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Abstract

A supervised topic model can use side information such asgsabr labels associated with doc-
uments or images to discover more predictive low dimensitmpéacal representations of the data.
However, existing supervised topic models predominamtipley likelihood-driven objective func-
tions for learning and inference, leaving the popular artémitally powerful max-margin principle
unexploited for seeking predictive representations of @aid more discriminative topic bases for
the corpus. In this paper, we propose the maximum entroyidisation latent Dirichlet alloca-
tion (MedLDA) model, which integrates the mechanism betliremax-margin prediction models
(e.g., SVMs) with the mechanism behind the hierarchicaleB&n topic models (e.g., LDA) un-
der a uni ed constrained optimization framework, and ygldtent topical representations that are
more discriminative and more suitable for prediction tashish as document classi cation or re-
gression. The principle underlying the MedLDA formalismgigite general and can be applied
for jointly max-margin and maximum likelihood learning afected or undirected topic models
when supervising side information is available. Ef ciearriational methods for posterior inference
and parameter estimation are derived and extensive e pstiedies on several real data sets are
also provided. Our experimental results demonstrate ttisgly and quantitatively that MedLDA
could: 1) discover sparse and highly discriminative topiepresentations; 2) achieve state of the
art prediction performance; and 3) be more ef cient tharséng supervised topic models, espe-
cially for classi cation.

Keywords: supervised topic models, max-margin learning, maximumoggt discrimination,
latent Dirichlet allocation, support vector machines

1. Introduction

Probabilistic latent aspect models such as the latent Dirichlet allocation (biodel (Blei et al.,
2003) have recently gained much popularity for stratifying a large collecfi@iocuments by pro-
jecting every document into a low dimensional space spanned by a sesasd teat capture the
semantic aspects, also knowntagics of the collection. An LDA model posits that each document
is an admixture of latent topics, of which each topic is represented as aewmigram distribution
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over a given vocabulary. The document-speci ¢ admixture proportemtorq, also known as the
topic vector is modeled as a latent Dirichlet random variable, and can be regardedwslimen-
sional representation of the document in a topical space. This low dimehsipnasentation can
be used for downstream tasks such as classi cation, clustering, ohynaara tool for structurally
visualizing the otherwise unstructured document collection.

The original LDA is an unsupervised model and is typically built on a disdvatgof-words
representation of input contents, which can be text documents (Blei 808B), images (Fei-Fei
and Perona, 2005), or even network entities (Airoldi et al., 2008). édew in many practical ap-
plications, we can easily obtain useful side information besides the docuuméentige contents.
For example, when online users post their reviews for products ouresiis, they usually associate
each review with a rating score or a thumb-up/thumb-down opinion; web sifgsges in the pub-
lic Yahoo! Directory can have their categorical labels; and images in the LabelMe (Russell et al.,
2008) database are organized by a visual ontology and additionallyireagk is associated with a
set of annotation tags. Furthermore, there is an increasing trend towsingsonline crowdsourc-
ing services (such as Amazon Mechanical Ptk collect large collections of labeled data with a
reasonably low price (Snow et al., 2008). Such side information ofteriges useful high-level or
direct summarization of the content, but it is not directly used in the origin& tbmodels alike to
in uence topic inference. One would expect that incorporating suabrimétion into latent aspect
modeling could guide a topic model towards discovering secondary odaninant, albeit seman-
tically more salient statistical patterns (Chechik and Tishby, 2002) that mayobe interesting or
relevant to the user's goal, such as prediction on unlabeled data.

To explore this potential, developing new topic models that appropriately reapide infor-
mation mentioned above has recently gained increasing attention. Reptigseattampts include
supervised topic model (sLDA) (Blei and McAuliffe, 2007), which captureal-valued document
rating as a regression response; multi-class sLDA (Wang et al., 208&h wirectly captures dis-
crete labels of documents as a classi cation response; and discrimin&ivéiscLDA) (Lacoste-
Julien et al., 2008), which also performs classi cation, but with a mechadifferent from that of
sLDA. All these models focus on the document-level side information sudb@sament categories
or review rating scores to supervise model learning. More variantspafrgised topic models can
be found in a number of applied domains, such as the aspect rating modeldmddvicDonald,
2008) for predicting ratings for each aspect of a hotel and the cradhgion model (Ramage
et al., 2009) that associates each word with a label. In computer visioeraéaupervised topic
models have been designed for understanding complex scene imagedsr{Bd al., 2005; Fei-Fei
and Perona, 2005; Li et al., 2009). Mimno and McCallum (2008) alspgsed a topic model for
considering document-level meta-data, for example, publication date ané ¢ a paper.

It is worth pointing out that among existing supervised topic models for imcatimg side infor-
mation, there are two classes of approaches, namelynstream supervised topic modeISTM)
andupstream supervised topic modeISTM). In a DSTM the response variable is predicted based
on the latent representation of the document, whereas in an USTM thensespariable is being
conditioned on to generate the latent representation of the document. Ezarhpl8TM? include
DiscLDA and the scene understanding models (Sudderth et al., 200%;dli, 2009), whereas

1. Yahoo directory can be found latp://dir.yahoo.com/

2. Amazon Mechanical Turk can be founchéps://www.mturk.com/

3. The model presented by Mimno and McCallum (2008) is also an upstreadel for incorporating document meta-
features.
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sLDA is an example of DSTM. Another distinction between existing superwisgid models is
the training criterion, or more precisely, the choice of objective functionemoitimization-based
learning. The sLDA model is trained by maximizing tjeént likelihood of the content data (e.g.,
text orimage) and the responses (e.g., labeling or rating), whereasissltrained by maximiz-
ing theconditionallikelihood of the responses given contents. To the best of our knoe)edighe
existing supervised topic models are trained by optimizing a likelihood-bagedtivie; the highly
successful margin-based objectives such as the hinge loss commothiy asecriminative models
such as SVMs have never been employed.

In this paper, we proposeaximum entropy discrimination latent Dirichlet allocati(MedLDA),
a supervised topic model leveraging the maximum margin principle for making effective use
of side information during estimation of latent topical representations. Unkilstimg supervised
topic models mentioned above, MedLDA employs an arguably more discrimimatsemargin
learning technigue within a probabilistic framework; and unlike the commonlptadawo-stage
heuristic which rst estimates a latent topic vector for each document usiogi@amodel and then
feeds them to another downstream prediction model, MedLDA integrates ttfeamiem behind the
max-margin prediction models (e.g., SVMs) with the mechanism behind the HiearBayesian
topic models (e.g., LDA) under a uni ed constrained optimization framewarleniploys a com-
posite objective motivated by a tradeoff between two components—the veegigilikelihood of
an underlying topic model which measures the goodness of t for docticogrents, and a measure
of prediction error on training data. It then seeks a regularized postisimibution of the predic-
tive function in a feasible space de ned by a seegpectednargin constraints generalized from the
SVM-style margin constraints. The resultant inference problem is intdagtabcircumvent this,
we relax the original objective by using a variational upper bound of ggative log-likelihood
and a surrogate convex loss function that upper bounds the trainioig &ur proposed approach
builds on earlier developments in maximum entropy discrimination (MED) (Jdaldtal., 1999;
Jebara, 2001) and partially observed maximum entropy discrimination Matwork (POMEN)
(Zhu et al., 2008), but is signi cantly different and more powerful. IredLDA, because of the
in uence of both the likelihood function over content data (e.g., text or image margin con-
straints induced by the side information, the discovery of latent topics isfthereoupled with the
max-margin estimation of model parameters. This interplay can yield latent toppralsentations
that are more discriminative and more suitable for supervised predictios, @askve demonstrate
in the experimental section.

In fact, the methodology we develop in this paper generalizes beyondrigaapic models; it
can be applied to perform max-margin learning for various types of grajpmodels, including di-
rected Bayesian networks, for example, LDA, sLDA and topic models witkréifit priors such as
the correlated topic models (Blei and Lafferty, 2005), and undirectettdtanetworks, for example,
exponential family harmoniums (Welling et al., 2004) and replicated softmdakK®adinov and
Hinton, 2009) (See Section 4 for an extensive discussion). In thigpapdocus on the scenario of
downstream supervised topic models, and we present several oagemples of MedLDA that
build on the original LDA to learn “discriminative topics” that allow more saliergiégoroportion
vector( to be inferred for every document, evidenced by a signi cant improvermeaccuracy of
both regression and classi cation of documents based omtfesulted from MedLDA, over the
q resulted from either the vanilla unsupervised LDA or even sLDA and aliKe.also present an
ef cient and easy-to-implement variational approach for inferenateuedLDA, with a running
time comparable to that of an unsupervised LDA and lower than other likelthaedd supervised
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Figure 1: Graphical illustration of (Left) unsupervised LDA (Blei et aDP3); and (Right) super-
vised LDA (Blei and McAuliffe, 2007).

LDAs. This advantage stems from the fact that MedLDA can directly optimipaigin-based loss
instead of a likelihood-based one, and thereby avoids dealing with the lwatitan factor resul-
tant from a full probabilistic generative formulation (e.g., SLDA), whicimgelly makes learning
harder.

The remainder of this paper is structured as follows. Section 2 introducesdtminaries that
are needed to present MedLDA. Section 3 presents MedLDA model®foregression and clas-
si cation, together with ef cient variational algorithms. Section 4 discusbesgeneralization of
MedLDA to other topic models. Section 5 presents empirical studies of MedED#ally, Section
6 concludes this paper with future research directions discussefBlaet materials of this paper
build on conference proceedings presented earlier in Zhu et al. 2009 and Xing (2010).

2. Preliminaries

We begin with a brief overview of the fundamentals of topic models, supgatby machines, and
the maximum entropy discrimination formulism (Jaakkola et al., 1999), whicktitote the major
building blocks of the proposed MedLDA model.

2.1 Unsupervised and Supervised Topic Models

Latent Dirichlet allocation (LDA) (Blei et al., 2003) is a hierarchical Bagasmodel that projects
a text document into a latent low dimensional space spanned by a set ofedictaly learned
topical bases. Each topic is a multinomial distribution overvords in a given vocabulary. Let

we suppress the indexing subscripthfand assume that all documents have the same Iaigth
assume the number of topics to be an intégawhereK can be manually speci ed by a user or via

of which eachb, parameterizes a topic-speci ¢ multinomial word distribution. Under an LDA, the
likelihood of a documend corresponds to the following generative process:

1. Draw a topic mixing proportion vectayy according to aK-dimensional Dirichlet prior:
qsja Dir(a);

2. For then-th word in documentl, where1 n N,

(a) draw a topic assignmen, according taQq: zgnjQq  Mult(dq);

(b) draw the word instancsy, according t@gn: WqnjZgn; b Mult(bzdn),
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wherezy, is a K-dimensional indicator vector (i.e., only one element is 1; all others aren0), a
instance of the topic assignment random varidile With a little abuse of notations, we ubg,
to denote the topic that is selected by the non-zero elemegt,.of

According to the above generative processuasupervised. DA de nes the following joint
distribution for a corpu® that contain® documents:

D N
p(f dg; zag; Wja;b) = O p(adja) O p(Zdnidd) P(WdnjZdn; b) ;
d=1 n=1

whereW , fwi; ;wpg denotes all the words i, andzy, fzy1; ;Zyng. To estimate the
unknown parameter@;b), and to infer the posterior distributions of latent varialflgg; zqg, an

EM procedure is developed to maximize the marginal data likelifhquftiVja;b). As we have
stated,qq represents the mixing proportion ou€rtopics for documend, which can be treated as

a low-dimensional representation of the document. Moreover, since #terjos ofzy, represents

the probability distribution that word is assigned to one of th€ topics; the average topic assign-
mentzy , %énzdn can also be treated as a representation of the document, as commonly done in
downstream supervised topic models (Blei and McAuliffe, 2007; Warad. £€2009).

