k = 1, . . . ,K.
The distribution of the Gaussian vector for graph k is given
by N

(
0,Σ

(k)
p+1

)
, where Σ

(k)
p+1 ∈ R(p+1)×(p+1). Assume for

each graph, there are n i.i.d. samples generated based on the
joint distribution of the nodes. The objective is to estimate the
connection relationship of nodes based on the samples. We
denote n samples of each variable X(k)

j by a column vector
−→
X

(k)
j ∈ Rn for j = 1, . . . , p+ 1 and k = 1, . . . ,K. For each

graph k and each node with index a, the sample vector
−→
X

(k)
a

can be expressed as:
−→
X (k)
a = X

(k)
−a
−→
β (k) +

−→
W (k)

a (5)

where X(k)
−a is an n×p matrix that contains all column vectors

−→
X

(k)
j for j 6= a,

−→
β (k) is a p-dimensional vector consisting of

the estimation parameters of X(k)
a given X(k)

j with j 6= a, and
−→
W

(k)
a is the n-dimensional Gaussian vector containing i.i.d.

components with zero mean and variance given by

σ
(k)
W

2
= V ar(X1a)−
Cov(X1a, X1,−a)Cov−1(X1,−a)Cov(X1,−a, X1a).

It has been shown that the nonzero components of the vector−→
β (k) represent existence of the edges between the corre-
sponding nodes and node a in graph k. Hence, estimation
of the support set of

−→
β (k) provides an estimation of the

graph structure, which is referred to as the neighbor selection
problem in [42].

Therefore, multi-task Lasso for the MDMR linear regres-
sion problem provides an useful approach for joint neighbor
selection over K graphs. It is clear that in this case, the design
matrices X(k)

−a in general have different distributions across k,
and hence the MDMR model is well justified. We note that
jointly learning multiple graphs has also been studied in [43]
and [44], which adopted a different objective function of the
precision matrix Σ−1. Via the MDMR linear regression model,
we characterize the threshold-based sufficient and necessary
conditions for joint recovery of the graphs.

D. Applications of the Model

In this subsection, we discuss practical applications of the
MDMR model. In general, such a model is advantageous if
it is applied to the scenarios, in which responses in different
tasks depend on their corresponding features in a similar way,
and thus the supports overlap across tasks. It is typical that
features are not correlated in the same way across tasks, which
is captured by different distributions of the design matrices
across tasks in the model. Furthermore, samples of features
are collected from different individuals across tasks, which is
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captured by independently distributed design matrices in the
model.

One example of the above scenario is in the case of analyz-
ing how gene-expression depends on genotypes. The problem
includes multi-tasks of linear regressions if we are interested
in multiple groups of people with each group having one type
of diseases. Here, it is typical that the gene expression depends
on many genotypes in a similar way across different groups of
people, and hence the regressions have overlapping supports.
It is also typical that genotypes are correlated in different
ways across different group of people due to different types
of diseases. Furthermore, data are collected from different
individuals in different groups, and hence design matrices have
independent distributions across tasks.

II. PROBLEM FORMULATION AND NOTATIONS

In this paper, we study the MDMR linear regression
problem given by (3), which contains K linear regressions.
Here, the design matrices X(1), . . . , X(K) and noise vectors−→
W (1), . . . ,

−→
W (K) are Gaussian distributed, and are independent

but not identical across k. For each task k, X(k) has indepen-
dent and identically distributed (i.i.d.) row vectors with each
being Gaussian with mean zero and covariance matrix Σ(k),
and the noise vector

−→
W (k) has i.i.d. components with each

being Gaussian with mean zero and variance σ
(k)
W

2
. We let

σmax = max1≤k≤K σ
(k)
W

2
.

In (3),
−→
β ∗(k) denotes the true regression vector for each

task k. We define the support set for each
−→
β ∗(k) as Sk :=

{j ∈ {1, . . . , p}|
−→
β
∗(k)
j 6= 0}. The support union over K tasks

is defined to be S := ∪Kk=1Sk. In this paper, we are interested
in estimating the support union jointly for K tasks.

We adopt the l1/l2-regularized Lasso to recover the support
union for the MDMR linear regression model. More specifi-
cally, we solve the multi-task Lasso given in (4) and rewritten
below:

min
B∈Rp×K

1

2n

K∑
k=1

∥∥∥−→Y (k) −X(k)−→β (k)
∥∥∥2

2
+ λn ‖B‖l1/l2 (6)

where B =
[−→
β (1), . . . ,

−→
β (K)

]
. In this way, the K linear

regression problems are coupled together via the regularization
constraint. In this paper, we characterize conditions under
which the solution to the above multi-task Lasso problem
correctly recover the support union of the true regression
vectors for K tasks.

A. Notations

We introduce some notations that we use in this paper. For
a matrix A ∈ Rp×K , we define the la/lb block norm as

‖A‖la/lb :=

 p∑
i=1

 K∑
j=1

|Aij |b
a/b


1/a

. (7)

We also define the operator norm for a matrix as

|||A|||a,b := sup
‖x‖b=1

‖Ax‖a.

In particular, we define the spectral norm as |||A|||2 =
|||A|||2,2 and the l∞-operator norm as |||A|||∞ = |||A|||∞,∞ =

maxj=1,...,p

∑K
k=1 |Ajk|, which are special cases of the oper-

ator norm.
For matrix B =

[−→
β (1), . . . ,

−→
β (K)

]
that appears in (6),

−→
β (k) denotes its kth columns for k = 1, . . . ,K. We fur-
ther let Bi to be the ith row of B. Similarly, for B∗ =[−→
β ∗(1), . . . ,

−→
β ∗(K)

]
that contains true regression vectors, its

kth column is denoted by
−→
β ∗(k) and the ith row is denoted

by B∗i . We next define the normalized row vectors of B∗ as

Z∗i =


B∗i
‖B∗i ‖l2

if B∗i 6= 0

0 otherwise,

and define the matrix Z∗ to contain Z∗i as its ith row for
i = 1, . . . , p. To avoid confusion, we use B̂ to denote the
solution to the multi-task Lasso problem (6).

The support union S(B) for a matrix B ∈ Rp×K is denoted
as S(B) = {i ∈ {1, . . . , p}|Bi 6= 0}, which includes indices
of the nonzero rows of the matrix B. We use S to represent
S(B∗) (i.e., the true support union) for convenience and use
Sc to denote the complement of the set S. We let s = |S|
denote the size of the set S. For any matrix X(k) ∈ Rn×p, the
matrix X(k)

S contains the columns of matrix X(k) with column
indices in the set S, and X(k)

Sc contains the columns of matrix
X(k) with column indices in the set Sc. Similarly, B∗S and Z∗S
respectively contain rows of B∗ and Z∗ with indices in S.

As each row of matrix X(k) is Gaussian distributed as
N (0,Σ(k)), we use Σ

(k)
SS to denote the covariance matrix for

each row of X(k)
S , and use Σ

(k)
ScS to denote the cross covariance

between rows of X(k)
Sc and X(k)

S .
For convenience, we use Σ(1:K) to denote a set of matrices

Σ(1), . . . ,Σ(K). We also define the following functions of
matrices Q(1:K) to simplify our notations:

ρu

(
Q(1:K)

)
:= max

j∈Sc
max

1≤k≤K
Q

(k)
jj ,

ρl

(
Q(1:K)

)
:= min

i,j∈Sc,j 6=i
min

1≤k≤K

[
Q

(k)
jj +Q

(k)
ii − 2Q

(k)
ji

]
.

In particular, our results contain the functions ρu
(

Σ
(1:K)
ScSc|S

)
and ρl

(
Σ

(1:K)
ScSc|S

)
, where Σ

(k)
ScSc|S is the covariance matrix of

each row of X(k)
Sc with X(k)

S given.
For matrix B∗, we define b∗min = minj∈S

∥∥B∗j ∥∥l2 . We
define the following function that captures the sparsity of B∗

and the statistical properties of the design matrices X(1:K)
S :

ψ(B∗,Σ(1:K)) := max
1≤k≤K

−→
Z ∗TSk

(
Σ

(k)
SS

)−1−→
Z ∗Sk, (8)

where
−→
Z ∗Sk is the kth column of Z∗S . We note that this

definition of ψ(·) function is different from the previous work
[29] with the same design matrix for all tasks. Here, due to
different design matrices across the K tasks, ψ(·) depends on

K quantities
−→
Z ∗TSk

(
Σ

(k)
SS

)−1−→
Z ∗Sk with each depending on a

column vector
−→
Z ∗Sk.
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We denote g(·) = o (f(·)) if limn→∞
g(·)
f(·) → 0, and g(·) =

O (f(·)) if limn→∞
g(·)
f(·) → co, where the constant 0 < co <

∞.

III. MAIN RESULTS

In this section, we provide our main results on using l1/l2-
regularized Lasso to recover the support union for the MDMR
linear regression model. Our results contain two parts: one
is the achievability, i.e., sufficient conditions for the l1/l2-
regularized Lasso to recover the support union; and the other is
the converse, i.e., conditions under which the l1/l2-regularized
Lasso fails to recover the support union. We then discuss
implications of our results by considering a few representative
scenarios, and compare our results with those for the multi-
variate linear regression with an identical design matrix across
tasks.

A. Achievability and Converse

We first introduce a number of conditions on covariance
matrices Σ(k) for k = 1, . . . ,K, which are useful for the
statements of our results.

(C1). There exists a real number γ ∈ (0, 1]
such that |||A|||∞ ≤ 1 − γ, where Ajs =

max1≤k≤K

∣∣∣∣∣
(

Σ
(k)
ScS

(
Σ

(k)
SS

)−1
)
js

∣∣∣∣∣ for j ∈ Sc and s ∈ S.

(C2). There exist constants 0 < Cmin ≤ Cmax < +∞ such
that all eigenvalues of the matrix Σ

(k)
SS are contained in the

interval [Cmin, Cmax] for k = 1, . . . ,K.
(C3). There exists a constant Dmax < +∞ such that

max1≤k≤K

∣∣∣∣∣∣∣∣∣∣∣∣(Σ
(k)
SS

)−1
∣∣∣∣∣∣∣∣∣∣∣∣
∞
≤ Dmax.

We note that the above assumptions (C1)-(C3) are natural
generalizations of a number of classical assumptions appearing

in previous work. The matrix Σ
(k)
ScS

(
Σ

(k)
SS

)−1

in the condi-

tion (C1) captures correlations between X
(k)
S and X

(k)
Sc for

k = 1, 2, . . . ,K. Hence, an upper bound on the norm |||A|||∞
guarantees sufficient distinctions between X

(k)
S and X

(k)
Sc ,

which is necessary for the consistency of support recovery.
Similar conditions were proposed to guarantee signal recovery
for the linear regression problem, which are referred to as
bounded mutual coherence in [15], [18], [45], as correlation
condition in [46], and as irrepresentable condition in [16],
[29]. The condition (C2) is similar to the restricted eigenvalue
condition in [7], the restricted isometry property (RIP) in [47]
and one condition in [16]. The condition (C3) requires certain
coherence level within the feature columns of XS such that
the support features are highly correlated in order for correct
support recovery as commented in [29]. We refer to [48]
for a summary of the conditions and their relationships for
performance guarantee in linear regression problems.

In this paper, we consider the asymptotic regime, in which
p → ∞, s → ∞, and log (p− s) → +∞. In such a regime,
we introduce the conditions on the regularization parameter
and the sample size n as follows:

(P1). Regularization parameter λn =
√

f(p) log p
n , where the

function f(p) is chosen such that f(p) → +∞ as p → +∞,
and f(p) log p

n → 0 as n→∞, i.e., λn → 0 as n→ +∞.
(P2). Define ρ(n, s, λn) as

ρ(n, s, λn) :=

√
8σ2

maxs log s

nCmin
+ λn

(
Dmax +

12s

Cmin
√
n

)
and require ρ(n,s,λn)

b∗min
= o(1).

