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Abstract

Many complex disease syndromes, such as asthma, consist of a large number of highly related, rather than independent,
clinical or molecular phenotypes. This raises a new technical challenge in identifying genetic variations associated
simultaneously with correlated traits. In this study, we propose a new statistical framework called graph-guided fused lasso
(GFlasso) to directly and effectively incorporate the correlation structure of multiple quantitative traits such as clinical metrics
and gene expressions in association analysis. Our approach represents correlation information explicitly among the
quantitative traits as a quantitative trait network (QTN) and then leverages this network to encode structured regularization
functions in a multivariate regression model over the genotypes and traits. The result is that the genetic markers that jointly
influence subgroups of highly correlated traits can be detected jointly with high sensitivity and specificity. While most of the
traditional methods examined each phenotype independently and combined the results afterwards, our approach analyzes all
of the traits jointly in a single statistical framework. This allows our method to borrow information across correlated
phenotypes to discover the genetic markers that perturb a subset of the correlated traits synergistically. Using simulated
datasets based on the HapMap consortium and an asthma dataset, we compared the performance of our method with other
methods based on single-marker analysis and regression-based methods that do not use any of the relational information in
the traits. We found that our method showed an increased power in detecting causal variants affecting correlated traits. Our
results showed that, when correlation patterns among traits in a QTN are considered explicitly and directly during a structured
multivariate genome association analysis using our proposed methods, the power of detecting true causal SNPs with possibly
pleiotropic effects increased significantly without compromising performance on non-pleiotropic SNPs.
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Introduction

Many complex disease syndromes, such as diabetes, asthma,

and cancer, consist of a large number of highly related, rather than

independent, clinical phenotypes. Differences between these

syndromes involve a complex interplay of a large number of

genomic variations that perturb the function of disease-related

genes in the context of a regulatory network, rather than each gene

individually [1,2]. Thus, unraveling the causal genetic variations

and understanding the mechanisms of consequent cell and tissue

transformation requires an analysis that jointly considers the

epistatic, pleiotropic, and plastic interactions of elements and

modules within and between the genome, transcriptome, and

phenome. Until now, most popular approaches for genetic and

molecular analysis of diseases were mainly based on classical

statistical techniques, such as the linkage analysis of selected

markers [3,4]; quantitative trait locus (QTL) mapping [5,6]

conducted over one phenotype and one marker genotype at a

time, which are then corrected for multiple hypothesis testing

[7,8]; and primitive data mining methods, such as the clustering of

gene expressions and the high-level descriptive analysis of

molecular networks. Such approaches yield crude, usually

qualitative characterizations of the study subjects.

Numerous recent studies have shown that it is often more

informative to map intermediate steps in disease processes, such as

various disease-related clinical traits or expression levels of genes of

interest, rather than merely the binary case/control disease status,

to genetic marker loci [2,9–13]. These molecular and clinical traits

provide detailed insight to the relationship between genome

variations and disease phenotypes because they are more directly

influenced by the genotype variations. Furthermore, since many of

these intermediate traits in a complex multivariate phenotype are

highly correlated, combining information across multiple such

traits during the analysis of genome-phenome association can offer

a deeper insight on the possibly multi-factorial functional roles that

the associated genotype variations may play to give rise to the

disease under study. At the same time, they can provide a greater

power for detecting weak association signals that might have been

missed if each trait was analyzed separately.

In several recent attempts on expression quantitative trait locus

(eQTL) mapping, a significant focus has been placed on

identifying modules of co-expressed genes and the genotype

markers that perturb the whole module rather than a single gene.

For example, a genotype variation in a putative transcription

factor is likely to affect the expression levels of all of the genes

regulated by this common transcription factor. Under this
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scenario, once a group of genes are mapped to a common locus in

the genome, it is possible to examine whether the locus harbors a

transcription factor that targets the group of genes jointly in order

to understand the functional relationship between the genotype

marker and the gene module (e.g., [11]). Another example, which

will be explored in this paper, involves the study of complex

heterogeneous diseases such as asthma that cannot be character-

ized by a single phenotype, but are influenced by multiple factors.