Due to intractability of the likelihoogp(Wja;b), approximate inference algorithms based on
variational (Blei et al., 2003) or Markov Chain Monte Carlo (MCMC) (Ghi§ and Steyvers, 2004)
methods have been widely used for parameter estimation and posterionggenader LDA. We
focus on variational inference in this paper. The following variationahabfor unsupervised LDA
will be used later. Lety(f qq;zqQ) represent a variational distribution that approximates the true
model posteriop(f qq;zqgja; b; W), one can derive a variational bouhd(q; a;b) for the likeli-
hood under unsupervised LDA:

LYa:a;b) ,  Egllogp(f qu;zag; Wja;b)]  H (q(f qu; z4g)) 1)
logp(Wja;b);
whereH (q) ,  Eg[logq] is the entropy ofy. By making some independence assumption (e.g.,

mean eld) about, L"(q) can be ef ciently optimized (Blei et al., 2003).

As we have stated, the unsupervised LDA described above doesastdgsinformation for
learning topics and inferring topic vectags In order to consider side information appropriately for
discovering more predictive representations, supervised topic motd&la)¢Blei and McAuliffe,
2007) introduce a response variaMeto LDA for each document, as shown in Figure 1. For
regression, wherg2 R, the generative process of sLDA is similar to LDA, but with an additional
step—draw a response variable:jzg;h;d> N (h>Zzg;d?) for each document,dvhereh is the
regression weight vector amt is a noise variance parameter. Then, the joint distribution of SLDA
is:

D N _
p(f Qa; zag;y; Wia; b;h;d®) = O p(agja) O p(ZaniQa) P(WanjZan; b)  p(yajh™ zg;d%);  (2)

d=1 n=1

4. We restrict ourselves to trelatas unknown parameters, as done in Blei and McAuliffe (2007) andj\wtal. (2009).
Extension to a Bayesian treatmenthofi.e., by putting a prior oveb and inferring its posterior) can be easily done
both in LDA as shown in the literature (Blei et al., 2003) and in the MedLD#ppsed here based on the regularized
Bayesian inference framework (Zhu et al., 2011b). But a systeataliscussion is beyond the scope of this paper.
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wherey, fyi; ;ypg. In this case, the joint likelihood ip(y; Wja;b;h;d?). Given a new docu-
ment, the prediction is the expected response value

Y., E[Yjw;a;b;h;d’] = h>E[Zjw;a;b;d]; 3)

where the average topic assignment random varﬁblq% &,Zn (zis aninstance of) and the ex-
pectation is taken with respect to the posterior distributioB of f Z;;  ;Zng. However, exact in-
ference is again intractable, and one can use the following variationat bppnd_S(q;a; b; h;d?)
for supervisedLDA for approximate inference:

LS(q;a;b;h;d?) ,  Egllogp(fad;zag;y; Wja;b;h;d?)]  H (q(f qa; zag)) (4)
logp(y; Wja; b; h; d?):

By changing the model of generatiivg sSLDA can deal with other types of response variables,
such as discrete ones for classi cation (Wang et al., 2009) using the nhagdt-logistic regression

p(ihiz) = Loy 2

ayexp(h’2) ®)

whereh, is the parameter vector associated with class Igbélowever, posterior inference in an
sLDA classi cation model can be more challenging than that in the sLDA s=ijoe model. This is
because the non-Gaussian probability distribution in Equation (5) is highlynear ofh andz and
its normalization factor can make the topic assignments of different words isatihe document
strongly coupled. Variational methods were successfully used to appate the normalization
factor (Wang et al., 2009), but they can be computationally expensive aball demonstrate in the
experimental section.

DiscLDA (Lacoste-Julien et al., 2008) is yet another supervised topiehfodclassi cation.
DiscLDA is an upstream supervised topic model and as such the unkramameter is the transfor-
mation matrix that is used to generate the document latent representatioitiooeddn the class
label; and this transformation matrix is learned by maximizing the conditional méaitkekhood
of the text given class labels.

This progress notwithstanding, to the best of our knowledge, curmmlapments of super-
vised topic models have been solely built on a likelihood-driven probabilisicénce paradigm.
The arguably sometimes more powerful max-margin based techniques wagglyrulearning dis-
criminative models have not been exploited to learn supervised topic modelsndih goal of this
paper is to systematically investigate how the max-margin principe can be expiwidd a topic
model to learn topics that are better at discriminating documents than currelitididd-driven
learning achieves while retaining semantic interpretability as the later allowshiEgurpose, be-
low we brie y review the max-margin principle underlying a major technique tuilthis principle,
the support vector machines.

2.2 Support Vector Machines

Max-margin methods, such as support vector machines (SVMs) (Vap®g8) and max-margin
Markov networks (MN) (Taskar et al., 2003), have been successfully applied to a wide @ing
discriminative problems such as document categorization and handwrittearctdr recognition. It
has been shown that such methods enjoy strong generalization guar@rapeik, 1998; Taskar
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et al., 2003). Depending on the nature of the response variable, thenangia principle can be
exploited in both classi cation and regression. Below we use documengratiediction as an
example to recapitulate the ideas behind support vector regression (Su®ja and Sabikopf,
2003), which we will shortly leverage to build our rst instance of max-niatgpic model.

Let D = f(x1;y1); ;(Xp;Yp)g be a training set, whene2 X are inputs such as document-
feature vectors, ang 2 R are response values such as user ratings. Using SVR, one obtains a
functionh(x) 2 F that makes at mo deviation from the true response valaéor each training
example, and at the same time is as at as possible. One common choice of ¢hierfdfamily F
is linear functions, that idy(x; h) = h”f(x), wheref = f f;; ; figis a vector of feature functions
fi: X! R, andh is the corresponding weight vector. Formally, the linear SVR nds an optimal
linear function by solving the following constrained optimization problem:

D
PQSVR): min %khk§+ CA (xa+ Xy
X

hx d=1
< Ya h7f(xq) e+xq
8d;st:: | ygt+t h>f(xq) e+xy;
' Xg;Xg O

wherekhk; , P h>h is the ,-norm; x andx are slack variables that tolerate some errors in the
training data;e is a precision parameter; aflis a positive regularization constant. Problem PO
can be equivalently formulated as a regularized empirical loss minimizationmevitwe loss is the
so-callede-insensitive loss (Smola and Sitkopf, 2003).

Under a standard SVR, PO is a quadratic programming (QP) problem arabazasily solved
in a Lagrangian dual formulation. Samples with non-zero lagrange multipliersadled support
vectors, as in the SVM classi cation model. There exist several frekgupes for solving standard
SVR, such as SVM-light (Joachims, 1999). We will use these methods ab-eostine in our
proposed approach, as we will detail in the sequel.

2.3 Maximum Entropy Discrimination

To unite the principles behind topic models and SVR, namely, Bayesian isfeemd max-margin
learning, we employ a formalism known asaximum entropy discriminatioMED) (Jaakkola
etal., 1999; Jebara, 2001), which learns a distribution of all possiptession/classi cation models
that belong to a particular parametric family, subject to a set of margin-basestraints. For
instance, the MED regression model, or simply MERarns a distributiom(h) through solving
the following optimization problem:

D
PIAMED"): min  KL(q(h)kpo(h))+ C & (Xa+ X4)
ach);x;x

d=1
< VYo E[]f(xq) e+ xq

8d; st:: . yat E[h]f(xq) e+ Xy ;
' Xg;Xg O

wherepo(h) is a prior distribution over the parameters afid pkqg) , Ep[log(p=0)] is the Kullback-
Leibler (KL) divergence.
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As studied in Jebara (2001), this MED problem leads to an entropic-reggdgposterior dis-
tribution of the SVR coef cientsg(h); and the resultant predictg="Eqn) [h(x; h)] enjoys several
nice properties and subsumes the standard SVR as special cases &penrthy(h) is standard
normal (Jebara, 2001). Moreover, as shown in Zhu and Xing (2Q01) et al. (2011a), with dif-
ferent choices of the prior ovér, such as a sparsity-inducing Laplace or a nonparametric Dirichlet
process, the resultagth) can exhibit a wide variety of characteristics and are suitable for diverse
utilities such as feature selection or learning complex non-linear discriminatitagiéns. Finally,
the recent developments of the maximum entropy discrimination Markov netfMakEnDNet)
(Zhu and Xing, 2009) and partially observed MaxEnDNet (POMEN)u(2h al., 2008) have ex-
tended the basic MED to the much broader scenarios of learning strugiredittion functions
with or without latent variables.

To apply the MED idea to learn a supervised topic model, a major dif culty is tlesegmce
of heterogeneous latent variables in the topic models, such as the topic gexutd topic indica-
tor Z. In the sequel, we present a novel formalism calleakimum entropy discrimination LDA
(MedLDA) that extends the basic MED to make this possible, and at the sameisicoeers latent
discriminating topics present in the study corpus based on available disanirsida information.

3. MedLDA: Maximum Margin Supervised Topic Models

Now we present a new class of supervised topic models that explicitly emlelrig information

in the context of document classi cation or regression, under a unitatissical framework that
jointly optimizes over the cross entropy between a user supplied model pdaha aimed model
posterior, and over the margin of ensuing predictive tasks based onatmedemodel. This is
to contrast conventional heuristics that rst learn a topic model, and theéepiendently train a
classi er such as SVM using the per-document topic vectors resultamt fine rst step as inputs.
In such a heuristic, the document labels are never able to in uence theéopag can be learned,
and the per-document topic vectors are often found to be not stroreghctive (Xing et al., 2005).

3.1 Regressional MedLDA

We rst consider the scenario where the numerical-valued rating of mleats in the corpus is
available, and our goal is to learn a supervised topic model specializedditing the rating of
new documents through a regression function. We call this model a RegrasMedLDA, or
simply, MedLDA.

Instead of learning a point estimate of regression coef clergs in sSLDA or SVR, we take
the more general Bayesian-style (i.e., an averaging model) approactvdDrand learn a joint
distributior? q(h;z) in a max-margin manner. For prediction, we take a weighted average over all
the possible models (representedhjyand latent topical representationsor more precisely, an
expectation of the prediction ovath; z), which is similar to that in Equation (3), but now over both
h andZz, rather than only ovez:

¥, ElYjw;a;b;d’ = E[h” Zjw;a;b;d?]: (6)
Now, the question underlying the prediction rule (6) is how we can devisg@propriate objec-
tive function as well as constraints to learq(@) that leverages both the max-margin principle (for

5. In principle, we can perform Bayesian-style estimation for othempaters, liked?. For simplicity, we only consider
h as a random variable in this paper.
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strong predictivity) and the topic model architecture (for topic discovaBglow we begin with a
simple reformulation of the sLDA that makes this possible.

3.1.1 MAX-MARGIN TRAINING OF SLDA

Without loss of generality, we lef(h; z) = Rq g(h)a(z; qjh), whereq(h) is the learned distribution
of the predictive regression coef cient, agfiz; gjh) is the learned distribution of the topic elements
of the documents analogous to an sLDA-style topic model, but estimated frdffierzot learning
paradigm that leverages margin-based supervised training. As reviav&ection 2.1, two good
templates fomg(z; qjh) can be the original LDA or sLDA. For brevity, here we present a regre
sional MedLDA that uses the supervised sLDA as the underlying topic médewe shall see in
Section 3.2 and Appendix B, the underlying topic model can also be an engsgd LDA.

Let po(h) denote a prior distribution di, then MedLDA de nes a joint distribution

p(h;fau; zag;y; Wja; b;d®) = po(h) p(f qu; zag;y; Wja; b; h; d);

where the second factor has the same form as Equation (2) for sLBé&pethat novh is a random
variable and follows a priopg(h). Accordingly, the likelihoody(y; Wja; b; d?) is an expectation of
the likelihood of sLDA undepg(h), which makes it even harder than in sLDA to directly optimize.
Therefore, we choose to optimize a variational upper bound of the lofjlilozl. We will discuss
other approximation methods in Section 4.