The following theorem characterizes sufficient conditions
for recovery of the support union via l1/l2-regularized Lasso.

Theorem 1. Consider the MDMR problem in the asymptotic
regime, in which p → ∞, s → ∞ and log(p − s) → ∞.
We assume that the parameters

(
n, p, s, B∗,Σ(1:K)

)
satisfy

the conditions (C1)-(C3), and (P1)-(P2). If for some small
constant v > 0,

n > 2(1 + v)ψ
(
B∗,Σ(1:K)

)
log(p− s)

ρu

(
Σ

(1:K)
ScSc|S

)
γ2

, (9)

then the multi-task Lasso problem (6) has a unique solution B̂,
the support union S(B̂) is the same as the true support union
S(B∗), and ‖B̂ − B∗‖l∞/l2 = o(b∗min) with the probability
greater than

1−K exp (−c0 log s)− exp (−c1 log (p− s)) (10)

where c0 and c1 are constants.

Theorem 1 provides sufficient conditions on the sample
size such that the solution to the l1/l2-regularized Lasso
problem correctly recovers the support union of the MDMR
linear regression model. We next provides a theorem about the
conditions on the sample size under which the solution to the
l1/l2-regularized Lasso problem fails to recover the support
union.

Theorem 2. Consider the MDMR problem in the asymptotic
regime, in which p → ∞, s → ∞ and log(p − s) → ∞.
We assume that the parameters

(
n, p, s, B∗,Σ(1:K)

)
satisfy

the conditions (C1)-(C2) and the conditions: s/n = o(1) and
1
λ2
ns
→ 0. If for some small constant v > 0,

n < 2(1− v)ψ(B∗,Σ(1:K)) log (p− s)
ρl

(
Σ

(1:K)
(ScSc|S)

)
(2− γ)2

, (11)

then with the probability greater than

1− exp(−c2s)− c3 exp
(
−c4

n

s

)
(12)

for some positive constants c2, c3 and c4, no solution B̂ to the
multi-task Lasso problem (6) recovers the true support union
and achieves ‖B̂ −B∗‖l∞/l2 = o(b∗min).

The proofs of Theorems 1 and 2 are provided in Sections
V and V I , respectively.

We note that based on the definitions, ρu(Σ
(1:K)
ScSc|S) in

(9) and ρl(Σ
(1:K)
ScSc|S) in (11) depend on the entry values of

Σ
(1:K)
ScSc|S , which do not change with the system parameter

(n, p, s). The only possibility that the two quantities can scale
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with n is due to the maximum and minimum over the entries
of the matrix. However, this typically does not cause order
level difference in the two quantities. In terms of the physical
meaning, ρu(Σ

(1:K)
ScSc|S) captures the largest expected value of

feature vectors in Sc, and ρl(Σ
(1:K)
ScSc|S) captures the smallest

expected value of the difference between any two feature
vectors. In most practical scenarios, it is reasonable to assume
that these two quantities do not scale as system dimension
increases, and their values should be bounded.

Therefore, combining Theorems 1 and 2, it is clear that
the quantity ψ(B∗,Σ(1:K)) log(p − s) serves as a threshold
on the sample size n, which is tight in the order sense. As
the sample size is above the threshold, the multi-task Lasso
recovers the true support union, and as the sample size is
below the threshold, the multi-task Lasso fails to recover the
true support union. The following proposition provides bounds
on the scaling behavior of the function ψ(B∗,Σ(1:K)) in the
asymptotic regime.

Proposition 1. Consider the MDMR linear regression model
with the regression matrix B∗ and the covariance ma-
trices Σ(1:K) satisfying the condition (C2), the function
ψ(B∗,Σ(1:K)) is bounded as

s

KCmax
≤ ψ(B∗,Σ(1:K)) ≤ s

Cmin
.

The proof of the Proposition 1 is provided in Appendix A.
In the next subsection, we explore the properties of the

quantity ψ(B∗,Σ(1:K)) in order to understand the impact of
sparsity of B∗ and covariance matrices Σ(1:K) on sample
complexity for recovering the support union.

B. Implications

The quantity ψ(B∗,Σ(1:K)) captures sparsity of B∗ and
statistical properties of design matrices Σ(1:K), and hence
plays an important role in determining the conditions on the
sample size for recovery of the support union as shown in
Theorems 1 and 2. In this section, we analyze ψ(B∗,Σ(1:K))
for a number of representative cases in order to understand
advantages of multi-task Lasso which solves multiple linear re-
gression problems jointly over single-task Lasso which solves
each linear regression problem individually.

We denote ψ(
−→
β ∗(k),Σ(k)) as the function corresponding to

a single linear regression problem, where
−→
β ∗(k) represents the

kth column of B∗. It is clear that ψ(
−→
β ∗(k),Σ(1:K)) captures

the threshold on the sample size for the single-task Lasso
problem. Comparison of ψ(B∗,Σ(1:K)) and ψ(

−→
β ∗(k),Σ(k))

provides comparison between multi-task Lasso and single-task
Lasso in terms of the number of samples needed for recovery
of the support union/set. We explicitly express ψ(B∗,Σ(1:K))

and ψ(
−→
β ∗(k),Σ(k)) as follows:

ψ(B∗,Σ(1:K))

= max
1≤k≤K

∑
i∈S

∑
j∈S

B∗ikB
∗
jk

‖B∗i ‖l2
∥∥B∗j ∥∥l2

((
Σ

(k)
SS

)−1
)
ij

(13)

ψ(
−→
β ∗(k),Σ(k))

=
∑
i∈S

∑
j∈S

−→
β
∗(k)
i

−→
β
∗(k)
j∣∣∣−→β ∗(k)

i

∣∣∣ ∣∣∣−→β ∗(k)
j

∣∣∣
((

Σ
(k)
SS

)−1
)
ij

(14)

where B∗ik denotes the (i, k)th entry of the matrix B∗ and−→
β
∗(k)
i denotes the ith entry of the vector

−→
β ∗(k).

We first study the scenario, in which all K tasks have the
same regression vectors, and hence have the same support sets.

Proposition 2. (Identical Regression Vectors) If B∗ has iden-
tical column vectors, i.e.,

−→
β ∗(k) =

−→
β ∗ for k = 1, . . . ,K,

then

ψ(B∗,Σ(1:K)) =
1

K
max

1≤k≤K
ψ(
−→
β ∗,Σ(k)). (15)

Proof. Under the assumption of the proposition, B∗ =
−→
β ∗~1TK ,

where
−→
β ∗ ∈ Rp. Hence,

−→
Z ∗Sk =

sign(
−→
β ∗S)√
K

, where the vector
−→
β ∗S contains components in the support S.

ψ(B∗,Σ(1:K)) = max
1≤k≤K

−→
Z ∗TSk

(
Σ

(k)
SS

)−1−→
Z ∗Sk

= max
1≤k≤K

sign(
−→
β ∗S)

T

√
K

(
Σ

(k)
SS

)−1 sign(
−→
β ∗S)√
K

=
1

K
max

1≤k≤K
ψ(
−→
β ∗,Σ(k)). (16)

Remark 1. Proposition 2 implies that the number of samples
per task needed to correctly recover the support union via
multi-task Lasso is reduced by a factor of K compared to
single-task Lasso that recovers each support set individually.

It can be seen that although the K tasks involve design
matrices that have different covariances, as long as dependence
of the output variables on the feature variables is the same
for all tasks, the tasks share samples in multi-task Lasso to
recover the support union so that the sample size needed per
task is reduced by a factor of K. Hence, there is a significant
advantage of grouping tasks with similar regression vectors
together for multi-task learning.

Proposition 2 can be viewed as a generalization of the result
in [29], in which the design matrices for the tasks are the
same. The result in [29] suggests that if the tasks share the
same regression vector, there is no benefit in terms of the
number of samples needed for support recovery using multi-
task Lasso compared to single-task Lasso. Our result suggests
that the benefit of multi-task Lasso in fact arises when the
design matrices are differently distributed. For such a case,
we show that the sample size needed per design matrix (i.e.,
per task) is reduced by the factor K.

Moreover, compared to recovery of each support set indi-
vidually via single-task Lasso, multi-task Lasso also reduces
sample size per task by the factor K. However, such an
advantage does not appear if the K tasks have the same design
matrix and regression vectors as in [29].

We next study a more general case when regression vectors
are also different across tasks (but the support sets of tasks are
the same) in addition to varying design matrices across tasks.
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Proposition 3. (Varying Regression Vectors with Same Sup-
ports) Suppose B∗jk 6= 0 for all j ∈ S and k = 1, . . . ,K,
and all regression coefficients are bounded, i.e., B̄k −∆k ≤
|B∗jk| ≤ B̄k + ∆k, where B̄k = 1

s

∑s
j=1 |B∗jk| and ∆k >

0 is a small perturbation constant with B̄k > ∆k. If

B∗ikB
∗
jk

((
Σ

(k)
SS

)−1
)
ij

≥ 0 for all i, j ∈ S and k =

1, . . . ,K, then

ψ(B∗,Σ(1:K))

max1≤k≤K ψ(
−→
β ∗(k),Σ(k))

≤ 1

K
max

1≤k≤K

(
B̄k + ∆k

)2(
B̄k −∆k

)2 .
Proof. Based on the assumption for B∗, we obtain the fol-
lowing upper bound on ψ(B∗,Σ(1:K)) and lower bound on
ψ(
−→
β ∗(k),Σ(k)):

ψ(B∗,Σ(1:K))

≤ 1

K
max

1≤k≤K

1(
B̄k −∆k

)2 ∑
i∈S

∑
j∈S

B∗ikB
∗
jk

((
Σ

(k)
SS

)−1
)
ij

;

(17)

ψ(
−→
β ∗(k),Σ(k))

≥ 1(
B̄k + ∆k

)2 ∑
i∈S

∑
j∈S

B∗ikB
∗
jk

((
Σ

(k)
SS

)−1
)
ij

. (18)

Combining the above bounds, we obtain

ψ(B∗,Σ(1:K))

max1≤k≤K ψ(
−→
β ∗(k),Σ(k))

≤ 1

K
max

1≤k≤K

(
B̄k + ∆k

)2(
B̄k −∆k

)2 .
Proposition 3 is a strengthened version of Proposition 2

in that Proposition 3 allows both the regression vectors and
design matrices to be different across tasks and still shows
that the number of samples needed is reduced by a factor of
K compared to single-task Lasso, as long as the support sets
across tasks are the same.

Proposition 4. (Disjoint Support Sets) Suppose that the sup-
port sets Sk of all tasks are disjoint. Let sk = |Sk|, and hence
s =

∑K
k=1 sk. Then,

ψ(B∗,Σ(1:K)) = max
1≤k≤K

ψ(
−→
β ∗(k),Σ(k)).

Proof. By the assumption of the proposition, we obtain:

ψ(B∗,Σ(1:K))

= max
1≤k≤K

sign
(−→
β
∗(k)
S

)T(
Σ

(k)
SS

)−1

sign
(−→
β
∗(k)
S

)
= max

1≤k≤K
ψ(
−→
β ∗(k),Σ(k)). (19)

Proposition 4 suggests that if the tasks have disjoint support
sets for regression vectors, the advantage of the multi-task
Lasso vanishes. This is reasonable because the tasks do not
benefit from sharing the samples for recovering the supports
if their support sets are disjoint. The essential message of
Proposition 4 should not change if the tasks have different

design matrices and/or different regression vectors. The critical
assumption in Proposition 4 is the disjoint support sets. Such
a behavior is also demonstrated in the numerical simulations
as in Fig. 7, in which the sample size needed per task for
support recovery in multi-task Lasso almost equals the sample
size needed in single-task Lasso.

Corollaries 2 and 4 provide two extreme cases when the
tasks share the same support sets and have disjoint support
sets, respectively. The number of samples needed per task
for recovery of the support union goes from 1/K of to
the same as the sample size needed for single-task Lasso.
Between these two extreme cases, tasks may have overlapped
support sets with various overlapping levels. Correspondingly,
the number of samples needed for recovering the support union
should depend on the overlapping levels of the support sets
and is captured precisely by the quantity ψ(B∗,Σ(1:K)). We
demonstrate such behavior via our numerically results in the
next section.

IV. NUMERICAL RESULTS

In this section, we provide numerical simulations to demon-
strate our theoretical results on using block-regularized multi-
task Lasso for recovery of the support union for the MDMR
linear regression model. We study how the sample size needed
for correct recovery of the support union depends on sparsity
of the regression vectors, on the distributions of the design
matrices, and on the number of tasks.

Experiment 1. We first study the scenario considered in
Proposition 2 when the K tasks have the same regression
vectors, i.e., B∗ =

−→
β ∗~1TK . We set

−→
β ∗ = 1√

K
~1S , where S is

the common support set across K tasks. We set the covariance
matrix Σ(k) to be tridiagonal1 and different across K tasks as
follows. For Σ(k), as shown below, all entries in the main
diagonal have the same value Ca, entries in the immediate
upper and lower diagonal take the same value C

(k)
b , which

varies with the task index k.

Ca C
(k)
b

C
(k)
b Ca C

(k)
b

C
(k)
b Ca

. . .
. . . . . . . . .

. . . . . . . . .


p×p

(20)

In our experiment, we choose Ca = 1 and C
(k)
b = 1/(2k)

for k = 1, 2, . . . ,K. It is easy to check that this matrix is
positive semi-definite. The sparsity of linear regression vectors
is linearly proportional to the dimension p, i.e., s = αp, with
the parameter α controlling the sparsity of the model. We set
α = 1/8. We choose the dimension p = 128, 256, 512. We set
the regularization parameter λn = 4

√
log (p− s) log s/n. We

solve the l1/l2-regularized multi-task Lasso problem (6) for
recovery of the support union for K = 1, 2, 4, 8.

Fig. 1 plots the empirical probability (i.e., empirical fre-
quency) of correct recovery of the support union as a function

1A tridiagonal matrix is a matrix that has nonzero elements only on the
main diagonal, and the first diagonals below and above the main diagonal.
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Fig. 1. Impact of number of tasks on the sample size for scenarios with
identical regression vectors and varying distributions for design matrices
across tasks

of the scaled sample size. It can be seen that the sample
size for guaranteeing correct recovery scales in the order of
s log(p − s) for all plots. Moreover, as the number of tasks
K increases, the sample size (per task) needed for correct
recovery decreases inversely proportionally with K, which
is consistent with Proposition 2. These results demonstrate
that when the regression vectors are the same across tasks,
multi-task Lasso has a great advantage compared to single-
task Lasso (i.e., K = 1) in terms of reduction in the sample
size needed per task.

Experiment 2. We are also interested in the influence of un-
equal regression values on the sample size for correct recovery.
Our next experiment is taken for the scenario in which all tasks
share the same support sets but have unequal regression values
across tasks. We construct regression vectors with periodic
entry values and with s = 1

8p. To avoid trivial variation from
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Fig. 2. Impact of number of tasks on the sample size for scenarios with
non-equal regression values and identical design matrix distribution across
tasks

Experiment 1, we use two regression values alternatively for
each regression vector. Therefore, all regression vectors are not
equal to each other but with all vectors having peroid 16. More
specifically, for k = 1, . . . ,K,

−→
β
∗(k)
j = 1√

K
×
(
1 + k

16

)
for

j = 16tpe, and
−→
β
∗(k)
j = 1√

K
×
(
1− k

16

)
for j = 16tpe + 8,

where tpe is any nonnegative integer such that j ≤ p. The
covariance matrices Σ(k) are set to be identical across all
tasks. All covariance matrices take the form of (20) but with
Ca = 1 and C

(k)
b = 1/2. Other parameters are chosen to

be the same as the experiment in Fig. 1. Fig. 2 plots how
the empirical probability of correct recovery changes with
the sample size for p = 128, 256, 512. It exhibits the same
behavior as Fig. 1, although now the regression vectors have
unequal values across tasks. In particular, it can be seen that
the sample size needed for correct recovery decreases as the
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number of tasks increased, demonstrating the advantage of
multi-task Lasso.
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Fig. 3. Comparison of two-task Lasso with orthogonal regression vectors and
identical supports and single-task Lasso

Experiment 3. In Experiment 2, variations of different
regression vectors are not significant. It is interesting to
consider the scenario with the regression vectors substantially
different from each other but still with the same supports.
In Experiment 3, we study such a case. In particular, we set
K = 2 (i.e., two tasks),

−→
β ∗(1) = 1√

K
~1S for the first task, and

−→
β ∗(2) = 1√

K
~1S/2

⊗
[1,−1]T for the second task. It is clear

that two regression vectors are orthogonal. The covariance
matrices for the two tasks take the same form of (20) with
Ca = 1 and C

(k)
b = 1/2. We also compare the performance

to the single-task case, in which the regression vector takes
the form of

−→
β
∗(1)
j = ~1S , and the covariance matrix is the

same as the multi-task case. All other parameters are set to
be the same as Experiment 2. Fig. 3 plots how the empirical

probability of correct recovery changes with the scaled sample
size. It can be seen from the figure that the sample size needed
for the two-task Lasso is half of the single-task Lasso. This
demonstrates similar performance to Experiment 2 even when
the regression coefficients are substantially different.
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Fig. 4. Impact of overlapping levels of support sets on the sample size with
same regression values for overlapping entries and identical distributions for
design matrices across tasks

Experiment 4. We next study how the overlapping levels
of the support sets across tasks affect the sample size for
correct recovery of the support union. We set K = 2,
i.e., two tasks, and study three overlapping models for the
two tasks: (1) same support sets S1 = S2 = {j ≤ p :
8tpe + 1, where integer tpe ≥ 0}; (2) disjoint support
sets S1

⋂
S2 = φ in which S1 = {j ≤ p : 16tpe +

1, where integer tpe ≥ 0} and S2 = {j ≤ p :
16tpe + 2, where integer tpe ≥ 0}; (3) overlapping
support sets in which S1 = {j ≤ p : j = 24tpe + 1 or
j = 24tpe + 2 where integer tpe ≥ 0}, and S2 = {j ≤ p :
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j = 24tpe + 2 or j = 24tpe + 3 where integer tpe ≥ 0}.
We choose the linear sparsity model with α = 1/8. We set
p = 128, 256, 512, and Σ(k) = Ip for k = 1 and 2. We also
set λn = 4×

√
log (p− s) log s/n.

Fig. 4 compares the empirical probability of correct recov-
ery as a function of the scaled sample size for the three over-
lapping models. It can be seen that the model with the same
support set requires the smallest sample size, and the model
with disjoint support sets requires the largest sample size. The
model with overlapping support sets needs the sample size
between the two extreme models. This is reasonable because
as the support sets overlap more, tasks share more information
in samples for support recovery and hence need less number
of samples for correct recovery.

The Experiment 4 is taken for the case when the design
matrices of the two tasks have the same covariance matrix and
the regression vectors are identical on overlapping entries. It
is interesting to investigate how non-equal values in regression
vectors and different covariance matrices across the two tasks
affect the sample complexity. We study these scenarios in
Experiments 5 and 6.

Experiment 5. We study the case when the regression
vectors of the two tasks do not have the same values on the
overlapping entries. For the case when the two tasks have
the same support sets, we let

−→
β
∗(k)
j = 1√

K
×
(
1 + k

8

)
for

j = 16tpe, and
−→
β
∗(k)
j = 1√

K
×
(
1− k

8

)
for j = 16tpe + 8,

where integer tpe ≥ 0 such that j ≤ p for k = 1, 2.
For the overlapping model, S1 and S2 are the same as the
Experiment 4. For k = 1,

−→
β
∗(k)
j = 1 if j = 24tpe + 1, and

−→
β
∗(k)
j = 1√

K
×
(
1 + 1

8

)
if j = 24tpe + 2, where integer

tpe ≥ 0 such that j ≤ p. For k = 2,
−→
β
∗(k)
j = 1√

K
×
(
1− 1

8

)
if j = 24tpe + 2, and

−→
β
∗(k)
j = 1 if j = 24tpe + 3, where

integer tpe ≥ 0 such that j ≤ p. For the disjoint case, the
regression vectors are the same as the Experiment 4 since
no overlapping exists in the disjoint model. Other parameters
(Σ(1:K), n, p, s, λ) are kept the same as the Experiment 4.
Fig. 5 plots the empirical probability of correct recovery
of the support union versus the scaled sample size for this
experiment. It can be observed that Fig. 5 exhibits same
behavior as Fig. 4 and demonstrates that higher overlapping
level across two tasks leads to smaller sample size needed
for recovery, although the regression vectors do not match
values for the overlapping entries. We also note that more
careful comparison of Fig. 5 and Fig. 4 suggests that the model
with perturbation on overlapping entries in regression vectors
requires a slightly larger sample size than the model without
perturbation.

Experiment 6. We next study how the varying covariance
matrices across the two tasks influence the result. We set
the covariance matrices Σ(k) to be different for k = 1, 2 as
follows. Other parameters (B∗, n, p, s, λ) are the same as the
experiment in Fig. 4. Fig. 6 compares the empirical probability
of correct recovery versus the scaled sample size for the three
overlapping models under the varying covariance matrices but
the same values for overlapping regression entries across the
two tasks. The behavior is similar to that in Fig. 4 and Fig. 5.
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Fig. 5. Impact of overlapping levels of support sets on the sample size with
non-equal regression values for overlapping entries and identical covariance
matrices across tasks

More careful comparison of Fig. 6 and Fig. 4 suggests that the
varying covariance matrices across the two tasks require larger
sample size than the case with identical covariance matrices.
This is because γ in the case with varying covariance matrices
is smaller than that in the case with identical covariance
matrices, and ψ(·) function is larger in the case with varying
covariance matrices.

Experiment 7. In this experiment, we compare the per-
formance of multi-task Lasso with regression vectors having
disjoint support sets across tasks with that of single-task Lasso.
More specifically, we study a two-task scenario with disjoint
support sets S1 = {j ≤ p : 16tpe + 1, where integer tpe ≥
0} and S2 = {j ≤ p : 16tpe + 2, where integer tpe ≥ 0},
respectively. The covariance matrix is the same as that in
Experiment 3. We compare such a case with the single-task
scenario in Experiment 3. Fig. 7 plots the empirical probability
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Fig. 6. Impact of overlapping levels of support sets on the sample size with
same regression values for overlapping entries and varying covariance matrices
across tasks

of correct recovery as a function of scaled sample size. It is
clear from the figure that the sample size needed per task for
multi-task Lasso with disjoint supports are almost the same as
that for single-task Lasso, demonstrating that the advantage
of multi-task Lasso vanishes if the regression vectors have
disjoint support sets across tasks.