Let g(h;f qq;zqg) be a variational approximation to the postenggh;f qq; z¢gja; b; d%;y; W).
Then, an upper boufid_P%(q; a; b; d?) of the negative log-likelihood is

LPS(q;a;b;d?) ,  Egllogp(h;faqe;zagy; Wja;b;d?)]  H (q(h;fqd;z49))
= KL(g(h)kpo(h))+ Eqny[L°]: (7)

We can see that the bound is also an expectation of sLDA's variationatllotin Equation (4). To
derive Equation (7), we should note that the variational distribution fow¥sis “conditioned on” its
model parameters, which includte Similarly, the distributiorg in LS depends on the parameters
(a;b;d?). For notation clarity, we have omitted the explicit dependence on parametensational
distributions.

Based on the MED principle and the variational bound in Equation (7), weedke learning
problem of MedLDA as follows:

PAMEILDA) : min  Equ[L3(Gaibi )]+ KL(a(h)kpo(h)) + C& (xa+ xg)

g;a;b;d?;x;x 8 d=1
< vya E[hZg e+ xg
8d;st:: | ya+ E[N7Zy] e+ x4
' XdiXg 0

wherex; X are slack variables, aralis a precision parameter as in SVR. The margin constraints
in P2 are of the same form as those in PO, but in an expectation versionskegath the topic
assignmentZ and parameters are latent random variables in MedLDA

6. “bs” stands for “Bayesian Supervised”.
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Itis easy to verify that at the optimum, at most onexgfndx, can be non-zero ands + X, =
max0;jyqy E[h”Zy]j €), which is known ag-insensitive loss (Smola and Sitkopf, 2003), that
is, if the current predictioty as in Equation (6) does not deviate from the true response value too
much (i.e., less tham), there is no loss; otherwise, a linear loss will be penalized. Mathemati-
cally, problem P2 can be equivalently written as a loss minimization problem witiedng slack
variables:

D
min_L"(q;a;b;d?)+ C 4 maxOijys E[h”Zdlj ) (8)
gab,d? d=1
where the variational bounld®s plays two roles—egularizationand maximum likelihood estima-
tion. Speci cally, as shown in Equation (7).°s decomposes into two parts. The rst part of
KL-divergence is an entropic regularizer fgth); and the second term is an expected bound of the
data likelihood, as we have discussed. Therefore, problem P2 is a jokihomra margin learning
and maximum likelihood estimation (with appropriate regularization), and the tympgoents are
coupled by sharing latent topic assignmen@nd parameterss.

The rationale underlying MedLDAs that: by minimizing an integrated objective function, we
aim to nd a latent topical representation and a document-rating predictiotitun which, on one
hand, can predict accurately on unseen data with a suf cient margehparthe other hand, can
explain the data well (i.e., minimizing a variational bound of the negative log-liketih. The max-
margin learning and topic discovery procedure are coupled togethereviztistraints, which are
de ned on the expectations of model parametei@nd latent topical assignmer#s This interplay
will yield a topical representation that could be more suitable for predictidistass explained
below and veri ed in experiments.

3.1.2 \ARIATIONAL APPROXIMATION ALGORITHM FORMEDLDA'

Minimizing LS is intractable. Here, we use mean eld methods (Jordan et al., 1999) widely e
ployed in tting LDA and sLDA to ef ciently obtain an approximatgfor problem P2. Speci cally,
we assume thajis a fully factorized mean- eld approximation fm

D N
q(h;fqq;z49) = q(h) O a(qejgy) O a(zanif 4n);

d=1 n=1

whereg, is aK-dimensional vector of Dirichlet parameters and ebghparameterizes a multino-
mial distribution oveK topics. It is easy to verify that:

— 1N
E[Zan] = f 4, andE[h” Z4] = E[h]>(N a fqn):
n=1

Now, we develop a coordinate descent algorithm to solve the equivalenbhstrained” for-
mulation (8). The algorithm is outlined in Algorithm 1 and detailed below.

(1) Solve for(a;b;d?) and qh): Whenq(f qq;z¢g) is xed, this substep (in an equivalent con-
strained form) is to solve

D
min  Eqm[L(c;a;b; ]+ KL(a(h)kpo(h)+ C & (Xa+ Xg) (9)
q(h);a;b;d?;x;x d=1
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Algorithm 1 Variational MedLDA

1:
2
3

10:
11:

12:

© o N O A

Input: corpusD = f(y;W)g, constant€ ande, and topic numbek.
Output: Dirichlet parameterg, posterior distributiory(h), parametera, b andd?.
repeat
ford= 1toDdo
Updateg, as in Equation (13).
for n= 1to N do
Updatef 4, as in Equation (14).
end for
end for
Solve the dual problem D2 to ggth), ftandfr .
Updateb using Equation (10), and updadé using Equation (11). Optimiza with gradient
descent or xa as XK times the ones vector.
until convergence

yo EM Zy] e+xg (M)

8d; st Y47 Eh”Zy] e+ xy (W)
2 Xa O (Va)

Xqg O (vg);

wheref Ug; Uy; Va; Vyd are lagrange multipliers. Since the margin constraints are not dependent
on (a;b;d?), we can solve for them using the same procedure as in SLDA, gfenand

q(f aq;zgg) are given. Speci cally, fora, the same gradient descent method as in Blei et al.
(2003) can be applied; fdy, the update equations are the same as for sLDA:

I (Wan= W)FK; (10)
1

bkw“ é.
d=1

ﬁ QJOZ

wherel () is an indicator function that equals to 1 if the condition holds; otherwise Of@nd
d?, the update rule is similar as that of SLDA but in an expected version, behds a random
variable:

o= % y’y 2y” E[AJE[h]+ E[h” E[A” Alh] ; (11)

whereE[h” E[A” Alh] = tr(E[A” AJE[hh”]), andAisaD K matrix whose rows are the vectors
Z3.

Solving for q(h) can be done using Lagrangian methods, but it is a bit more delicate. For
brevity, we postpone the details of this step after we have nished pregeahtroverall proce-
dure. We denote the optimum lagrange multiplierdfayfl ) and the optimum slack variables

by (X;X ).

(2) Solve for §f qq;z4g): By xing q(h) and(a;b;d?), this substep (in an equivalent constrained

form) is to solve

D
min  EqnlL3(ga;b;d?)]+ C 8 (Xa+ Xq) (12)
a(f qq;zq9);x;x d=1
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8 _

< Yda E[NZy] e+xq
8d; st:: . yat E[h7Zg] e+ xy

' Xd;Xg O

Since the constraints are not dependengpandq(h) is also not directly connected wity,
we get the same update rule fgras in SLDA:

N
g=a+ Q fyy (13)

n=1

Forg(zq), in theory, we can do the optimization to get the optimal solutioh ahd the corre-
sponding optimal lagrange multipliers. But the full optimization would be expenespecially
considering that this sub-step is within the most inner iteration loop and it weupttformed
for many times. Here, we adopt an approximation strategy, which perfosingl@ step update
of f, rather than a full optimization. Note that this one-step approximation coulddeasdlight
increase of the objective function during the iterations. Our empirical siuﬂlew that this
increase is usually within an acceptable range. More speci cally, wéx;x ) at (x X ) (the
optimum solution of the previous step) and set the lagrange multipliersf; fie). Then, we
have the closed-form update equation

. . 2E[h>f 4, .h]+E[h h]
fanH exp E[logqajgy] + log p(warjb) + NO|2E[h] NEE

+ g (14)

wheref 4., dignfqi; h his the element-wise product; and the result of exponentiating a
vector is a vector of the exponentials of its corresponding components.tiNdtthe rst two
terms in the exponential are the same as those in LDA.

Remark 1 From the update rule of in Equation (14), we can see that the essential differences
between MedLDAand sLDA lie in the last three terms in the exponentid gf Firstly, the third
and fourth terms are similar to those of SLDA, but in an expected versicr gip are learning the
distribution (h) instead of a point estimate bf The second-order expectatioBgh” f ;. ,h]and
E[h h] mean that the co-varianceslfSee Corollary 3 for an example) affect the distribution over
topics. This makes our approach signi cantly different from a point estonanethod, like SLDA,
where no expectations or co-variances are involved in upddtjngSecondly, the last term is from
the max-margin regression formulation. For a document d, which lies@dékision boundary, that
is, a support vector, eitherglor i, is non-zero, and the last term biadeg, towards a distribution
that favors a more accurate prediction on the document. Moreover, gtedem is xed for words

in the document and thus will directly affect the latent representation ofdbardent, that isg,.
Therefore, the latent representatiqa inferred under MedLDAcan be more suitable for supervised
prediction tasks. Our empirical studies further verify this, as we shall s&eation 5.

7. Before we updaté, () and(§;§ ) satisfy the optimal conditions (e.g., KKT conditions) of problem (12), So
they are the initially optimal solutions. But after we have upddtethe KKT conditions do not hold. This is the
reason why our strategy of not updatiflg p ) and(x;x ) could lead to a slight increase of the objective function.
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Now, we turn to the sub-step of solving fqth), as well as the slack variables and lagrange
multipliers. Speci cally, we have the following result.

Proposition 2 For MedLDA, the optimum solution of(f) has the form:

h .2 - . E[A"A
qth) = po; )exp h™a (la Mg+ %)E[Zd] h [2d2 Ih ;
d=1

whereE[A” Al = 40, E[ZaZ;], and E[Z0Z7]= (N1 menf aof am+ AN-1diag f4,0). The
lagrange multiplierg j; jt ) are the solution of the dual problem of (9):

D D
D2: max logZ eé (Ma+ M)+ é Ya(Md  Hg)
WH d=1 d=1

8d; sit:: pg; Mg 2 [0;C]:

Proof (sketch) By setting the partial derivative of the Lagrangian functionetg(h) equal to zero,

we can get the solution af(h). Pluggingq(h) into the Lagrangian functional and solving for the
optimal(vy;Vy) and(Xq; X4) as in the standard SVR to get the box constraints, we get the dual prob-
lem. |

In MedLDA', we can choose different priors to introduce some regularizationtefféor the
standard normal prior, we have the following corollary:

Corollary 3 Assume the prior gth) = N (0;1), where | is the identity matrix, then the optimum
solution of ¢h) is

ath)= N(:9);

wherel = S(&53-(flu  y+ %)E[Z_d]) is the mean an® = (| + 1=d’E[A”A]) tisaK K co-
variance matrix. The dual problem D2 is now:

1 2 2
max  SW SW eq (Hat o)+ a Ya(kd  Ha) (15)
K d=1 d=1

8d; st:: g; kg 2 [0;C];
wherew= 8 (kg My+ %)E[Z_d]-

In the above Corollary, computation 8fcan be done robustly through Cholesky decomposition
of d?l + E[A” A], anO(K?3) procedure. Another example is the Laplace prior, which can lead to a
shrinkage effect (Zhu and Xing, 2009) that is useful in sparselgnod In this paper, we focus
on the normal prior and extension to the Laplace prior can be done similaiyzZss and Xing
(2009). For the standard normal prior, the dual optimization problem is pr@tem and can be
solved with any standard QP solvers, although they may not be so ef ciemileverage recent
developments in learning support vector regression models, we rgephe following corollary:
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Corollary 4 Assume the prior gth) = N (0;1), then the mearh of g(h) in problem (9) is the
optimum solution of the following problem:

. 1 > 1 > (I;) yd — (I)D
min Z1°S "1 17 (a ZE[Zd)+ Ca (Xa+ xq) (16)
Ixx 2 d=19 d=1
2 ya |7E[Z] e+ xqg
8d; st yg+ | TE[Zg] e+ xy
' Xd;Xg O

Proof See Appendix A for details. |

The above primal form can be re-formulated as a standard SVR problpeti &lly, we do
Cholesky decompositio * = U~U, whereU is an upper triangular matrix with strict positive
diagonal entries. Len = é(?:l%E[Zd], and we de nel °= U(I  Sn); ¥9=vya N SE[Zg]; and
Xqg=(U 1> E[Z_d]. Then, the above primal problem in Corollary 4 can be re-formulated as the
following standard form:

1 g
min =kl %3+ C & (xa+ Xg) (17)
1%x 2 d=1
8
< V) (0P x4 et xg
8d; st . YA+(197xg e+ xy:
’ Xd;X%q O

Then, we can solve the standard SVR problem using existing algorithnts asube working
set selection algorithm implemgnted in SVM:-light (Joachims, 1999), to get thlepduametefSfi
andfl (as well as slack variablesandx ), which are needed to inféras de ned in (14), and the
primal parameterkwhich we use to gdt by doing a reverse transformation sidde= U(I  Sn)
as de ned above. The other lagrange multipliers, which are not explicitiyed in topic inference
and estimation ofi(h), are solved according to KKT conditions.