V. PROOF OF THEOREM 1
Our proof applies the framework developed in [18] and in

[29] based on the idea of primal-dual witness. However, for
the MDMR model, we need to develop novel adaptation due to
varying design matrices across tasks. In [29], since the model
can be expressed by a matrix operation on regression matrix,
the proof involves many operations for matrices, for which
properties/bounds for matrices can be applied. However, the
MDMR model is expressed by K operations on individual
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Fig. 7. Comparison of two-task Lasso with disjoint support sets and single-
task Lasso

regression vectors. The proof mostly involves first manipulat-
ing/bounding individual regression vectors and then integrating
these manipulations/bounds together for conditions across all
tasks. Our adaptation needs to make bounds in both steps as
tight as possible in order to develop sharp threshold conditions.
We next present our proof in detail.

The objective function in the multi-task Lasso problem
given in (6) is convex, and hence the following Karush-
Kuhn-Tucker (KKT) condition is sufficient and necessary to
characterize an optimal solution:

∇Bf(B) + λnZ = 0 (21)

where f(B) = 1
2n

∑K
k=1

∥∥∥−→Y (k) −X(k)−→β (k)
∥∥∥2

, and Z ∈
∂‖B‖l1/l2 .

Before introducing the sufficient conditions, we first present
the following lemma which provides an important property
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about the optimal solution to the above problem.

Lemma 1. Suppose there exists an optimal solution B̂ to
the multi-task Lasso problem given in (6). Suppose Ẑ is in
the subdifferential of ‖B‖l1/l2 at B̂, and satisfies the KKT
condition in (21) jointly with B̂. Suppose that Ẑ satisfies∥∥∥ẐΩ

∥∥∥
l∞/l2

< 1, where ẐΩ denotes the submatrix that contains

rows of Ẑ with indices in the set Ω. Then any optimal solution
B̃ to (6) must satisfy B̃Ω = 0.

The proof of Lemma 1 is similar to that of Lemma 1 in
[18]. For completeness of our paper, we provide the proof of
Lemma 1 in Appendix B.

We now construct a pair (B̂, Ẑ) that satisfy the KKT
condition in (21). We first let B̂S be an optimal solution to
the following optimization problem:

B̂S = argminBS

[
f(B)|BSc=0 + λn ‖BS‖l1/l2

]
(22)

and let ẐS be the associated element in the subdifferential of
‖BS‖l1/l2 such that (B̂S , ẐS) satisfy the KKT condition for
the optimization problem given in (22). We then let B̂Sc = 0,
and let ẐSc be an element in the subdifferential of ‖BSc‖l1/l2
that satisfies the KKT condition jointly with B̂Sc = 0 for the
following problem

argminBSc

[
f(B)|BS=B̂S

+ λn ‖BSc‖l1/l2
]
. (23)

Such ẐSc must exist if the KKT condition for the optimization
problem (23) implies

∥∥∥ẐSc

∥∥∥
l∞/l2

≤ 1. Now it is easy to

see that (B̂, Ẑ) obtained above satisfies the KKT condition
in (21) and is hence an optimal solution to the problem (6).
Furthermore, following Lemma 1, if

∥∥∥ẐSc

∥∥∥
l∞/l2

< 1, then

any optimal solution B̃ to (6) satisfies B̃Sc = 0. Therefore,
condition

∥∥∥ẐSc

∥∥∥
l∞/l2

< 1 guarantees both that there exists

an optimal solution with the structure described as above and
that all optimal solutions B̃ satisfies B̃Sc = 0. Furthermore,
the condition

∥∥∥ẐSc

∥∥∥
l∞/l2

< 1 guarantees uniqueness of the

optimal solution. The arguments follow from the proof of
Lemma 2 in [18].

We next proceed to characterize the conditions that guar-
antee

∥∥∥ẐSc

∥∥∥
l∞/l2

< 1. For j ∈ Sc and k = 1, . . . ,K, we

have

Ẑjk =− 1

λnn

−→
X

(k)
j

T (
Π

(k)
S − In

)−→
W (k)

+
1

n

−→
X

(k)
j

T
X

(k)
S

(
Σ̂

(k)
SS

)−1 −̂→
Z Sk, (24)

where
−→
X

(k)
j denotes the jth column of the matrix X(k),

Σ̂
(k)
SS = 1

nX
(k)
S

T
X

(k)
S , and Π

(k)
S =

X
(k)
S

(
Σ̂

(k)
SS

)−1
X

(k)
S

T

n . The
steps to obtain the above Ẑjk is provided in Appendix C for
completeness.

Analysis of VSc : We let Vj =
(
Ẑj1, . . . , ẐjK

)
. We need to

characterize the conditions so that ‖Vj‖l2 < 1 for all j ∈ Sc

with high probability. We write Vj into three terms as follows

Vj = E
(
Vj | X(1:K)

S

)
︸ ︷︷ ︸

Tj1

+ E
(
Vj | X(1:K)

S ,
−→
W (1:K)

)
− E

(
Vj | X(1:K)

S

)
︸ ︷︷ ︸

Tj2

+ Vj − E
(
Vj | X(1:K)

S ,
−→
W (1:K)

)
︸ ︷︷ ︸

Tj3

(25)

where X
(1:K)
S =

(
X

(1)
S , . . . , X

(K)
S

)
and

−→
W (1:K) =(−→

W (1), . . . ,
−→
W (K)

)
. We next evaluate Tj1, Tj2, and Tj3 one

by one.
Evaluation of Tj1: By the definition of ẐS , we have the

following conditional independencies:(−→
W (k) ⊥

−→
X

(k)
j

∣∣∣X(1:K)
S

)
,(

−̂→
Z Sk ⊥

−→
X

(k)
j

∣∣∣X(1:K)
S

)
,(

−̂→
Z Sk ⊥

−→
X

(k)
j

∣∣∣X(1:K)
S ,

−→
W (1:K)

)
. (26)

Given the above independence properties, we first derive

E
(
Ẑjk

∣∣∣X(1:K)
S

)
= − 1

λnn
E

(
−→
X

(k)
j

T ∣∣∣X(1:K)
S

)(
Π

(k)
S − In

)
E
(−→
W (k)

)
+

1

n
E

(
−→
X

(k)
j

T ∣∣∣X(1:K)
S

)
X

(k)
S

(
Σ̂

(k)
SS

)−1

E

(
−̂→
Z Sk

∣∣∣X(1:K)
S

)
= Σ

(k)
jS

(
Σ

(k)
SS

)−1

E

(
−̂→
Z Sk

∣∣∣X(1:K)
S

)
(27)

for j ∈ Sc, where Σ
(k)
jS represents the covariance between

a component in
−→
X

(k)
j and a row in X

(k)
S . We then obtain

the following bound on ‖Tj1‖l2 with the proof provided in
Appendix D:

‖Tj1‖l2 ≤
|S|∑
a=1

Aja, (28)

where Aja = maxk

∣∣∣∣∣
(

Σ
(k)
ScS

(
Σ

(k)
SS

)−1
)
ja

∣∣∣∣∣ for j ∈ Sc and

a ∈ S. We hence obtain

max
j∈Sc

‖Tj1‖l2 ≤ max
j∈Sc

|S|∑
a=1

Aja = |||A|||∞ ≤ 1− γ.

Evaluation of Tj2: Due to the independency
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−̂→
Z Sk ⊥

−→
X

(k)
j |X

(1:K)
S ,

−→
W (1:K)

)
, we obtain

E
(
Ẑjk

∣∣∣X(1:K)
S ,

−→
W (1:K)

)
=− 1

λnn
E

(
X

(k)
j

T
∣∣∣X(1:K)

S ,
−→
W (1:K)

)(
Π

(k)
S − In

)−→
W (k)

+
1

n
E

(
X

(k)
j

T
∣∣∣X(1:K)

S ,
−→
W (1:K)

)
X

(k)
S

(
Σ̂

(k)
SS

)−1

· E
(
−̂→
Z Sk

∣∣∣X(1:K)
S ,

−→
W (1:K)

)
=Σ

(k)
jS

(
Σ

(k)
SS

)−1 −̂→
Z Sk (29)

where the second equality follows because
−̂→
Z Sk is a function

of X(1:K)
S and

−→
W (1:K). We then obtain

E
(
Ẑjk

∣∣∣X(1:K)
S ,

−→
W (1:K)

)
− E

(
Ẑjk

∣∣∣X(1:K)
S

)
= Σ

(k)
jS

(
Σ

(k)
SS

)−1
(
−̂→
Z Sk − E

(
−̂→
Z Sk

∣∣∣X(1:K)
S

))
. (30)

Thus, following from steps similar to those in Appendix D,
we obtain

‖Tj2‖l2 ≤
|S|∑
a=1

Aja

∥∥∥ẐS − E(ẐS |X(1:K)
S )

∥∥∥
l∞/l2

, (31)

and hence

max
j∈Sc

‖Tj2‖l2 ≤max
j∈Sc

|S|∑
a=1

Aja

∥∥∥ẐS − E(ẐS |X(1:K)
S )

∥∥∥
l∞/l2

=|||A|||∞
∥∥∥ẐS − E(ẐS |X(1:K)

S )
∥∥∥
l∞/l2

≤(1− γ)
∥∥∥ẐS − E(ẐS |X(1:K)

S )
∥∥∥
l∞/l2

≤(1− γ)
∥∥∥ẐS − Z∗S∥∥∥

l∞/l2

+ (1− γ)E

[∥∥∥ẐS − Z∗S∥∥∥
l∞/l2

∣∣∣X(1:K)
S

]
.

(32)

We next provide the following lemma given in [29], which
is useful for our proof.

Lemma 2. [29] Consider the matrix ∆ ∈ RS×K with rows
∆i :=

B̂i−B∗i
‖B∗i ‖2

. If ‖∆‖l∞/l2 < 1
2 , then

‖ẐS − Z∗S‖l∞/l2 ≤ 4‖∆‖l∞/l2 .

By applying the above lemma, given the condition
‖∆‖l∞/l2 < 1

2 that we will show later, we obtain

max
j∈Sc
‖Tj2‖l2 ≤ 4(1− γ)

(
‖∆‖l∞/l2 + E

[
‖∆‖l∞/l2

∣∣∣X(1:K)
S

])
.

We will show later in the analysis of US that ‖∆‖l∞/l2
is of order o(1) with high probability, and hence the above
inequality holds with high probability.

Evaluation of Tj3: We introduce the vector
−→
D (k) such that

Ẑjk =− 1

λnn

−→
X

(k)
j

T (
Π

(k)
S − In

)−→
W (k)

+
1

n

−→
X

(k)
j

T
X

(k)
S

(
Σ̂

(k)
SS

)−1 −̂→
Z Sk

=
−→
X

(k)
j

T−→
D (k). (33)

It is clear that for j ∈ Sc,

Cov
(−→
X

(k)
j |X

(1:K)
S ,

−→
W (1:K)

)
=
(

Σ
(k)
ScSc|S

)
jj
In.

Under the condition that X(1:K)
S and

−→
W (1:K) are given, we

have (
Ẑjk|X(1:K)

S ,
−→
W (1:K)

)
− E

[
Ẑjk|X(1:K)

S ,
−→
W (1:K)

]
∼ N (0, σ2

jk) (34)

where

σ2
jk =

1

n

(
Σ

(k)
ScSc|S

)
jj

−̂→
Z
T

Sk

(
Σ̂

(k)
SS

)−1 −̂→
Z Sk

− 1

n2λ2
n

(
Σ

(k)
ScSc|S

)
jj

−→
W (k)

T (
Π

(k)
S − In

)−→
W (k).

(35)

Given
(
X

(1:K)
S ,

−→
W (1:K)

)
, Ẑjk is independently distributed

across k for k = 1, . . . ,K. Hence,

Ẑjk − E
[
Ẑjk|X(1:K)

S ,
−→
W (1:K)

]
d.
= σjkξjk

given
(
X

(1:K)
S ,

−→
W (1:K)

)
(36)

where ξjk ∼ N (0, 1) is independently distributed across k for
k = 1, . . . ,K. Thus,∥∥∥Vj − E

[
Vj

∣∣∣X(1:K)
S ,

−→
W (1:K)

]∥∥∥2

l2

d.
=

K∑
k=1

σ2
jkξ

2
jk

given
(
X

(1:K)
S ,

−→
W (1:K)

)
. (37)

We hence obtain

max
j∈Sc

‖Tj3‖2l2
d.
= max

j∈Sc

K∑
k=1

σ2
jkξ

2
jk

≤ max
j∈Sc

max
1≤k≤K

σ2
jk max
j∈Sc

(
K∑
k=1

ξ2
jk

)
given

(
X

(1:K)
S ,

−→
W (1:K)

)
(38)

We next provide a useful bound for χ2 random variable,
which was given in [29].

Lemma 3. [29] Let Z be a central χ2 distributed random
variable with the degree d. Then for all t > d, we have

P (Z ≥ 2t) ≤ exp

(
−t

[
1− 2

√
d

t

])
.
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Applying the above lemma, we obtain for all t > K,

P

(
max
j∈Sc

(
K∑
k=1

ξ2
jk

)
> 2t

)

≤ (p− s)P

((
K∑
k=1

ξ2
jk

)
> 2t

)

≤ (p− s) exp

(
−t

[
1− 2

√
K

t

])
. (39)

By applying the bound on σ2
jk derived in appendix E

together with (39), we further have

max
j∈Sc

‖Tj3‖2l2 ≤ 2tρu

(
Σ

(1:K)
ScSc|S

)(ψ(B∗,Σ(1:K))

n
+ Γ

)
(40)

with the probability larger than

1− 2(K + 1) exp
(
−s

2

)
− 4(K + 1) exp

(
−n

2

(
1

4
−
√
s

n

)2

+

)
−K exp

(
− log s+ 2

√
2 log s

)
− (p− s) exp

(
−t

[
1− 2

√
K

t

])

− exp

(
−5(n− s)

[
1− 2

√
1

5

])
(41)

for t > K, where

Γ =
16s ‖∆‖l∞/l2

nCmin
(1 + 2 ‖∆‖l∞/l2) +

12

Cmin

( s
n

) 3
2

+
10(n− s)σ(k)

W

2

n2λ2
n

. (42)

For n large enough, Γ converges to zero with an order o
(
s
n

)
.

We also note that ψ(B∗,Σ(1:K)) has an order O(s) based on
Proposition 1. In (40), we set t = 1+v

1+δ log (p− s) where v > 0
and δ = v/(3v + 4). We can then show that if

n > 2(1 + v)ψ
(
B∗,Σ(1:K)

)
log(p− s)

ρu

(
Σ

(1:K)
ScSc|S

)
γ2

,

then

max
j∈Sc

‖Tj3‖l2 < γ (43)

with the probability larger than

1− 2(K + 1) exp
(
−s

2

)
− 4(K + 1) exp

(
−n

2

(
1

4
−
√
s

n

)2

+

)
−K exp

(
− log s+ 2

√
2 log s

)
− exp

(
−v

2
log (p− s)

)
− exp

(
−5(n− s)

[
1− 2

√
1

5

])
. (44)

It follows from (25) that

‖Vj‖l2 ≤ ‖Tj1‖l2 + ‖Tj2‖l2 + ‖Tj3‖l2 .

Combining the above equation with the evaluation for Tj1,
Tj2, Tj3, we conclude that ‖Vj‖l2 < 1 with high probability
due to (44) and (57).

Analysis of US: We have obtained the sufficient conditions
for the existence and uniqueness of an optimal solution to the
problem given in (6), which guarantees B̂Sc = 0. It remains to
characterize conditions such that all rows of B̂S are nonzero
and hence S(B̂) recovers the true support union.

In order to guarantee that every row of B̂S is nonzero, it
suffices to guarantee that

‖US‖l∞/l2 ≤
1

2
b∗min

where

US = B̂S −B∗S =
[−→
U

(1)
S . . .

−→
U

(K)
S

]
.

Each column
−→
U

(k)
S is given by

−→
U

(k)
S :=

−̂→
β

(k)

S −
−→
β
∗(k)
S

=
(

Σ̂
(k)
SS

)−1
(

1

n
X

(k)T
S

−→
W (k) − λn

−̂→
Z Sk

)
. (45)

It suffices to guarantee that∥∥∥−→U (k)
S

∥∥∥
l∞
≤ 1

2K
b∗min,

for k = 1, . . . ,K. In order to bound
∥∥∥−→U (k)

S

∥∥∥
l∞

, we define

−̃→
W

(k)

=
1√
n

(
Σ̂

(k)
SS

)− 1
2

X
(k)T
S

−→
W (k),

and hence

−→
U

(k)
S =

1√
n

(
Σ̂

(k)
SS

)− 1
2 −̃→
W

(k)

− λn
(

Σ̂
(k)
SS

)−1 −̂→
Z Sk.

We then obtain the following bound∥∥∥−→U (k)
S

∥∥∥
l∞

≤

∥∥∥∥∥ 1√
n

(
Σ̂

(k)
SS

)− 1
2 −̃→
W

(k)
∥∥∥∥∥
l∞︸ ︷︷ ︸

T ′k1

+λn

∥∥∥∥(Σ̂
(k)
SS

)−1 −̂→
Z Sk

∥∥∥∥
l∞︸ ︷︷ ︸

T ′k2

.

(46)

We next evaluate the bounds on the two terms T ′k2 and T ′k1,
respectively.
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Evaluation of T ′k2: We first derive the following bound∥∥∥∥(Σ̂
(k)
SS

)−1 −̂→
Z Sk

∥∥∥∥
l∞

≤ max
i∈S

∑
j∈S

∣∣∣∣∣
((

Σ̂
(k)
SS

)−1
)
ij

∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣(Σ̂
(k)
SS

)−1
∣∣∣∣∣∣∣∣∣∣∣∣
∞

≤
∣∣∣∣∣∣∣∣∣∣∣∣(Σ

(k)
SS

)−1
∣∣∣∣∣∣∣∣∣∣∣∣
∞

+

∣∣∣∣∣∣∣∣∣∣∣∣(Σ̂
(k)
SS

)−1

−
(

Σ
(k)
SS

)−1
∣∣∣∣∣∣∣∣∣∣∣∣
∞

(a)

≤ Dmax +
√
s

∣∣∣∣∣∣∣∣∣∣∣∣(Σ̂
(k)
SS

)−1

−
(

Σ
(k)
SS

)−1
∣∣∣∣∣∣∣∣∣∣∣∣

2

(b)

≤ Dmax +
12s

Cmin
√
n

(47)

with probability larger than 1 − 2 exp
(
− s2
)
−

3 exp
(
−n2

(
1
4 −

√
s
n

)2
+

)
. In the above derivation, step

(a) follows from the assumption of the theorem and
|||A|||∞ ≤

√
s|||A|||2 for A ∈ Rs×n, and step (b) applies the

bound given in (97) in Appendix F. Therefore,

T ′k2 ≤ λn
(
Dmax +

12s

Cmin
√
n

)
(48)

with probability larger than 1 − 2 exp
(
− s2
)
−

3 exp
(
−n2

(
1
4 −

√
s
n

)2
+

)
.

Evaluation of T ′k1: We first have

E

(
−̃→
W

(k)−̃→
W

(k)T ∣∣∣X(1:K)
S

)

= E
((

Σ̂
(k)
SS

)− 1
2 1

n
X

(k)T
S

−→
W (k)−→W (k)TX

(k)
S

(
Σ̂

(k)
SS

)− 1
2
∣∣∣X(1:K)

S

)
= σ

(k)
W

2
IS (49)

which implies that given X(1:K)
S ,

−̃→
W

(k)

has i.i.d. components

with each being Gaussian distributed as N
(

0, σ
(k)
w

2)
. Hence,

given X(1:K)
S , we have

T ′k1 ≤
∣∣∣∣∣∣∣∣∣∣∣∣(Σ̂

(k)
SS

)− 1
2

∣∣∣∣∣∣∣∣∣∣∣∣
∞

∥∥∥∥∥∥∥
−̃→
W

(k)

√
n

∥∥∥∥∥∥∥
l∞

≤ σmax
√

2s

Cmin
max
j∈S

√
1

n
ξ2
j (50)

with probability larger than 1−exp
(
−n2

(
1
4 −

√
s
n

)2
+

)
, where

σmax = max1≤k≤K σ
(k)
W , and ξj is the standard Gaussian

random variable. The second inequality in the preceding
derivation follows because |||A|||∞ ≤

√
s|||A|||2 for A ∈ Rs×n,

and from the bound (95) provided in Appendix F. By applying
Lemma 3 with d = 1, we have

P

(
1

n
max
j∈S

ξ2
j ≥

2t

n

)
≤ s · exp

(
−t

[
1− 2

√
1

t

])
. (51)

By setting t = 2 log s in the above bound, we then obtain

T ′k1 ≤ σmax
√

2s

Cmin
·
√

2t

n
≤

√
8s log (s)σ2

max

nCmin
(52)

with the probability larger than

1− exp

(
−n

2

(
1

4
−
√
s

n

)2

+

)
− exp

(
− log s+ 2

√
2 log s

)
.

(53)

Combining the bounds on T ′k1 and T ′k2, we obtain∥∥∥−→U (k)
S

∥∥∥
l∞
≤

√
8s log (s)σ2

max

nCmin
+ λn

(
Dmax +

12s

Cmin
√
n

)
= ρ(n, s, λn) (54)

with the probability larger than

1− 2 exp
(
−s

2

)
− 4 exp

(
−n

2

(
1

4
−
√
s

n

)2

+

)
− exp

(
− log s+ 2

√
2 log s

)
. (55)

Thus, the assumption ρ(n,s,λn)
b∗min

= o(1) guarantees that∥∥∥−→U (k)
S

∥∥∥
l∞
≤ 1

2K b
∗
min for sufficiently large n.

Furthermore, we derive the following bound

‖∆‖l∞/l2 ≤

∥∥∥B̂S −B∗S∥∥∥
l∞/l2

minj∈S
∥∥B∗j ∥∥2

=
‖US‖l∞/l2
b∗min

≤
maxj∈S

∑K
k=1 |Ujk|

b∗min
≤

K∑
k=1

maxj∈S |Ujk|
b∗min

=

K∑
k=1

∥∥∥−→U (k)
S

∥∥∥
l∞

b∗min
≤ Kρ(n, s, λn)

b∗min
= o(1) (56)

with the probability larger than

1− 2K exp
(
−s

2

)
− 4K exp

(
−n

2

(
1

4
−
√
s

n

)2

+

)
−K exp

(
− log s+ 2

√
2 log s

)
. (57)

Summarizing the analysis of VSc and US , we conclude that
the multi-task Lasso problem given in (6) has a unique solution
B̂, whose support union recovers the true support union S(B∗)
with high probability under the assumption of the theorem.

VI. PROOF OF THEOREM 2

Our proof adapts and further develops the proof techniques
established in [29] due to varying design matrices across tasks.

Following from the proof in Section V, it can be shown that
if either

∥∥∥ẐSc

∥∥∥
l∞/l2

> 1 holds or
∥∥∥B̂ −B∗∥∥∥

l∞/l2
= o(b∗min)

does not hold, no solution B̃ to the multi-task Lasso problem
given in (6) recovers the correct support union and satisfies∥∥∥B̃ −B∗∥∥∥

l∞/l2
= o(b∗min). Hence, if

∥∥∥B̂ −B∗∥∥∥
l∞/l2

=

o(b∗min) does not hold, it is already the case that the multi-
task Lasso does not provide the desired solution. Then the
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following proof is to identify sufficient conditions such that
‖VSc‖l∞/l2 > 1 when

∥∥∥B̂ −B∗∥∥∥
l∞/l2

= o(b∗min) holds,

where Vj =
(
Ẑj1, . . . , ẐjK

)
for j ∈ Sc.