3.2 Classi cational MedLDA

Now, we present the MedLDA classi cation model, of which the discretelabgthe documents
are available, and our goal is to learn a supervised topic model speciatipeedicting the labels
of new documents through a discriminant function. We call this model a Clzgsbnal MedLDA,
or simply,MedLDA.

Denoting the discrete response variableYayfor brevity, we only consider the multi-class
classi cation, wherey takes values from a nite se€, f1;2; ;Jg. The binary case, where
C, f+1; 1g, can be easily de ned based on a binary SVM and the optimization problarhea
solved similarly. For classi cation, if the latent topic assignmenisfz;; ;zyg of all the words
in a document are given, we de ne thaentlinear discriminant function

F(y.zh;w)= hyZ

8. Not all existing solvers return the dual paramefeandfi . SVM-light is one nice package that provides both primal
parameter$ %and the dual parameters. Note that the above transformation fronto(16§) is done in the primal
form and does not affect the solution of dual parameters of (15).
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wherez, 1=N4,z, the same as in the case of MedLDA regression mdulgls a class-speci ¢
K-dimensional parameter vector associated with cjasdh is ajCjK-dimensional vector by
stacking the elements df,. Equivalently,F can be written ag(y,z;h;w) = h”(y;2), where
f(y;z) is a feature vector whose components frfgm 1)K + 1 toyK are those of the vectarand
all the others are 0.

However, we cannot directly use the latent functify; z; h; w) to make prediction for an ob-
served inputv of a document because the topic assignme@ie hidden variables. Here, we also
treath as a random vector and consider the general case to learn a distrikugjdm) oln order to
deal with the uncertainty of andh, similar to MedLDA, we take the expectation oveth;z) and
de ne theeffectivediscriminant function

F(y;w) = E[F(y;Z;h;w)] = E[h”f(y; 2)ja; b;w];

whereZ , fZ1; ;Zngis the set of topic assignment random variables and1=N & ,Z, is the
average topic assignment random variable as de ned before. Theprédiction rule for multi-
class classi cation is naturally

y= argmaxr(y;w) = argmaxE[h”f(y, 2)ja;b;w]: (18)
y2C y2C

Our goal here is to learn an optimal set of paramefard) and distributiong(h). As in
MedLDA', we have the option of using either a supervised sLDA (Wang et al., 20@8) unsuper-
vised LDA as a building block of MedLDAto discover latent topical representations. However, as
we have discussed in Section 2.1 and shown by Wang et al. (2009) asv@attion 5.3.1, inference
under sLDA can be harder and slower because the probability modsionéteY in Equation (5) is
highly nonlinear oveh andZ, both of which are latent variables in our case, and its normalization
factor strongly couples the topic assignments of different words in the damenent. Therefore,
in this paper we focus on the case of using an LDA that only models the likelibbdocument
contentsW but not document label as the underlying topic model to discover latent represen-
tationsZ. Even with this likelihood model, document labels can still in uence topic learaing
inference because they induce margin constraints pertinent to the toisicdudions. As we shall
see, the resultant MedLDA classi cation model can be easily and ef cidatlyned by using exist-
ing high-performance SVM solvers. Moreover, since the goal of masgim$earning is to directly
minimize a hinge loss (i.e., an upper bound of the empirical loss), we do ndtaneermalized
distribution model for response variabMés

3.2.1 MAX-MARGIN LEARNING OF LDA FOR CLASSIFICATION

The LDA component inside the MedLDAde nes a likelihood functionp(Wja;b) over the cor-
pusD, which is known to be intractable. Therefore, we choose to optimize its varatimund
LY(q;a;b) in Equation (1), which facilitates ef cient approximation algorithms. The inaégex
problem of discovering latent topical representations and learning @bdigin of classi ers is
de ned as follows:

D
P3MedLDA®) :  min LY(q;a;b)+ KL(q(h)jj po(h)) + ¢ a Xd
g,a(h);a;bix Dy

Elh”Dfg(Y)] D'a(y) xa

8d; y2 C; st:: Xy O
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whereq denotes the variational distributiaff qq;z49); D 4(Y) is a non-negative cost function (e.g.,
0/1 cost as typically used in SVMs) that measures how different the pi@dicis from the true
class labeyqy; Dfg(y) , f(ya;Zq) f(y;Zq); andx are slack variable$.It is typically assumed that
D 4(yq) = O, that is, no cost for a correct prediction. Finally,

E[h” Dfa(y)]1 = F(ya;wa) F(y;wa)

is the “expectednargin” by which the true labely is favored over a prediction

Note that we have taken a full expectation to de Réy;w), instead of taking the mode as
done in latent SVMs (Felzenszwalb et al., 2010; Yu and Joachims, 2080€use expectation is a
nice linear functional of the distributions under which it is taken, wherddasddahe mode involves
the highly nonlineaargmaxfunction for discreteZ, which could lead to a harder inference task.
Furthermore, due to the same reason to avoid dealing with a highly nonlineanidisant function,
we did not adopt the method in Jebara (2001) either, which uses log-likelitaiio to de ne the
discriminant function when considering latent variables in MED. Speci catlpur case, the max-
margin constraints of the standard MED would be

P(Yajwg; a;b)

8d; 8y2C: lo =
y J p(yjwg; a;b)

Da(y) Xa;

hich are highly nonlinear due to the complex form of the marginal likelihpbgwy;a;b) =

qu .zg P(Y; Od; ZdjWy; @; b). Our linear expectation operator is an effective tool to deal with latent
variables in the context of maximum margin learning. In fact, besides thermrasrk, we have
successfully applied this operator to other challenging settings of learnarg lariable structured
prediction models with nontrivial dependence structures among outgabies (Zhu et al., 2008)
and learning nonparametric Bayesian models (Zhu et al., 2011b,a). €kpseeted margin con-
straints also make MedLDAundamentally different from the mixture of conditional max-entropy
models (Pavlov et al., 2003), where constraints are based on moment rgatblainis, empirical
expectations of features equal to their model expectations.

By settingx to their optimum solutions, that ig = max(D'4(y) E[h” Dfg(y)]), we can

rewrite problem P3 in the form of regularized empirical loss minimization

min L%gq;a;b)+ KL(q(h)jjpo(h)) + CR(q;q(h)); (19)
g,q(h);a;b

where
. 19 X .
R(a;q(h)) . 5 glryz%@ a(y) E[h” Dig(y)])

is an upper bound of the training error of the prediction rule in Equatioh #h8C is again the
regularization constant. However, different from MedLDAvhich uses a Bayesian supervised
sLDA as the underlying likelihood model, here the variational boluHdloes not contain a cross-
entropy term org(h) for its regularization (as il.S in Equation (7)). Therefore, we include the
KL-divergence in problem P3 as an explicit entropic regularizer fodibtibutiong(h).

9. Since multi-class SVM is a special case of max-margin Markov neyevk follow the common conventions and
use the same notations as in structured max-margin methods (Taska2@03; Joachims et al., 2009).
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The rationale underlying MedLD®Ais similar to that of MedLDA, that is, we want to nd latent
topical representationgf qq; zyg) and a model parameter distributiqth) which on one hand tend
to predict as accurate as possible on training data, while on the other mahi texplain the data
well. The two parts are closely coupled by the expected margin constraints.

3.2.2 \ARIATIONAL ALGORITHM FORMEDLDAZ®

As in MedLDA', we make the fully-factorized mean eld assumption that

R N _
q(f 4a;249) = O A(daiGy) O a(Zanif gr);

d=1 n=1
whereg, andf 4, are variational parameters, having the same meaning as in MedLD#%n, we
haveE[h” f(y; Zg)] = E[h]”f(y;1=N&N.,f ;). We develop a similar coordinate descent algorithm
to solve the “unconstrained” formulation in (19). Since the constraints inr®8a@t ong, a or b,
their update rules are the same as in the case of Medldbl we omit the details here. Below,
we explain the optimization ovey(f zyg) andq(h) and show the insights of the max-margin topic
model.

Optimize over ¢h): As in the case of regression, we have the following solution:

Corollary 5 When(a;b) and (fqq;z4g) are xed, the optimum solution(f) of MedLDA in
problem P3 has the form:

D
ah) = Spohyexp h* (& & REDKMD |
d=1y2C

where the lagrange multiplier are the optimum solution of the dual problem:

D
D3: max logZ+ § & WD a(y)
H d=1y2C

8d; st::3 W, 2 [0; %];
y2C
Again, we can choose different priors in MedLB#or different regularization effects. We consider
the normal prior in this paper. For the standard normal ppigh) = N (0;1), we can get:q(h)
is a normal with a shifted mean, that th) = N (I ;1), wherel = &3.,4,,cIE[Df4(y)], and
the dual problem D3 thus becomes the same as the dual problem of a dtamdtsclass SVM
(Crammer and Singer, 2001):

1, 8 6 2 X
max  sk& & WEDLYIK+ & a WD a(y) (20)
8d; st:: Q W2I0; %]:

y2C
The primal form of problem (20) is

1 c?®
min Zkl k3+ = & Xq
Ix 2

Dy
> ~
8d; 8y2 C; sit:: I E[Dfd(B)’()] gd(y) Xd
d .
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Optimize over (f z4g): again, sincey is fully factorized, we can perform the optimization on
each document separately. We have

fanb x El00iGI+ logp(viat) + | & PYEM,, ] (21)
y

where we can see that the rst two terms in Equation (21) are the same asupeamised LDA
(Blei et al., 2003), and the last term is due to the max-margin formulation oh&3eaects our in-
tuition that the discovered latent topical representation is in uenced by thgimeonstraints. For
those examples that are on the decision boundary, that is, suppontsyeltir associated lagrange
multipliers are non-zero and thus the last term acts as a regularizer thes$ ti@smodel towards
discovering latent representations that tend to make more accurate predictibese dif cult ex-
amples. Moreover, this term is xed for words in the document and thus wiictly affect the
latent representation of the document (igg), and therefore leads to a discriminative latent repre-
sentation. As we shall see in Section 5, such an estimate is more suitable flastieation task:
for instance, MedLDA needs much fewer support vectors than the max-margin classi ers that ar
built on raw text or the topical representations discovered by LDA.

The above formulation of MedLDAhas a slack variable associated with each document. This
is known as then-slackformulation (Joachims et al., 2009). Another equivalent formulation, which
can be more ef ciently solved, is the so call@eslackformulation. The 1-slack MedLDAcan be
written as follows

P4(1-slack MedLDA) : min LY(q)+ KL(q(h)jj po(h))+ Cx
a,a(h);a;b;x
&g-1E[h”Dfa(Ya)] 58810 a(Ya) X

1
— o Yeet-.- D
8(y1, ,yD), St X O

By using the above developed variational algorithm and the cutting plangthfgdor solving the
1-slack as well ag-slack multi-class SVMs (Joachims et al., 2009), which is implemented in the
SVMStUet packager? we can solve the 1-slack okslack MedLDA model ef ciently, as we shalll
see in Section 5.3.1. SVI"® provides the solutions of the primal parameteiss well as the dual
parametergl, which are needed to do inference.

4. MedTM: A General Framework

We have presented two variants of MedLDA for discovering predictimlaopical representations
of documents, as well as learning discriminating topics from the corpuswarftave shown that
the underlying topic model that de nes data likelihood can be either a sigeenor an unsuper-
vised LDA. In fact, the likelihood component of MedLDA can be any otloenf of generative topic
model, such as correlated topic models (Blei and Lafferty, 2005), ortlafte Markov random
elds, such as exponential family harmoniums (Welling et al., 2004; Xing e2@D5; Chen et al.,
2010). The same principle can also be applied to upstream latent topic mwtialk, have been
widely used in computer vision applications (Sudderth et al., 2005; FeideelParona, 2005; Zhu
et al., 2010). In this section, we formulate a general framework of apptyi@ max-margin princi-
ple to learn discriminative latent topic models when supervising side informatiavaitable, and
we discuss more insights on developing approximate inference algorithms.

10. SVMUUCt can be found altitp://svmlight.joachims.org/svm\_multiclass.html

2254



MEDLDA: M AXIMUM MARGIN SUPERVISEDTOPIC MODELS

Formally, amaximum entropy discrimination topic mod&ledTM) consists of two components—
an underlying topic model that ts observed data and a MED max-margin ntbdelperforms
prediction. In an MedTM, we distinguish two types of latent variables—weeju denote the
parameters of the model pertaining to the prediction task (B.@,sLDA), andH to denote the
topic assignment and mixing variables (eandq). LetY denote the parameters of the under-
lying topic model (e.g., the Dirichlet parametagrand topicsb). Then, p(DjY) is the marginal
data likelihood of the corpuB, which may or may not include the supervising side information
depending on choice of speci ¢ form of the underlying topic model.

As discussed before, for a general topic mog@éDjY) is intractable, therefore a generic vari-
ational method can be employed. lggt ;H) be a variational distribution to approximate the pos-
terior p(j ;HjD;Y). By the properties of KL-divergence, the following equality holds if wendd
make any restricting assumptionatf ; H)

logp(DjY) = min qu nllogp(i sH; DY)l H(a(i ;H)) i
= nin o) Eqeiiyliog p(H:DjY;i)] H(a(Hji)) + KL(ati)kpo(i)) ;
wherepo(j ) is the prior distribution of . Let us de ne
L'a(Hji );Y5i),  Equillogp(H;DjY;i)l  H(a(Hji)):

Then,LY(q(Hji );Y ;i) is the variational bound of the data likelihood associated with the underlying
topic model. For instance, when the underlying topic model is supervised,d.Dreduces td_S,
as we discussed in Equation (7). When the underlying topic model is unssgL DA, the corpus
D only contains document contents, ap;DjY ;i) = p(H;DjY). The reduction oL! to LY
needs a simplifying assumption thg{ ;H) = q(j )q(H) (in fact, much stricter assumptions gn
are usually needed to make the learning of MedCRActable).
Mathematically, we de ne MedTM as solving the following entropic-regulatipeoblem:
h i
P5(MedTM :q(imi)nv_xEq(;) L(a(Hji );Y5i) + KL(aGi )kpo(i )+ U(X)

st q(j ;H) satis es the expected margin constraints

whereU is a convex function over slack variables, suchlgx) = %édxd in MedLDAC. As
we have discussed in Section 3.2.1, by using the linear expectation operatexpected margin
constraints are different from and simpler than those derived usinglé&dnood ratio function in
the standard MED with latent variables (Jebara, 2001).

This formulation allows ef cient approximate inference to be developedydmeral, the dif -
culty of solving the optimization problem of MedTM lies in two aspects. First, the likelihood
or its equivalent variational form as involved in the objective function isegally intractable to
compute if we do not make any restricting assumption algbutH). Second, the posterior infer-
ence (e.g., in LDA) as required in evaluating the margin constraints is drieteactable. Based
on recent developments on learning latent topic models, two commonly usexhabes can be ap-
plied to get an approximate solution to P5(MedTM), namely, Markov Chaint&Garlo (MCMC)
(Grifths and Steyvers, 2004) and variational (Blei et al., 2003; Telale 2006) methods. For
variational methods, which are our focus in this paper, we need to makeasiuhitional restricting
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assumptions, such as the commonly used mean eld assumption, about theutigstrily; ;H).
Then, P5 can be ef ciently solved with a coordinate descent procedinmglar to what we have
done for MedLDA and MedLDA. For MCMC methods, the difference lies in sampling from the
distributionq(j ;H) under margin constraints—evaluating the expected margin constraints is easy
once we obtain samples from the posterior. Several approaches vopesed to deal with the
problem of sampling from a distribution under some constraints such ase&t(2007), Grif ths
(2002), Rodriguez-Yam et al. (2004) and Damien and Walker (200dantee a few, and we plan to
investigate their suitability to our case in the future.

Finally, based on the recent extensions of MED to the structured predisiting (Zhu and
Xing, 2009; Zhu et al., 2008), the basic principle of MedLDA can be similextended to perform
structured prediction, where multiple response variables are predicteliessienusly and thus their
mutual dependencies can be exploited to achieve globally consistent imdlqgredictions. Like-
lihood based structured prediction latent topic models have been devetogdigrent scenarios,
such as image annotation (He and Zemel, 2008) and statistical machine tran@hato and Xing,
2007). Extension of MedLDA to the structured prediction setting couldigeoa promising alter-
native for such problems.

5. Experiments

In this section, we provide qualitative as well as quantitative evaluation oflLl2& on topic esti-
mation, document classi cation and regression. For MedLDA and othéc tapdels (except Dis-
cLDA whose implementation details are explained in footnote 14), we optimiz€-tienensional
Dirichlet parametera using the Newton-Raphson method (Blei et al., 2003). For initialization, we
setf to be uniform and each topls, to be a uniform distribution plus a very small random noise,
and the posterior mean &f to be zero. We have published our implementation on the website:
http://www.ml-thu.net/ jun/software.htmlin all the experimental results, by default, we also report
the standard deviation for a topic model with ve randomly initialized runs.

5.1 Topic Estimation

We begin with an empirical assessment of topic estimation by MedLDA on the @8ddeups data
set with a standard list of stop wordsemoved. The data set contains about 20,000 postings in
20 related categories. We compare with unsupervised tPDwWe t the data set to a 110-topic
MedLDA® model, which exploits the supervising category information, and a 110-toysicper-
vised LDA, which ignores category information.

Figure 2 shows the 2D embedding of the inferred topic proportp{approximated by the in-
ferred variational posterior means) by MedLPand LDA using the t-SNE stochastic neighborhood
embedding (van der Maaten and Hinton, 2008) method, where eachpdeseats a document and
each color-shape pair represents a category. Visually, the max-masggd MedLDA produces a
better grouping and separation of the documents in different categtmiesntrast, unsupervised
LDA does not produce a well separated embedding, and documentsdrediftategories tend to
mix together. Intuitively, a well-separated representation is more discriménfstidocument cat-
egorization. This is further empirically supported in Section 5.2. Note that a signtdedding

11. Stop word list can be found bitp:/mallet.cs.umass.edu/
12. We implemented LDA based on the public variational inference cod@rbavid Blei, using same data structures
as MedLDA for fair comparison.
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Figure 2: t-SNE 2D embedding of the topical representation by: MedL{aBove) and unsuper-
vised LDA (below). The mapping between each index and category namigeciound
in: http://people.csail.mit.edu/jrennie/20Newsgroups/.
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Figure 3: Top topics under each class as discovered by the MedLDARAdnodels.

was presented by Lacoste-Julien et al. (2008), where the transfornmatitiix in their model is

pre-designed. The results of MedLBk Figure 2 areautomaticallylearned.

It is also interesting to examine the discovered topics and their relevancesmlalzls. In
Figure 3 we show the top topics in four example categories as discovergotfyedLDA® and
LDA. Here, the semantic meaning of each topic is represented by the tsghQprobability words.

To visually illustrate the discriminative power of the latent representations.ighthe topic
proportion vectolq of documents, we illustrate and compare the per-class distribution over topics
for each model at the right side of Figure 3. This distribution is computedénaging the expected
topic vector of the documents in each class. We can see that MedyiBs sharper, sparser and
fast decaying per-class distributions over topics. For the documentsfanedif categories, we
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Figure 4: The average entropy gfover documents of different topic models on 20 Newsgroups
data.

can see that their per-class average distributions over topics areiffergmt, which suggests that
the topical representations by MedLBAave a good discrimination power. Also, the sharper and
sparser representations by MedLD#an result in a simpler max-margin classi er (e.g., with fewer
support vectors), as we shall see in Section 5.2.1. All these observatiggsst that the topical
representations discovered by MedLD#ave a better discriminative power and are more suitable
for prediction tasks (Please see Section 5.2 for prediction performartus)behavior of MedLDA

is in fact due to the regularization effect enforced dvexrs shown in Equation (21). On the other
hand, LDA seems to discover topics that model the ne details of documerdsihiy at the cost

of achieving weaker discrimination power (i.e., it discovers differentatimns of the same topic
which results in a at per-class distribution over topics). For instance,éncthsscomp.graphics
MedLDA® mainly models documents in this class using two salient, discriminative topics (69 an
T11) whereas LDA results in a much atter distribution. Moreover, in theesaghere LDA and
MedLDA*® discover comparably the same set of topics in a given class ffbkécs.mideasand
misc.forsal¢, MedLDAC results in a sharper low dimensional representation.

A guantitative measure for the sparsity or sharpness of the distributi@rgapics is the en-
tropy. We compute the entropy of the inferred topic proportion for eaclumient and take the
average over the corpus. Here, we compare MedL®Ah unsupervised LDA, supervised sLDA
for multi-class classi cation (multi-sLDAY (Wang et al., 2009) and DiscLDA (Lacoste-Julien

13. We thank the authors for providing their implementation, on which weenmetessary slight modi cations, for
example, improving the time ef ciency and optimiziag

14. DiscLDA is a conditional model that uses class-speci c topics amdeshtopics. Since the code is not publicly
available, we implemented an in-house version by following the same striatée original paper and shakg
topics across classes and allodégdopics to each class, whelkg = 2K, and we varieKg = f1;2; g. We should
note here that Lacoste-Julien et al. (2008); Lacoste-Julien (200®) ayaoptimization algorithm for learning the
topic structure (i.e., a transformation matrix), however since the caulat isvailable, we resorted to one of the xed
splitting strategies mentioned in the paper. Moreover, for the multi-clags tesauthors only reported results using
the same xed splitting strategy we mentioned above. For the number ofidgiesafor training and inference, we
followed Lacoste-Julien (2009). Moreover, following Lacoste-Jul2®0Q) and personal communication with the
rst author, we used symmetric Dirichlet priors brandq, and set the Dirichlet parameters @@Dand 01=(Kg+ Kj),
respectively.
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et al., 2008). For DiscLDA, as in the original paper, we x the transfaioramatrix and set it
to be diagonally sparse. We use the standard training/testingdplitt the models on training
data and infer the topic distributions on testing documents. Figure 4 showsdlega entropy
of different models on testing documents when different topic numbershargen. For DiscLDA,
we set the class-speci c topic numbiés = 1;2;3;4;5 and correspondingl = 22;44;66;88;110.
We can see that MedLDAyields the smallest entropy, which indicates that the probability mass
is concentrated on quite a few topics, consistent with the observations ireRgun contrast, for
unsupervised LDA, the probability mass is more uniformly distributed on marggdgagain con-
sistent with Figure 3), which results in a higher entropy. For DiscLDA, altfiothe transformation
matrix is designed to be diagonally sparse, the distributions over the clasisegppics and shared
topics are at. Therefore, the entropy is also high. Using automatically éshtransition matrices
might improve the sparsity of DiscLDA.