We use the decomposition in (25), which is rewritten below:

Vj = Tj1 + Tj2 + Tj3.

However, we are now interested in lower bounding
‖VSc‖l∞/l2 . We first bound this quantity as follows:

‖VSc‖l∞/l2 ≥ ‖TSc3‖l∞/l2 − ‖TSc1‖l∞/l2 − ‖TSc2‖l∞/l2 .

By the assumption of the theorem, ‖TSc1‖l∞/l2 ≤ 1− γ. We
next consider TSc2. Due to (32), we have

‖TSc2‖l∞/l2 ≤ (1− γ)
∥∥∥ẐS − Z∗S∥∥∥

l∞/l2

+ (1− γ)E

[∥∥∥ẐS − Z∗S∥∥∥
l∞/l2

∣∣∣X(1:K)
S

]
. (58)

By the assumption that
∥∥∥B̂ −B∗∥∥∥

l∞/l2
= o(b∗min) holds,

following the proof in Section V, ‖TSc2‖l∞/l2 = o(1) holds.
It then suffices to guarantee that ‖TSc3‖l∞/l2 > 2− γ. We

recall from (38) that

max
j∈Sc

‖Tj3‖l2
d.
= max

j∈Sc

√√√√ K∑
k=1

σ2
jkξ

2
jk

given
(
X

(1:K)
S ,

−→
W (1:K)

)
, (59)

where ξjk ∼ N (0, 1) are independently distributed across k.
We let Vmax := ‖TSc3‖l∞/l2 , and the remaining part of the

proof is to derive a lower bound on Vmax, which takes several
steps. The first step is to show that Vmax is concentrated
around its expectation when

(
X

(1:K)
S ,

−→
W (1:K)

)
are given.

Lemma 4. For any δ > 0,

P
[
|Vmax − EVmax| ≥ δ

∣∣∣X(1:K)
S ,

−→
W (1:K)

]
≤ 4 exp

− δ2

2ρu

(
Σ

(1:K)
ScSc|S

)
max1≤k≤KMk

. (60)

Proof. We first construct the following function g :
R(p−s)×K → R

g(ξ) := max
j∈Sc


√√√√ K∑
k=1

σ2
jkξ

2
jk


where ξjk is the entry of the matrix ξ with the index pair
{j, k}.

To explore the continuity property of the constructed func-
tion g, we let u = (ujk, j ∈ Sc, k = 1, . . . ,K) and
v = (vjk, j ∈ Sc, k = 1, . . . ,K) be two matrices. We derive

the following bound given
(
X

(1:K)
S ,

−→
W (1:K)

)
.

|g(u)− g(v)|

=

∣∣∣∣∣∣max
j∈Sc


√√√√ K∑
k=1

σ2
jku

2
jk

− max
n∈Sc


√√√√ K∑
k=1

σ2
nkv

2
nk

∣∣∣∣∣∣
≤ max

j∈Sc

∣∣∣∣∣∣
√√√√ K∑
k=1

σ2
jku

2
jk −

√√√√ K∑
k=1

σ2
jkv

2
jk

∣∣∣∣∣∣
(a)

≤
(

max
j∈Sc

max
1≤k≤K

σjk

)(
max
j∈Sc

‖uj − vj‖2

)
≤
√
ρu

(
Σ

(1:K)
ScSc|S

)
max

1≤k≤K
Mk ‖u− v‖F , (61)

where (a) follows by taking square on both sides and com-
paring various cross terms.

Therefore, the function g is Lipschitz continuous with con-

stant L =

√
ρu

(
Σ

(1:K)
ScSc|S

)
max1≤k≤KMk. The proof com-

pletes by applying Gaussian concentration inequality given
below for a standard Gaussian vector X and the Lipschitz
function g with the constant L:

P [|g(X)− Eg(X)| ≥ δ] ≤ 4 exp(−δ2/(2L2)).

The second step is to find a lower bound on E[Vmax].

Lemma 5. For any fixed δ′ and sufficiently large (p− s), the
following inequality holds:

E
[
Vmax

∣∣∣X(1:K)
S ,

−→
W (1:K)

]
≥ max

1≤k≤K

√
Mk

√
(1− δ′)ρl

(
Σ

(1:K)
ScSc|S

)
log (p− s)/2.

Proof. The proof is under the assumption that(
X

(1:K)
S ,

−→
W (1:K)

)
are given. Define ηjk =

√
(Σ

(k)
ScSc|S)jjξjk

and therefore, ηjk ∼ N
(

0, (Σ
(k)
ScSc|S)jj

)
. We then have√√√√ K∑

k=1

σ2
jkξ

2
jk =

√√√√ K∑
k=1

Mk(Σ
(k)
ScSc|S)jjξ2

jk

=

√√√√ K∑
k=1

Mkη2
jk

≥
√
Mk∗ |ηjk∗ | (62)

where k∗ = argmax1≤k≤K
√
Mk. Without loss of generality,

let k∗ = 1.

E
[
Vmax

∣∣∣X(1:K)
S ,

−→
W (1:K)

]
≥
√
Mk∗ · E

(
max
j∈Sc

|ηj1|
)
. (63)

The proof completes by applying the lower bound of
E (maxj∈Sc |ηj1|). It can be shown that

E
[
(ηi1 − ηj1)2

]
≥ ρl

(
Σ

(1:K)
ScSc|S

)
E
[
(ξi1 − ξj1)2

]
.
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Using the result in [49], we have

E

(
max
j∈Sc

|ηj1|
)
≥ 1

2

√
ρl

(
Σ

(1:K)
ScSc|S

)
E

(
max
j∈Sc

|ξj1|
)
.

Furthermore, the standard Gaussian random vector has the
following bound by the result in [50]:

E

(
max
j∈Sc

|ξj1|
)
≥
√

2(1− δ′) log (p− s)

if (p−s) is large enough, where δ′ is a small positive number.

In Appendix E, we obtain the following lower bound

max
1≤k≤K

Mk ≥
ψ(B∗,Σ(1:K))

n
− Γ

with the probability larger than

1− 2 exp
(
−s

2

)
− 4 exp

(
−n

2

(
1

4
−
√
s

n

)2

+

)

− exp

(
−5(n− s)

[
1− 2

√
1

5

])
. (64)

Since Γ converges to 0 with an order o
(
s
n

)
,

max1≤k≤KMk ≥ ψ(B∗,Σ(1:K))
n (1 − δ′′) holds for any

small constant δ′′ > 0 and large enough n. We then have

E
[
Vmax

∣∣∣X(1:K)
S ,

−→
W (1:K)

]
≥
√
ψ(B∗,Σ(1:K))

n
(1− δ′′)

·
√

(1− δ′)ρl
(

Σ
(1:K)
ScSc|S

)
log (p− s)/2

(a)

≥ (2− γ)

√
(1− δ′)(1− δ′′)

4(1− v)

(b)
> 2− γ + δ (65)

with high probability, where (a) follows from the assumption
of the theorem on the sample size n, and (b) follows by
choosing v > 1− (1−δ′)(1−δ′′)

4[1+(δ/(2−γ))]2 .
By applying lemma 4 and max1≤k≤KMk ≤

ψ(B∗,Σ(1:K))
n (1 + δ′′), i.e., equation (91) in Appendix

E, we obtain

P
[
|Vmax − EVmax| ≥ δ

∣∣∣X(1:K)
S ,

−→
W (1:K)

]
≤ 4 exp

− nδ2

2ρu

(
Σ

(1:K)
ScSc|S

)
ψ(B∗,Σ(1:K))(1 + δ′′)


≤ 4 exp

− nδ2Cmin

2ρu

(
Σ

(1:K)
ScSc|S

)
s(1 + δ′′)

 (66)

which implies Vmax > 2− γ with high probability.

Therefore, ‖VSc‖l∞/l2 > 1 holds with probability larger
than

1− 2 exp
(
−s

2

)
− 4 exp

(
−n

2

(
1

4
−
√
s

n

)2

+

)

− 4 exp

− nδ2Cmin

2ρu

(
Σ

(1:K)
ScSc|S

)
s(1 + δ′′)


− exp

(
−5(n− s)

[
1− 2

√
1

5

])
,

which concludes the proof.

VII. CONCLUSIONS

In this paper, we have investigated the Gaussian MDMR
linear regression model. We have characterized sufficient and
necessary conditions under which the l1/l2-regularized multi-
task Lasso guarantees successful recovery of the support
union of K linear regression vectors. The two conditions
are characterized by a threshold and hence are tight in the
order sense. Our numerical results have demonstrated the
advantage of joint recovery of the support union compared
to using single-task Lasso to recover the support set of
each task individually. Further studying the MDMR model
under other block-constrains is an interesting topic in the
future. Applications of the approach here to structure learning
problems based on real data sets such as social network data
are also interesting.

APPENDIX A
BOUNDS ON ψ(B∗,Σ(1:K))

We first derive an upper bound on ψ(B∗,Σ(1:K)) as follows:

ψ(B∗,Σ(1:K)) = max
1≤k≤K

−→
Z ∗TSk

(
Σ

(k)
SS

)−1−→
Z ∗Sk

≤
K∑
k=1

−→
Z ∗TSk

(
Σ

(k)
SS

)−1−→
Z ∗Sk

≤
K∑
k=1

‖
−→
Z ∗Sk‖2l2

∣∣∣∣∣∣∣∣∣∣∣∣(Σ
(k)
SS

)−1
∣∣∣∣∣∣∣∣∣∣∣∣

2

≤ s

Cmin
. (67)

We then derive a lower bound on ψ(B∗,Σ(1:K)) as follows:

ψ(B∗,Σ(1:K)) = max
1≤k≤K

−→
Z ∗TSk

(
Σ

(k)
SS

)−1−→
Z ∗Sk

≥ 1

K

K∑
k=1

−→
Z ∗TSk

(
Σ

(k)
SS

)−1−→
Z ∗Sk

≥ 1

K

K∑
k=1

‖
−→
Z ∗Sk‖2l2 ·min−→x

−→x T
(

Σ
(k)
SS

)−1−→x

‖−→x ‖2l2
≥ s

KCmax
(68)

Therefore, ψ(B∗,Σ(1:K)) is of the order of O(s).
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APPENDIX B
PROOF OF LEMMA 1

Suppose B̃ is another optimal solution to the problem given
in (6), then we have

f(B̂) + λn‖B̂‖l1/l2 = f(B̃) + λn‖B̃‖l1/l2 , (69)

where f(B) = 1
2n

∑K
k=1

∥∥∥−→Y (k) −X(k)−→β (k)
∥∥∥2

2
. It is clear that

‖B̂‖l1/l2 =

p∑
j=1

ẐjB̂
T
j , (70)

where Ẑj is the jth row of Ẑ and B̂j is the jth row of B̂. We
substitute (70) into (69) and obtain

f(B̂) + λn

p∑
j=1

ẐjB̂
T
j = f(B̃) + λn‖B̃‖l1/l2 .

We then subtract λn
∑p
j=1 ẐjB̃

T
j from both sides of the above

equation, and move f(B̃) to the left-hand-side (LHS) to obtain

f(B̂) + λn

p∑
j=1

Ẑj(B̂
T
j − B̃Tj )− f(B̃)

= λn‖B̃‖l1/l2 − λn
p∑
j=1

ẐjB̃
T
j . (71)

We further substitute the KKT condition ∇Bf(B̂)+λnẐ = 0
into (71), and obtain

f(B̂) +

p∑
j=1

∇Bjf(B̂)(B̃Tj − B̂Tj )− f(B̃)

= λn‖B̃‖l1/l2 − λn
p∑
j=1

ẐjB̃
T
j . (72)

Due to the convexity of f(B), the LHS of the above equation
is less than or equal to 0. Hence, we have

‖B̃‖l1/l2 ≤
p∑
j=1

ẐjB̃
T
j .