5.2 Prediction Accuracy

In this subsection, we provide a quantitative evaluation of MedLDA onigtied performance for
both document classi cation and regression.

5.2.1 Q.ASSIFICATION

We perform binary and multi-class classi cation on the 20 Newsgroup @étde obtain a baseline,
we rst t all the data to an LDA model, and then use the latent representatfahe training®
documents as features to build a binary or multi-class SVM classi er. Wetdeahis baseline by
LDA+SVM

Binary Classi cation As Lacoste-Julien et al. (2008) did, the binary classi cation is to distin-
guish postings of the newsgroat.atheismand the postings of the grouglk.religion.misc The
training set contains 856 documents with a split of 480/376 over the two caegand the test
set contains 569 documents with a split of 318/251 over the two categotesefdre, thendve
baselinethat predicts the most frequent category for all test documents hassag@672.

We compare the binary MedLDAwith supervised LDA, DiscLDA, LDA+SVM, and the stan-
dard binary SVM built on raw text features. For supervised LDA, wehth the regression model
(sLDA) (Blei and McAuliffe, 2007) and the multi-class classi cation model {thgLDA) (Wang
et al., 2009). For the sLDA regression model, we t it using the binaryesgentation (0/1) of the
classes, and use a threshold 0.5 to make prediction. For MetiLtbAee whether a second-stage
max-margin classi er can improve the performance, we also build a methitedt. DA+SVM,
similar to LDA+SVM. For DiscLDA, we x the transition matrix. Automatically learniriige tran-
sition matrix can yield slightly better results, as reported by Lacoste-Juli@®)j2Bor all the above
methods that use the class label information, they a@NiLY on the training data.

We use the SVM-light (Joachims, 1999), which provides both primal asadi garameters, to
build SVM classi ers and to estimate the posterior mearhah MedLDA®. The paramete€ is
chosen via 5 fold cross-validation during training froltf : k= 1; ;8g. For each model, we run
the experiments for 5 times and take the average as the nal results. Tdietime accuracy of
different models with respect to the number of topics is shown in Figure B{@) DiscLDA, we

15. Split can be found dittp://people.csail.mit.edu/jrennie/20Newsgroups/
16. We use the training/testing splittittp://people.csail.mit.edu/jrennie/20Newsgroups/
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Figure 5: Classi cation accuracy of different models for: (a) binang éb) multi-class classi ca-
tion on the 20 Newsgroup data.

follow Lacoste-Julien et al. (2008) to skét= 2Kg+ Kj, whereKg is the number of class-speci ¢
topics andK; is the number of shared topics, akgd= 2Kq. Here, we seKg= 1; ;8;10.

We can see that the max-margin MedLDperforms better than the likelihood-based down-
stream models, include multi-sLDA, sLDA, and the baseline LDA+SVM. Ttst performances of
the two discriminative models (i.e., MedLDAnd DiscLDA) are comparable. However, MedLDA
is easier to learn and faster in testing, as we shall see in Section 5.3.2. Wdorthe different ap-
proximate inference algorithms used in MedLD@e., variational approximation) and DiscLDA
(i.e., Monte Carlo sampling methods) can also make the performance diffdreaur alterna-
tive implementation using collapsed variational inference (Teh et al., 200éjochéor MedLDA®
(preliminary results in preparation for submission), we were able to achligldly better results.
However, the collapsed variational method is much more expensive. Figialtg MedLDA al-
ready integrates the max-margin principle into its training, our conjecture ighbatombination
of MedLDA® and SVM does not further improve the performance much on this task. \éwde
that the slight differences between MedLDand MedLDA+SVM are due to the tuning of regu-
larization parameters. For ef ciency, we do not change the regularizatiostanC during training
MedLDA*®. The performance of MedLDAwould be improved if we select a go@lin different
iterations because the data representation is changing.

Multi-class Classi cation We perform multi-class classi cation on 20 Newsgroups with all the
20 categories. The data set has a balanced distribution over the catediani¢he test set, which
contains 7505 documents in total, the smallest category has 251 documetite rdest category
has 399 documents. For the training set, which contains 11269 documentsn#lest and the
largest categories contain 376 and 599 documents, respectivelyefditeerthenave baselinghat
predicts the most frequent category for all the test documents has theaalisn accuracy €00532.

We compare MedLDAwith LDA+SVM, multi-sLDA, DiscLDA, and the standard multi-class
SVM built on raw text. We use the SV¥U package with a cost function &q4(y), “1(y6 Yq)
to solve the sub-step of learniggh) and build the SVM classi ers for LDA+SVM. The parameter
" is selected with 5 fold cross-validatidh.The average results as well as standard deviations over

17. The traditional 81 cost does not yield the best results. In most cases, the sel&caed around 16.
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Figure 6: (a) Sensitivity to the cost parametdor the MedLDA’; and (b) the number of support
vectors fom-slack multi-class SVM, LDA+SVM, and-slack MedLDA. For MedLDAS,
we show both the number of support vectors at the nal iteration and thige number
during training.

5 randomly initialized runs are shown in Figure 5(b). For DiscLDA, we usesttime equation as in
Lacoste-Julien et al. (2008) to set the number of topics andgsetl; ;5. We can see that all the
supervised topic models discover more predictive topical represent&tiocisissi cation, and the
discriminative max-margin MedLDAand DiscLDA perform comparably, slightly better than the
standard multi-class SVM (aboutd13 0:003 improvement in accuracy). However, as we have
stated and will show in Section 5.3.2, MedLD# faster in testing than DiscLDA. As we shall see
shortly, MedLDA® needs much fewer support vectors than standard SVM.

Figure 6(a) shows the multi-class classi cation accuracy on the 20 Newpgrdata set for
MedLDAC with 70 topics. We show the results wittmanually set at;4;8;12;, ;32. We can see
that although the default=Q-cost works well for MedLDA, we can get better accuracy if we use
a larger cost for penalizing wrong predictions. The performance is gtatde when is set to be
larger than 8. The reason whyffects the performance is thaas well a<C control: 1) the scale of
the posterior mean di and the Lagrangian multipliegs, whose dot-product regularizes the topic
mixing proportions in Equation (21); and 2) the goodness of t of the MEfQdamargin classi er
on the data (see Joachims et al., 2009, for another practical examplsdisa@ircost, where is
set at 100). For practical reasons, we only try a small subset ofdated values in parameter
search, which can also in uence the difference on performance inr&if(a). Performing very
careful parameter search @nhcould possibly shrink the difference. Finally, for a smalfe.g., 1
for the standard €1-cost), we usually need a lar@ein order to obtain good performance. But our
empirical experience with SVRIU® shows that the multi-class SVM with a largér(and smaller
") is typically more expensive to train than the SVM with a largéand smallelC). That is one
reason why we choose to use a large

Figure 6(b) shows the number of support vectors for MedERDA+SVM, and the multi-class
SVM built on raw text features, which are high-dimensionab(,000 dimension for 20 Newsgroup
data) and sparse. Here we consider the traditioredhck formulation of multi-class SVM anadt
slack MedLDA using the SVM"U® package, where a support vector corresponds to a document-
label pair. For MedLDA and LDA+SVM, we seK = 70. For MedLDA, we report both the number
of support vectors at the nal iteration and the average number ofstigectors over all iterations.
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We can see that both MedLDAnd LDA+SVM generally need much fewer support vectors than the
standard SVM on raw text. The major reason is that both MedLa#d LDA+SVM uses a much
lower dimensional and more compact representation for each documeneoWo, MedLDA
needs (about 4 times) fewer support vectors than LDA+SVM. This cbaltiecause MedLDA
make use of both text contents and the supervising class labels in the traaténgnd its estimated
topics tend to be more discriminative when being used to infer the latent topjzasentations
of documents, that is, using these latent representations by Megltbé documents in different
categories are more likely to be well-separated, and therefore the makirokggsi er is simpler
(i.e., needs fewer support vectors). This observation is consistenivittwe have observed on the
per-class distributions over topics in Figure 3. Finally, we observed tatte82% of the support
vectors in MedLDA are also the support vectors in multi-class SVM on the raw features.

5.2.2 REGRESSION

We rst evaluate MedLDA on the movie review data set used by Blei and McAuliffe (2007), which
contains 5006 documents and comprises 1.6M words, with a 5000-terioutacachosen by tf-idf.
The data set was compiled from the one provided by Pang and Lee (200B)ei and McAuliffe
(2007) did, we take logs of the response values to make them approximateigin We compare
MedLDA" with unsupervised LDA, supervised sLDA, MedLI};}A—a MedLDA regression model
which uses unsupervised LDA as the underlying topic model (Pleasemandix B for details),
and the linear SVR that uses the empirical word frequency as input ésatdor LDA, we use
its low dimensional representation of documents as input features to a lin€aafd¥/denote this
method byLDA+SVR The evaluation criterion is predictive’ RpR?), which is de ned as one minus
the mean squared error divided by the data variance (Blei and McAWidi@7), speci cally,

ORE= 1 &g-1(¥e )7d)2;
é’l(?: 1(ya  ¥)?
whereyy andyy are the true and estimated response values of docuineggpectively; ang is the
mean of true response values on the whole data set. When we repphypiRefault it is computed
on the testing data set. Note that t&ve baselinghat predicts the mean response value for all
documents (i.e.8d; Y4 = y) will have 0 on pR. Any method that have a positive pRerforms
better than the rae baseline.

Figure 7 shows the average results as well as standard deviations amidnly initialized
runs, together with the per-word likelihood. For MedLDA and SVR, we e firecisiore= 1le 3
and selecC via cross-validation during training. We can see that the supervised Dkedind
SLDA can get better results than unsupervised LDA, which ignoresreispd responses during
discovering topical representations, and the linear SVR regression.mBgeising max-margin
learning, MedLDA can get slightly better results than the likelihood-based sLDA, especiallg whe
the number of topics is small (e.g., 15). Indeed, when the number of topics is small, the latent
representation of sLDA alone does not result in a highly separabldegmnolthus the integration
of max-margin training helps in discovering a more discriminative latent reptaSon using the
same number of topics. In fact, the number of support vectors (i.e., dodtsirtieat have at least
one non-zero lagrange multiplier) decreases dramatically-atl5 and stays nearly the same for
T > 15, which with reference to Equation (14) explains why the relative impnave over sLDA
decreased aB increases. This behavior suggests that MedLEén discover more predictive latent
structures fodif cult, non-separable regression problems.
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Figure 7: Predictive R(left) and per-word likelihood (right) of different models on the movie re-
view data set.

For the two variants of MedLDA regression models, we can see an obiwimarevement of
MedLDA" over MedLDA|. This is because for MedLDj the update rule of does not have the
third and fourth terms of Equation (14). Those terms make the max-margin estinaatiolatent
topic discovery attached more tightly.

We also build another real data set of hotel review rafitny randomly crawling hotel reviews
from TripAdvisor® where each review is associated with a global rating score and ve aispieg
scores for the aspeé?s—VaIue Rooms Location CleanlinessandService This data set is very
interesting and can be used for many data mining tasks, for example, exgrihetitextual mentions
of each aspect. Also, the rich features in reviews can be exploited tovdisitderesting latent
structures with a conditional topic model (Zhu and Xing, 2010). In theper@xents, we focus on
predicting the global rating scores for reviews. To avoid too short amkbtay reviews, we only keep
those reviews whose character length is between 1500 and 6000. @wlVispr, the global ratings
rank from 1 to 5. We randomly select 1000 reviews for each rating andatzeset consists of 5000
reviews in total. We uniformly partition it into training and testing sets. By removisadard list
of stopping words and those terms whaose count frequency is less thenbhijld a dictionary with
12000 terms. Similarly, we take logarithm to make the response approximateiahdtigure 8(a)
shows the predictive Fof different methods. Here, we also compare with the hidden topic Markov
model (HTMM) (Gruber et al., 2007), which assumes the words in the santersce have the same
topic assignment. We use HTMM to discover latent representations of dotsiared use SVR to
do regression. On this data set, we see a clear improvement of the sageviad DA compared
to sLDA. The performance of unsupervised LDA (with a combination with FMRenerally very
unstable. The HTMM is more robust but its performance is worse than thfode supervised
topic models. Finally, a linear SVR on empirical word frequency achieveR?aop about 0.56,
comparable to the best performance that can be achieved by MEdLDA

Figure 8(b) shows the number of support vectors for MedLDihe standard SVR built on
empirical word frequency, and the two-stage approach LDA+SVRMertLDA', we report both

18. The data set is availablelstp://www.ml-thu.net/
19. TripAdvisor can be found éttp://www.tripadvisor.com/ .
20. The website is subject to change. Our data set was built in Dece2afér,

~ jun/ReviewData.htm
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Figure 8: (a) Predictive Rof different models on the hotel review data set; and (b) the number of

support vectors for SVR, LDA+SVR, and MedLDAFor MedLDA', we show both the
number of support vectors at the nal iteration and the average numisigrgotraining.

the number of support vectors at the last iteration and the average nafrdugaport vectors during
training. Here, we s = 10 for LDA and MedLDA. Again, we can see that MedLDAeeds
fewer support vectors than SVR and LDA+SVR. In contrast, LDA+SMds about the same
number of support vectors as SVR. This observation suggests thatpibalteepresentations by
the supervised MedLDAare more suitable for learning a simple max-margin predictor, which
consistent with what we have observed in the classi cation case.

5.2.3 WHEN AND WHY SHOULD MEDLDA BE PREFERRED TOSVM? A DISCUSSION AND
SIMULATION STUDY

The above results show that the MedLDA classi cation model works coaigaor slightly better
than the SVM classi ers built on raw input features; and for the two regjom problems, MedLDA
outperforms the support vector regression model (i.e., SVR) on oneefatéhile they are compa-
rable on the other data set. These results raise the question “when shoalibase MedLDA?"
Our answers are as follows.

First of all, MedLDA is a topic model. Besides making prediction on unseen dagmajor
function of MedLDA is that it can discover semantic patterns underlying éexgata, and facil-
itate dimensionality reduction (and compression) of data. In contrast, SVMIsiade more like
black box machines which take raw input features and nd good decisiandaries or regression
curves; but they are incapable of discovering or considering hiddectsres of complex data, and
performing dimensionality reducticit. Our main goal of including SVM/SVR into our compari-
son of predictive accuracy is indeed to demonstrate that dimensionalitgti@tand information
extraction from raw data via MedLDA does not cause serious loss (if)giradictive information,
which is not the case for many alternative probabilistic or non-probabilidiicrimation extractors

21. Some strategies like sparse feature selection can be incorporatale@mSVM more interpretable in the original
feature space. But this is beyond the scope of this paper.
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(e.g., LDA or LSI). As an integration of SVM with LDA, MedLDA performs thopredictive and
exploratory tasks simultaneously. So, the rst selection rulefisve want to disclose some un-
derlying patterns and extract a lower dimensional semantic-presereipigsentation of raw data
besides doing prediction, MedLDA should be preferred to SVM

Second, even if our goal is focusing on prediction performance, Médthould also be consid-
ered as one competitive alternative. As shown in the above experimenssnulation experiments
below, as well as the follow-up works (Yang et al., 2010; Wang and Na@xi,1; Li et al., 2011),
depending on the data and problems, max-margin supervised topic modelstparfarm SVM
models, or they are comparable if no gains on predictive performanabtaimed. There are sev-
eral possible reasons for the comparable (not dramatically superies) ckion performance we
obtained on the 20 Newsgroups data:

(1) The fully factorized mean eld inference method could potentially lead todneate estimates.
We have tried more sophisticated inference methods such as collaps¢idratiaference and
collapsed Gibbs samplirfg,both of which could lead to superior prediction performance (e.g.,
about 4 percent improvement over SVM on multi-class classi cation acgjira

(2) The much lower dimensional topical representations could be too conquespared to the
original high-dimensional inputs. A clever combination (e.g., concatenatiimappropriate
re-scaling of different features) of the discovered latent topicakmemtations and the original
input features could potentially improve the performance, as demonstrat®adnig and Mori
(2011) for image classi cation.

To further substantiate the claimed advantages of MedLDA over SVM foiaetl (i.e., multi-
topical) data such as text and image, we conduct some simulation experimemigiticaly study
when MedLDA can perform well. We generate the observed word cduoms an LDA model

bwn 1 Betd1; 1), wherep means that we need to normallagto be a distribution over the terms in
a given vocabulary. We consider three different settings of binasgctation with a vocabulary of
500 terms. The document lengths for each setting are randomly draw fRwisson distribution,
whose mean parameterlisthat is,

8d; Ny PoissofiL):

(1) Setting 1:We seK = 40. We randomly draw the class label for documfrom a distribution
model

P(Ya = 1jqq) = : whereh, N (0;0:1):

1+exp h>qqg
In other words, the class labels are solely in uenced by the latent topieseptations. There-

fore, the true model that generates the labeled data follows the assumptisbhBA and
MedLDA. We setl = 25;50; 150 300 500.

(2) Setting 2:We setk = 150. We randomly draw the class label for docuntefiom a distribution
model

1
1+ expf (h7qq+ hZwg)g

p(yda = 1jqa) = ; whereh;; N (0,0:1); i= 1;2:

22. Sampling methods for MedLDA can be developed by using Lagramg&thods. But a full discussion on this topic
is beyond the scope.
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In other words, the true model that generates the labeled data doedlowttfe assumptions
of sLDA. The class labels are in uenced by the observed word countfact, due to the law
of conservation of belief (i.e., the total probability mass of a distribution musttewone), the
in uence of g would be generally weaker than thatwin determining the true class labels. We
setL = 50; 100, 150, 200 250.

(3) Setting 3:Similar as in setting 2, but we improve the in uencegbn class labels by using
larger weightdh,. Speci cally, we sample the weights

hy;

;i K N(00:1) andhy; N (0;0:1):

We setl. = 50;100, 150,20G, 250, 300, 350.

In summary, the rst two settings generally represent two extremes whergu@ model matches
the assumptions of MedLDA or SVM, while Setting 3 is somewhat in the middle plateeen
Setting 1 and Setting 2. Since the synthetic words do not have real mednithgs, we focus on
presenting the prediction performance, rather than visualizing the diszbtapic representations.

Figure 9 shows the classi cation accuracy of MedLBAhe SVM classi ers built on word
counts, and the MedLDAmodels using botlg and word counts to learn classi &éfsat each itera-
tion step of solving fog(h). We can see that for Setting 1, where the true model that generates the
data matches the assumptions of MedLDA (and sLDA models too) well, we t@vacsigni cant
improvements compared to the SVM classi ers built on raw input word countalf settings with
various average document lengths. In contrast, for Setting 2, wheteuthenodel largely violates
the assumptions of MedLDA (in fact, it matches the assumptions of SVM welljenerally do not
have much improvements. But still, we can have comparable performanctheFRmiddle ground
in Setting 3, we have mixed results. When the average document length iseiqall 250), which
means the in uence of word counts on class labels is weak, MedldaA improve a lot over SVM.
But when the in uence of word counts gets bigger (elg., 300), using the low dimensional topic
representations tends to be insuf cient to get good performancesiBting to empirical text anal-
ysis, MedLDA will be particularly helpful when analyzing short texts, lsas abstracts, reviews,
users comments, and user status updates, which are nowadays the ddonimarof user texts on
social media.

In all the three settings, we can see that @@aombination of both latent topic representations
and input word counts could improve the performance in some cases|easatit will produce
comparable performance with the better model between Medla SVM. Finally, comparing
the three settings, we can see that for Setting 2, since the true class ladglg tiepend on the
input word counts, increasing the average document lelnggnerally improves the classi cation
performance of all models. In other words, the classi cation problemsrneceasier because of
more discriminant information is provided &sincreases. In contrast, we do not have the similar
observations in the other two settings because the true labels are heawsbidlyrin Setting 1)
determined by, whose dimensionality is xed.

The last reason that we think MedLDA should be considered as an impoadeel development
with one root being from SVM because it presents one of the rst ssfaeattempts, in the partic-
ular context of Bayesian topic models, towards pushing forward the ateifetween max-margin
learning and Bayesian generative modeling. As further demonstrateddarsotork (Yang et al.,

23. We simply concatenate the two types of features without considerirsg e difference.
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Figure 9: Classi cation accuracy of different methods in (a) Setting 1Sgiting 2; and (c) Setting

3.

2010; Wang and Mori, 2011; Li et al., 2011) as well as our recenkwaor regularized Bayesian
inference (Zhu et al., 2011b,a), the max-margin principle can be a fraitfition to “regularize”

the desired posterior distributions of Bayesian models for performing h@teiction in a broad
range of scenarios, such as image annotation, classi cation, multi-tasirigaetc.

5.3 Time Ef ciency

In this section, we report empirical results on time ef ciency in training antingsAll the follow-
ing results are achieved on a standard desktop with a 2.66GHz IntelsporcéVe implement all
the models in C++ language, without any special optimization of the code.

5.3.1 TRAINING TIME

Figure 10 shows the average training time of different models together wittiasth deviations on
both binary and multi-class classi cation tasks with 5 randomly initialized rungeHge do not
compare with DiscLDA because learning the transition matrix is not fully implemeditéccoste-
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Figure 10: Training time (CPU seconds in log-scale) of different modelsre#ipect to the number
of topics for both (Left) binary and (Right) multi-class classi cation.

Julien (2009), but we will compare the testing time with it. From the results, wesearthat for
binary classi cation, MedLDA is more ef cient than multi-class sLDA and is comparable with
LDA+SVM. The slowness of multi-class sLDA is because the normalizatiotoféc the distribu-
tion model ofy strongly couples the topic assignments of different words in the same datume
Therefore, the posterior inference is slower than that of unsuperzBé and MedLDA® which
uses unsupervised LDA as the underlying topic model. For the sLDAssigremodel, it takes even
more training time because of the mismatch between its normal assumption and {Gaumssian
binary response variables, which prolongs the E-step. In contrasil, & does not have such a
normal assumption.

For multi-class classi cation, the training time of MedLDBAs mainly dependent on solving
a multi-class SVM problem. Here, we implemented both 1-slackraathck versions of multi-
class SVM (Joachims et al., 2009) for solving the sub-problem of estimgtimgand Lagrangian
multipliers in MedLDA®. As we can see from Figure 10, the MedLBwith 1-slack SVM as the
sub-solver can be very ef cient, comparable to unsupervised LDAMSYhe MedLDA® with n-
slack SVM solvers is about 3 times slower. Similar to the binary case, for the ales-supervised
sLDA (Wang et al., 2009), because of the normalization factor in the catgmgobability model
(i.e., a softmax function), the posterior inference on different topic assént variables (in the
same document) are strongly correlated. Therefore, the inferendeoigt (R0 times) slower than
that on unsupervised LDA and MedLDBAwhich takes an unsupervised LDA as the underlying
topic model. For regression, the training time of MedL'D& comparable to that of sSLDA, while
MedLDA}, is more ef cient.