Since
∑p
j=1

∥∥∥B̃j∥∥∥
l2
≥
∑p
j=1 ẐjB̃

T
j , we obtain

p∑
j=1

∥∥∥B̃j∥∥∥
l2

=

p∑
j=1

ẐjB̃
T
j .

Based on the assumption of the lemma,
∥∥∥Ẑj∥∥∥

l2
< 1 if j ∈ Ω.

Therefore,
∥∥∥B̃j∥∥∥

l2
= 0 for j ∈ Ω.

APPENDIX C
DERIVATION OF ẐSc

We write the function f(B) as

f(B) =
1

2n

K∑
k=1

∥∥∥∥∥−→Y (k) − (X
(k)
S , X

(k)
Sc )

( −→
β

(k)
S−→

β
(k)
Sc

)∥∥∥∥∥
2

=
1

2n

K∑
k=1

∥∥∥X(k)
S

−→
β

(k)
S

∗
+
−→
W (k) −X(k)

S

−→
β

(k)
S −X

(k)
Sc

−→
β

(k)
Sc

∥∥∥2

(73)

and take partial derivative over components of B to obtain

∂f(B)

∂Bjk

= − 1

n

−→
X

(k)
j

T (
X

(k)
S

−→
β

(k)
S

∗
+
−→
W (k) −X(k)

S

−→
β

(k)
S −X

(k)
Sc

−→
β

(k)
Sc

)
,

where
−→
X j denotes the jth column of the matrix X . Hence,

B̂S satisfies

− 1

n
X

(k)
S

T

(
X

(k)
S

−→
β

(k)
S

∗
+
−→
W (k) −X(k)

S

−̂→
β

(k)

S

)
+λn
−̂→
Z Sk = 0

for k = 1, . . . ,K, where
−̂→
Z Sk denotes the kth column of

Ẑ with row indices in the set S, and ẐS ∈ ∂‖B̂S‖l1/l2 .
Furthermore, ẐSc satisfies

− 1

n
X

(k)
Sc

T

(
X

(k)
S

−→
β

(k)
S

∗
+
−→
W (k) −X(k)

S

−̂→
β

(k)

S

)
+ λn

−̂→
Z Sck

= 0 (74)

for k = 1, . . . ,K, where ẐSc ∈ ∂
∥∥∥B̂Sc

∥∥∥
l1/l2

. As we

introduce the notations Σ̂
(k)
SS = 1

nX
(k)
S

T
X

(k)
S and Σ̂

(k)
ScS =

1
nX

(k)
Sc

T
X

(k)
S , the above two equations become

Σ̂
(k)
SS

(
−̂→
β

(k)

S −
−→
β

(k)
S

∗
)
− 1

n
X

(k)
S

T−→
W (k) = −λn

−̂→
Z Sk, (75)

Σ̂
(k)
ScS

(
−̂→
β

(k)

S −
−→
β

(k)
S

∗
)
− 1

n
X

(k)
Sc

T−→
W (k) = −λn

−̂→
Z Sck,

(76)

for k = 1, . . . ,K. We now solve
−̂→
β

(k)

S −
−→
β

(k)
S

∗
from (75),

substitute it into (76), reorganize the terms, and obtain

−̂→
Z Sck =− 1

λnn
X

(k)
Sc

T (
Π

(k)
S − In

)−→
W (k)

+
1

n
X

(k)
Sc

T
X

(k)
S

T (
Σ̂

(k)
SS

)−1 −̂→
Z Sk, (77)

where Π
(k)
S =

X
(k)
S

(
Σ̂

(k)
SS

)−1
X

(k)
S

T

n .
Hence, for j ∈ Sc,

Ẑjk =− 1

λnn

−→
X

(k)
j

T (
Π

(k)
S − In

)−→
W (k)

+
1

n

−→
X

(k)
j

T
X

(k)
S

(
Σ̂

(k)
SS

)−1 −̂→
Z Sk. (78)
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APPENDIX D
BOUND ON ‖Tj1‖l2

We let A(k) = Σ
(k)
ScS

(
Σ

(k)
SS

)−1

and
−→
C Sk =

E(
−̂→
Z Sk|X(1:K)

S ), and derive

‖Tj1‖l2

=

√√√√ K∑
k=1

E2
(
Ẑjk|XS

)

=

√√√√ K∑
k=1

(
Σ

(k)
jS

(
Σ

(k)
SS

)−1

E

(
−̂→
Z Sk|X(1:K)

S

))2

=

√√√√ K∑
k=1

(
A

(k)
jS

−→
C Sk

)2

=

√√√√ K∑
k=1

|S|∑
a=1

A
(k)
ja Cak

|S|∑
a′=1

A
(k)
ja′Ca′k

≤

√√√√ |S|∑
a=1

|S|∑
a′=1

K∑
k=1

∣∣∣A(k)
ja

∣∣∣ ∣∣∣A(k)
ja′

∣∣∣ |CakCa′k|
≤

√√√√ |S|∑
a=1

|S|∑
a′=1

max
k

∣∣∣A(k)
ja

∣∣∣max
k

∣∣∣A(k)
ja′

∣∣∣ K∑
k=1

|CakCa′k|

≤

√√√√√ |S|∑
a=1

|S|∑
a′=1

max
k

∣∣∣A(k)
ja

∣∣∣max
k

∣∣∣A(k)
ja′

∣∣∣
√√√√ K∑
k=1

C2
ak

√√√√ K∑
k=1

C2
a′k

≤

√√√√ |S|∑
a=1

|S|∑
a′=1

max
k

∣∣∣A(k)
ja

∣∣∣max
k

∣∣∣A(k)
ja′

∣∣∣
=

|S|∑
a=1

max
k

∣∣∣A(k)
ja

∣∣∣ =

|S|∑
a=1

Aja (79)

where Aja = maxk

∣∣∣A(k)
ja

∣∣∣ = maxk

∣∣∣∣∣
(

Σ
(k)
ScS

(
Σ

(k)
SS

)−1
)
ja

∣∣∣∣∣.
APPENDIX E

BOUND ON σ2
jk

We let σ2
jk =

(
Σ

(k)
ScSc|S

)
jj
Mk, where

Mk =
1

n

−̂→
Z
T

Sk

(
Σ̂

(k)
SS

)−1 −̂→
Z Sk

− 1

n2λ2
n

−→
W (k)

T (
Π

(k)
S − In

)−→
W (k). (80)

We derive bounds on the term maxj∈Sc max1≤k≤K σ
2
jk. We

first define

M∗k :=
1

n

−→
Z ∗Sk

T (
Σ̂

(k)
SS

)−1−→
Z ∗Sk

− 1

n2λ2
n

−→
W (k)

T (
Π

(k)
S − In

)−→
W (k). (81)

We also define

M̄∗k =
1

n

−→
Z ∗Sk

T (
Σ

(k)
SS

)−1−→
Z ∗Sk +

(n− s)σ(k)
W

2

n2λ2
n

.

We then have

|Mk − M̄∗k | ≤ |Mk −M∗k |+ |M∗k − M̄∗k |.

To find upper and lower bounds on Mk, we start with

M̄∗k − |Mk −M∗k | − |M∗k − M̄∗k | ≤Mk

≤ M̄∗k + |Mk −M∗k |+ |M∗k − M̄∗k |. (82)

We first bound

|M∗k −Mk|

=
1

n

∣∣∣∣∣−→Z ∗SkT (Σ̂
(k)
SS

)−1−→
Z ∗Sk −

−̂→
Z
T

Sk

(
Σ̂

(k)
SS

)−1 −̂→
Z Sk

∣∣∣∣∣
=

1

n

∣∣∣−→Z ∗SkT (Σ̂
(k)
SS

)−1

(
−→
Z ∗Sk −

−̂→
Z Sk)

+ (
−→
Z ∗Sk

T
−
−̂→
Z
T

Sk)
(

Σ̂
(k)
SS

)−1

(
−→
Z ∗Sk + (

−̂→
Z Sk −

−→
Z ∗Sk))

∣∣∣
≤ 1

n

∣∣∣∣∣∣∣∣∣∣∣∣(Σ̂
(k)
SS

)−1
∣∣∣∣∣∣∣∣∣∣∣∣

2

‖
−→
Z ∗Sk −

−̂→
Z Sk‖l2

· (‖
−→
Z ∗Sk‖l2 + ‖

−→
Z ∗Sk + (

−̂→
Z Sk −

−→
Z ∗Sk)‖l2)

≤ 1

n

∣∣∣∣∣∣∣∣∣∣∣∣(Σ̂
(k)
SS

)−1
∣∣∣∣∣∣∣∣∣∣∣∣

2

‖
−→
Z ∗Sk −

−̂→
Z Sk‖l2

· (2‖
−→
Z ∗Sk‖l2 + ‖

−̂→
Z Sk −

−→
Z ∗Sk‖l2). (83)

In the above equations,

‖
−→
Z ∗Sk‖l2 ≤

√
s.

Following (95) in Appendix F, we have∣∣∣∣∣∣∣∣∣∣∣∣(Σ̂
(k)
SS

)−1
∣∣∣∣∣∣∣∣∣∣∣∣

2

≤ 2

Cmin

with probability larger than 1− exp
(
−n2

(
1
4 −

√
s
n

)2
+

)
.

We also derive:

max
1≤k≤K

‖
−→
Z ∗Sk −

−̂→
Z Sk‖l2

= max
1≤k≤K

√√√√ s∑
j=1

(Z∗jk − Ẑjk)2

=

√√√√ max
1≤k≤K

s∑
j=1

(Z∗jk − Ẑjk)2 ≤

√√√√ K∑
k=1

s∑
j=1

(Z∗jk − Ẑjk)2

=

√√√√ s∑
j=1

K∑
k=1

(Z∗jk − Ẑjk)2 ≤

√√√√smax
j∈S

K∑
k=1

(Z∗jk − Ẑjk)2

=
√
smax
j∈S

√√√√ K∑
k=1

(Z∗jk − Ẑjk)2 =
√
s‖Z∗S − ẐS‖l∞/l2 .

(84)
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Hence, following from Lemma 2, we have if ‖∆‖l∞/l2 < 1
2 ,

then

max
1≤k≤K

‖
−→
Z ∗Sk −

−̂→
Z Sk‖l2 ≤ 4

√
s‖∆‖l∞/l2 .

Based on the above bound, we have

|M∗k −Mk|

≤ 2

nCmin

(
4
√
s ‖∆‖l∞/l2

)(
2
√
s+ 4

√
s ‖∆‖l∞/l2

)
=

16s ‖∆‖l∞/l2
nCmin

(1 + 2 ‖∆|l∞/l2) (85)

with probability larger than

1− 2K exp
(
−s

2

)
− (4K + 1) exp

(
−n

2

(
1

4
−
√
s

n

)2

+

)
−K exp

(
− log s+ 2

√
2 log s

)
. (86)

We next derive a bound on |M∗k − M̄∗k | as follows.

|M∗k − M̄∗k |

≤ 1

n

∣∣∣∣−→Z ∗TSk ((Σ̂
(k)
SS

)−1

−
(

Σ
(k)
SS

)−1
)
−→
Z ∗Sk

∣∣∣∣
+

1

n2λ2
n

∣∣∣−→W (k)T (In −Π(k)
s )
−→
W (k) − (n− s)σ(k)

W

2
∣∣∣

≤ 1

n

∥∥∥−→Z ∗TSk∥∥∥2

l2

∣∣∣∣∣∣∣∣∣∣∣∣(Σ̂
(k)
SS

)−1

−
(

Σ
(k)
SS

)−1
∣∣∣∣∣∣∣∣∣∣∣∣

2

+
1

n2λ2
n

∣∣∣−→W (k)T (In −Π(k)
s )
−→
W (k) − (n− s)σ(k)

W

2
∣∣∣ .