We also show the time spent on inference (i.e., E-step) and the ratio it tadethevotal training
time for different models in Figure 11(a). We can clearly see that the difter between 1-slack
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Figure 11: (a) The inference time (CPU seconds in linear scale) and titahty time for learning
different models, as well as the ratio of inference time over total training tine. F
MedLDAC, we consider both the 1-slack aneslack formulations; for LDA+SVM, the
SVM classi er is by default the 1-slack formulation; and (b) Testing time (&Gedonds
in log-scale) of different models with respect to the number of topics for rolatis
classi cation.

MedLDA® andn-slack MedLDA is on the learning of SVMs (i.e., M-step). Both methods have
similar inference time. We can also see that for LDA+SVM and multi-sLDA, maoae 85% of the
training time is spent on inference, which is very expensive for multi-sLiBéte that LDA+SVM
takes a longer inference time than MedLBA his is because we use more data (both training and
testing) to learn unsupervised LDA. The SVM classi ers built on raw impotd count features
are generally much more faster than all the topic models. For instance, itala@at230 seconds

to train a 1-slack multi-class SVM on the 20 Newsgroups training data, ot &80 seconds to
train an-slack multi-class SVM on the same training set; both are faster than the fagiesnodel
1-slack MedLDA. This is reasonable because SVM classi ers do not spend time on irfehin
latent topic representations.

5.3.2 TESTING TIME

Figure 11(b) shows the average testing time with standard deviation on 2€giNawp testing data
with 5 randomly initialized runs. We can see that MedLD#Aulti-class sLDA and unsupervised
LDA are comparable in testing time, faster than that of DiscLDA. This is becallshe three
models of MedLDA, multi-class sLDA and LDA are&lownstreanmodels (See the Introduction
for de nition). In testing, they do exactly the same tasks, that is, to infer vieeadl latent topical
representation and do prediction with a linear model. Therefore, they dmwparable testing
time. However, DiscLDA is ampstreammodel, for which the prediction task is done with multiple
times of doing inference to nd the category-dependent latent topicaesentations. Therefore,
in principle, the testing time of an upstream topic model is apGtimes slower than that of its
downstream counterpart model, whélas the nite set of categories. The results in Figure 11(b)
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show that DiscLDA is roughly about 20 times slower than other downstreatieisicOf course, the
different inference algorithms can also make the testing time different.

6. Conclusions and Discussions

We have presented maximum entropy discrimination LDA (MedLDA), a stpedvtopic model
that uses the discriminative max-margin principle to estimate model paramethrasstapic dis-
tributions underlying a corpus, and infer latent topical vectors of dootsneMedLDA integrates
the max-margin principle into the process of topic learning and inferenceptiimiaing one single
objective function with a set aéxpectedmargin constraints. The objective function is a tradeoff
between the goodness of t of an underlying topic model and the predieticaracy of the resul-
tant topic vectors on a max-margin classi er. We provide empirical evidasogell as theoretical
insights, which appear to demonstrate that this integration could yield prediogcal represen-
tations that are suitable for prediction tasks, such as regression asiceltign. We also present
a general formulation of learning maximum entropy discrimination topic modelghndilows
any form of likelihood based topic models to be discriminatively trained. Althotlhg general
max-margin framework can be approximately solved with different methodspneentrate on de-
veloping ef cient variational methods for MedLDA in this paper. Our emgitiesults on movie
review, hotel review and 20 Newsgroups data sets demonstrate thatMadlan attractive super-
vised topic model, which can achieve state of the art performance for tiggiowery and prediction
accuracy while needs fewer support vectors than competing max-martfioasehat are built on
raw text or the topical representations discovered by unsuperviséd LD

MedLDA represents the rst step towards integrating the max-margin pia@ipo supervised
topic models, and under the general MedTM framework presented in Beteeveral improve-
ments and extensions are in the horizon. Speci cally, due to the naturedfMs joint optimiza-
tion formulation, advances in either max-margin training or better variationatdsfor inference
can be easily incorporated. For instance, the mean eld variational upperd in MedLDA can
be improved by using the tighter collapsed variational bound (Teh et alg)2Bat achieves re-
sults comparable to collapsed Gibbs sampling (Grifths and Steyvers, 20@yeover, as the
experimental results suggest, incorporation of a more expressivelyinddopic model enhances
the overall performance. Therefore, we plan to integrate and use wtlderlying topic models
like the fully generative sLDA model in the classi cation case. Howevenvashave stated, the
challenge in developing fully supervised MedLDA classi cation model lies im liard posterior
inference caused by the normalization factor in the category distributionlneidelly, advance in
max-margin training would also results in more ef cient training.
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Appendix A. Proof of Corollary 4

In this section, we prove the corollary 4.
Proof Since the variational parametdig f ) are xed when solving forg(h), we can ignore the
terms inL PSthat do not depend og(h) and get the function

LESy. KL(a(h)kpo(h)) & Eqllog p(yeiZa; h; )]
d

o

D p—
Eqmlh”EIARTh 2h” & YE[Z] +
d=1

= KL(a(h)kpo(h)+ 5o

wherec is a constant that does not dependyéh).
LetU(x;x )= Cég’= 1(Xa + X4). Supposéaqo(h);Xy; X,) is the optimal solution of P1, then we
have: for any feasiblég(h); x;x ),
bs . bs . .
Ligo(ny + U (XoiXo)  Ligany + UOGX ):
From Corollary 3, we conclude that the optimum predictive parameter digtibis qo(h) =

N (1 o;S), whereS = (| + 1=d’E[A” A]) ! does not depend og(h). Sinceqo(h) is also normal,
for any distributio* gq(h) = N (I ;S), with several steps of algebra it is easy to show that

bs 1. 1 > > o Yd -5 1.1 > D Yd 5 0
Ligny = 51~ 1+ GEIATADL (gl@E[Zd]HC:éI S (ElﬁE[ZdDJr ®

wherec®is another constant that does not dependl on
Thus, we can get: for anf} ;x;Xx ), where

(;x;x)2F(1;xx):yg | TE[Zg] e+xq; Yo+ | E[Zg] e+ xq andx;x  08dg;
we have
Lssu, 1308 VEZdr Ukox) SIS U 17(& KEZ)+ U(kx ),
50 0 0(31@ [Za]) + U (X0 Xo) > (dql@ [Za]) + U(X;X );

which means the mean of the optimum posterior distribution under a Gaussidiéslachieved
by solving a primal problem as stated in the Corollary.
|

24. Although the feasible set gth) in P1 is much richer than the set of normal distributions with the covariamtexm
S, Corollary 3 shows that the solution is a restricted normal distribution. ,Tihssif ces to consider only these
normal distributions in order to learn the mean of the optimum distribution.
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Appendix B. Max-Margin Learning of the Vanilla LDA for Regression

In Section 3.1, we have presented the MedLDA regression model trasupervised sLDA (Blei
and McAuliffe, 2007) to discover latent topic assignmentand document-level topical represen-
tationsq. The same principle can be applied to perform joint maximum likelihood estimatidn an
max-margin training for unsupervised LDA (Blei et al., 2003), which doasdirectly model side
information such as user ratings In this section, we present this MedLDA model, which will be
referred to aQ\/IedLDAE). As in MedLDAC, we assume that the supervised side informayias
given, even though not included in the joint likelihood function de ned inALE?

A nave approach to using unsupervised LDA for supervised predictiors {@s§., regression)
is a two-stage procedure: 1) using unsupervised LDA to discover thd tatgical representations
of documents; and 2) feeding the low-dimensional topical representatitma regression model
(e.g., SVR) for training and testing. This de-coupled approach caritier iub-optimal because the
side information of documents (e.qg., rating scores of movie reviews) is edtingliscovering the
low-dimensional representations and thus can result in a sub-optimakegpation for prediction
tasks. Below, we present MedLDAwhich integrates an unsupervised LDA for discovering topics
with the SVR for regression. The inter-play between topic discovery apérgised prediction will
result in more discriminative latent topical representations, similar as in MA8LD

When the underlying topic model is unsupervised LDA, the likelihoopg(#&/ja;b), the same
as in MedLDA. For regression, we apply tleensensitive support vector regression (SVR) (Smola
and Sclbilkopf, 2003) approach as before. Again, we learn a distribug{ér). The prediction rule
is the same as in Equation (6). The integrated learning problem is

D
P6(MedLDAIrO) : min LY(q;a;b)+ KL(g(h)jjpo(h))+ C & (Xg+ Xq)

a,q(h);a;b;x;x d=1
< ya E[h7Z] e+xqg
8d;st:: . ya+ E[hZg] e+ xy;
) Xd;Xg O

where the KL-divergence is a regularizer that biases the estimagéhgftowards the prior. In
MedLDA", this KL-regularizer is implicitly contained in the variational bouhd® as shown in
Equation (7). The constrained problem is equivalent to the “unconsttaproblem by removing
slack variables:

D J—
min  LY(q;a;b)+ KL(q(h)jipo(h))+ C 4 max0;jys E[h”Zg]j € (22)
gq(h);a;b d=1

Variational Algorithm For MedLDA;, the unconstrained optimization problem (22) can be
similarly solved with a coordinate-descent algorithm as in the case of MetlLBpeci cally, we
assume that(f qq; z¢g) = OF- 1 9(Qajgy) ON- ; A(Zanif 4), Where the variational parametegsnd
f have the same meanings as in Medl'DAhen, we alternately solve for each variable and get a
variational algorithm which is similar to that of MedLDA

25. One could argue that this design is unreasonable becausgamithshould only consider sLDA. But we study tting
the vanilla LDA usingy in an indirect way described below because of the popularity and hidtaripartance of
this scheme in many applied domains.
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Solve for(a;b) and dh): the update rules cd andb are the same as in the MedLDAThe
parameted? is not used here. By using Lagrangian methods, we get that

po(h)

D —
> exp h” & (e Ru)ElZd]

d=1

q(h) =

and the dual problem is the same as D2. Again, we can choose differers {o introduce some
regularization effects. For the standard normal prim¢h) = N (0; 1), the posterior is also a normal:
qth) = N(1;1), wherel = &%_,(fu {y)E[Zd] is the mean. This identity covariance matrix is
much simpler than the covariance mat8xas in MedLDA, which depends on the latent topical
representatiod. Sincel is independent oZ, the prediction model iMedLDA{) is less affected by
the latent topical representations. Together with the simpler update rulen@8pn conclude that
the coupling between the max-margin estimation and the discovery of latentl iqoesentations
in MedLDA, is looser than that ofedLDA. The looser coupling will lead to inferior empirical
performance as we show in Section 5.2.
For the standard normal prior, the dual problem is a QP problem:

1 13 g
max  SkIk3 ed (Ha+ M)+ & Yalka W)
HH d=1 d=1

8d; sit:: pd; Mg 2 [0;C];

Similarly, we can derive its primal form, which is as a standard SVR problem:

D
min ki k3+C & (Xq+ Xq)
1;x;x % d=1

2 yg | E[Zd e+x
st:8d: _ yg+ 1 E[Zy] e+ Xxq
' Xd;Xg O

Now, we can leverage recent developments in support vector regréssy., the public SVM-light
package) to solve either the dual problem or the primal problem.

Solve for qf qq; z4g): We have the same update rule guais in MedLDA. By using the similar
one-step approximation strategy, we have:

fantt €xp Ell0gGuig]+ Iogp(Warib) + "\ (B f) (23)
Again, we can see that how the max-margin constraints in P6 regularizeotterjpire of discovering
latent topical representations through the last term in Equation (23).i &disc for a document
d, which lies around the decision boundary, that is, a support vectoer gihor i, is non-zero,
and the last term biasds,, towards a distribution that favors a more accurate prediction on the
document. However, compared to Equation (14), we can see that Eq(28prs simpler and
does not have the complex third and fourth terms of Equation (14). This sityiaggygests that
the latent topical representation is less affected by the max-margin estimatipth@.@rediction
model's parameters).
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