In the above equation, ∥∥∥−→Z ∗TSk∥∥∥2

l2
≤ s.

Following (97) in Appendix F , we have∣∣∣∣∣∣∣∣∣∣∣∣(Σ̂
(k)
SS

)−1

−
(

Σ
(k)
SS

)−1
∣∣∣∣∣∣∣∣∣∣∣∣

2

≤ 12

Cmin

√
s

n

with probability larger than 1 − 2 exp
(
− s2
)
−

3 exp
(
−n2

(
1
4 −

√
s
n

)2
+

)
.

We next bound the term∣∣∣−→W (k)T (In −Π
(k)
S )
−→
W (k) − (n− s)σ(k)

W

2
∣∣∣. Since Π

(k)
S is

a projection matrix, eigenvalues of In − Π
(k)
S can only be

1 or 0. Thus, Tr(In − Π
(k)
S ) = (n − s) implies that if we

decompose In−Π
(k)
S into UTΛU with UTU = I , then Λ has

(n− s) of “1” and s of “0”. Moreover, U
−→
W (k) is a Gaussian

vector with zero mean, and E
(
U
−→
W (k)−→W (k)TUT

)
= σ

(k)
W

2
In.

Therefore, we conclude that

U
−→
W (k) d.=

−→
W (k)

−→
W (k)TUTΛU

−→
W (k) d.=

−→
W (k)TΛ

−→
W (k) d.= Hσ

(k)
W

2

where H ∼ χ2
(n−s). We now consider the term∣∣∣−→W (k)T (In −Π

(k)
S )
−→
W (k) − (n− s)σ(k)

W

2
∣∣∣

=
∣∣∣−→W (k)TUTΛU

−→
W (k) − (n− s)σ(k)

W

2
∣∣∣

=
∣∣∣−→W (k)TΛ

−→
W (k) − (n− s)σ(k)

W

2
∣∣∣

=
∣∣∣Hσ(k)

W

2
− (n− s)σ(k)

W

2
∣∣∣ . (87)

We derive the probability of the following event:

P
(∣∣∣Hσ(k)

W

2
− (n− s)σ(k)

W

2
∣∣∣ ≤ 9(n− s)σ(k)

W

2)
= P ({H < 10(n− s)} ∩ {H > −8(n− s)})
= P (H < 10(n− s)) . (88)

Following from Lemma 3, we have

P (H ≥ 10(n− s)) ≤ exp

(
−5(n− s)

[
1− 2

√
1

5

])
.

It then follows that∣∣∣−→W (k)T (In −Π
(k)
S )
−→
W (k) − (n− s)σ(k)

W

2
∣∣∣ ≤ 9(n− s)σ(k)

W

2

with probability larger than

1− exp

(
−5(n− s)

[
1− 2

√
1

5

])
.

To summarize,

|M∗k − M̄∗k | ≤
12

Cmin

( s
n

) 3
2

+
9(n− s)σ(k)

W

2

n2λ2
n

with probability larger than

1− 2 exp
(
−s

2

)
− 3 exp

(
−n

2

(
1

4
−
√
s

n

)2

+

)

− exp

(
−5(n− s)

[
1− 2

√
1

5

])
.

Therefore,

|Mk − M̄∗k | ≤|Mk −M∗k |+ |M∗k − M̄∗k |

≤
16s ‖∆‖l∞/l2

nCmin
(1 + 2 ‖∆‖l∞/l2)

+
12

Cmin

( s
n

) 3
2

+
9(n− s)σW 2

n2λ2
n

(89)

with high probability.
To simplify the result, we define the following quantity

Γ :=
16s ‖∆‖l∞/l2

nCmin
(1 + 2 ‖∆|l∞/l2)

+
12

Cmin

( s
n

) 3
2

+
10(n− s)σW 2

n2λ2
n

(90)

and our bounds on Mk can be expressed as

1

n

−→
Z ∗Sk

T (
Σ

(k)
SS

)−1−→
Z ∗Sk − Γ ≤Mk

≤ 1

n

−→
Z ∗Sk

T (
Σ

(k)
SS

)−1−→
Z ∗Sk + Γ.
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Using the definition of ψ(B∗,Σ(1:K)), we have

ψ(B∗,Σ(1:K))

n
− Γ ≤ max

1≤k≤K
Mk ≤

ψ(B∗,Σ(1:K))

n
+ Γ

(91)

with probability larger than

1− 2(K + 1) exp
(
−s

2

)
− 4(K + 1) exp

(
−n

2

(
1

4
−
√
s

n

)2

+

)

− exp

(
−5(n− s)

[
1− 2

√
1

5

])
−K exp

(
− log s+ 2

√
2 log s

)
. (92)

APPENDIX F
BOUNDS ON SPECTRAL NORMS

In this section, we provide some useful bounds on spectral
norms. Detailed proof can be found in [29].

Let U ∈ Rn×s be a random matrix with i.i.d. entries, and
each entry has a Gaussian distribution with zero mean and unit
variance.

The bound for
∣∣∣∣∣∣ 1
nU

TU
∣∣∣∣∣∣

2
:

P

(∣∣∣∣∣∣∣∣∣∣∣∣ 1nUTU
∣∣∣∣∣∣∣∣∣∣∣∣

2

≤ 1

2

)
≤ exp

(
−n

2

(
1

4
−
√
s

n

)2

+

)
.

The bound for
∣∣∣∣∣∣ 1
nU

TU − Is×s
∣∣∣∣∣∣

2
:

P

(∣∣∣∣∣∣∣∣∣∣∣∣ 1nUTU − Is×s
∣∣∣∣∣∣∣∣∣∣∣∣

2

≥ 6

√
s

n

)
≤ 2 exp

(
−s

2

)
+ 2 exp

(
−n

2

(
1

4
−
√
s

n

)2

+

)
. (93)

Let X = U
√

Σ where Σ ∈ Rs×s is positive definite. Then
X ∈ Rn×s has i.i.d. rows, and each row Xi is a Gaussian
vector with the distribution N (0,Σ). Suppose the eigenvalues
of Σ are in the interval [Cmin, Cmax], where Cmin and Cmax
are both positive. We next provide the bounds on several
spectral norms.

The bound for
∣∣∣∣∣∣∣∣∣∣∣∣(UTU

n

)−1
∣∣∣∣∣∣∣∣∣∣∣∣

2

:

P

(∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
(
UTU

n

)−1
∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
2

≤ 2

)

≥ 1− exp

(
−n

2

(
1

4
−
√
s

n

)2

+

)
. (94)

The bound for
∣∣∣∣∣∣∣∣∣∣∣∣(XTX

n

)−1
∣∣∣∣∣∣∣∣∣∣∣∣

2

:

P

(∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
(
XTX

n

)−1
∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
2

≤ 2

Cmin

)

≥ 1− exp

(
−n

2

(
1

4
−
√
s

n

)2

+

)
. (95)

The bound for
∣∣∣∣∣∣∣∣∣XTX

n − Σ
∣∣∣∣∣∣∣∣∣

2
:

P

(∣∣∣∣∣∣∣∣∣∣∣∣XTX

n
− Σ

∣∣∣∣∣∣∣∣∣∣∣∣
2

≤ 6Cmax

√
s

n

)
≥ 1− 2 exp

(
−s

2

)
− 2 exp

(
−n

2

(
1

4
−
√
s

n

)2

+

)
. (96)

The bound for
∣∣∣∣∣∣∣∣∣∣∣∣(XTX

n

)−1

− Σ−1

∣∣∣∣∣∣∣∣∣∣∣∣
2

:

P

(∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
(
XTX

n

)−1

− Σ−1

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
2

≤ 12

Cmin

√
s

n

)

≥ 1− 2 exp
(
−s

2

)
− 3 exp

(
−n

2

(
1

4
−
√
s

n

)2

+

)
. (97)
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[48] S. van de Geer and P. Bühlmann. On the conditions used to prove oracle
results for the Lasso. Electronic Journal of Statistics, 3:1306–1392, 2009.

[49] G. Samorodnitsky and M. S. Taqqu. Stochastic monotonicity and
slepian-type inequalities for infinitely divisible and stable random vectors.
Annals of Statistics, 21(1):143–160, 1993.

[50] M. Ledoux and M. Talagrand. Probabilily in Banach Spaces. Springer-
Verlag, Berlin Heidelberg, Germany, 1999.

Weiguang Wang received the B.S. degree from University of Science and
Technology of China, Hefei, China in 2011. Since Aug. 2011, he has been a
Ph.D student at Syracuse University. His research interests focus on machine
learning and signal processing.

Yingbin Liang (S’01, M’05) received the Ph.D. degree in Electrical En-
gineering from the University of Illinois at Urbana-Champaign in 2005. In
2005-2007, she was working as a postdoctoral research associate at Princeton
University. In 2008-2009, she was an assistant professor at the Department
of Electrical Engineering at the University of Hawaii. Since December 2009,
she has been on the faculty at Syracuse University, where she is an associate
professor. Dr. Liang’s research interests include information theory, wireless
communications and networks, and machine learning.

Dr. Liang was a Vodafone Fellow at the University of Illinois at Urbana-
Champaign during 2003-2005, and received the Vodafone-U.S. Foundation
Fellows Initiative Research Merit Award in 2005. She also received the M.
E. Van Valkenburg Graduate Research Award from the ECE department,
University of Illinois at Urbana-Champaign, in 2005. In 2009, she received the
National Science Foundation CAREER Award, and the State of Hawaii Gover-
nor Innovation Award. More recently, her paper received the 2014 EURASIP
Best Paper Award for the EURASIP Journal on Wireless Communications and
Networking. She is currently serving as an Associate Editor for the Shannon
Theory of the IEEE Transactions on Information Theory.

Eric P. Xing is a professor in the School of Computer Science at Carnegie
Mellon University. His principal research interests lie in the development
of machine learning and statistical methodology, and large-scale computa-
tional system and architecture, for solving problems involving automated
learning, reasoning, and decision-making in high-dimensional, multimodal,
and dynamic possible worlds in complex systems. Professor Xing received a
Ph.D. in Molecular Biology from Rutgers University, and another Ph.D. in
Computer Science from UC Berkeley. His current work involves: 1) foun-
dations of statistical learning, including theory and algorithms for estimating
time/space varying-coefficient models, sparse structured input/output models,
and nonparametric Bayesian models; 2) framework for parallel machine
learning on big data with big model in distributed systems or in the cloud;
3) computational and statistical analysis of gene regulation, genetic variation,
and disease associations; and 4) application of statistical learning in social
networks, data mining, and vision. Professor Xing has published over 200
peer-reviewed papers, and is an associate editor of the Journal of the American
Statistical Association, Annals of Applied Statistics, the IEEE Transactions of
Pattern Analysis and Machine Intelligence, the PLoS Journal of Computational
Biology, and an Action Editor of the Machine Learning journal, and the
Journal of Machine Learning Research. He is a member of the DARPA
Information Science and Technology (ISAT) Advisory Group, a recipient of
the NSF Career Award, the Alfred P. Sloan Research Fellowship, the United
States Air Force Young Investigator Award, and the IBM Open Collaborative
Research Faculty Award.