In Figure 1, the correlation structure of 53 clinical traits in an

asthma dataset collected as a part of the Severe Asthma Research

Program (SARP) [14] is represented as a quantitative trait network

(QTN). From a visual inspection of this network, it is apparent that

it contains several groups of inter-correlated traits that are

connected with weighted edges among them. Further investigation

reveals that each subnetwork in this QTN corresponds to different

clinical aspects of asthma, such as quality of life (the nodes for

QLEnvironment, QLSymptom, QLEmotion, and QLActivity),

asthma symptoms (the nodes for Wheezy, Sputum, ChestTight),

and lung physiology (the nodes for BaseFEV1, PreFEFPred,

PostbroPred, PredrugFEV1P, MaxFEV1P, etc.). It is natural for

one to suspect that such highly correlated traits in a subnetwork

may share some common genetic causes, and that analyzing a

group of traits in each subnetwork jointly rather than each trait

independently may help to better uncover such causes.

Recent advances in high-throughput sequencing and molecular

profiling technologies have made it both affordable and efficient to

observe DNA sequence variations over millions of genomic loci, to

measure the abundance of transcripts of virtually all known coding

sequences, and to measure a wide range of clinical traits in various

disease populations [5,6,15,16]. As more phenotype data are

available at a phenome scale, one immediate methodological

challenge arising in the analysis is how to detect joint associations

between a polymorphic marker to a phenome of multiple

correlated traits. Indeed, there has been a lack of statistical tools

for a joint analysis of multivariate traits, related via a QTN, in a

principled manner. In QTL mapping studies with pedigree data, a

principal component analysis (PCA) has been applied to extract

the components that explain the majority of the variation among

traits, and a single-trait association analysis has been performed on

each of the transformed trait separately [17,18]. However, this

approach involves only an indirect form of structural information

present in the traits, and has a limitation in that it is not obvious

how to interpret the derived phenotypes. In several previous

studies that incorporated a gene co-regulation network in a

genome-wide scan for associations [2,10,11], a heuristic procedure

was employed that combines results from two separate analyses,

one being traditional single-SNP/single-trait association tests and

the other being an ad hoc cluster analysis for finding gene modules

from the co-regulation network. Subsequently, each cluster would

undergo an examination to determine whether it contains a

significantly large fraction of genes that are mapped to a common

locus in the genome with a potential pleiotropic effect. This

primitive approach is essentially a multitude of single-marker/

single-trait analyses which involved no direct integration of

information across traits within a QTN during the association

tests themselves, since the clustering information was used only in

the post-processing step.

In a different approach to eQTL mapping, a module network

[19], which is a statistical model developed for uncovering

regulatory modules from gene expression data, was extended to

incorporate genotype information such that the expression levels of

genes regulated by the same regulator are explained by the

variations in both the expression levels of regulators and the

genotypes of markers in question [9,20]. This method estimated

modules and associations jointly by iterating between learning gene

modules through clustering and learning associations (i.e., which

genes and markers regulate the module). The expression levels of

genes in each module were summarized as an average of the

members within the module, and then this ‘‘average phenotype’’ was

mapped to genotypes and expression levels of other genes. However,

using an averaged value over traits in a module can lead to a

significant loss of information. For example, two genes in the same

module might be negatively correlated in their responses to the

common regulators, and an average of the two genes would conceal

their individual associations to the common regulators. Thus, this

method is not able to capture detailed relationships among multiple

correlated traits such as the asthma QTN in Figure 1.

We believe that explicitly incorporating the molecular and/or

clinical phenotype network as a trait correlation structure while

searching for genetic associations can significantly increase the

power of detecting pleiotropic effects. In this article, we present a

new statistical approach, called graph-guided fused lasso (GFlasso),

that can effectively address the general problem of association

mapping of multivariate traits related as a quantitative trait

network. Instead of using a two-stage method that performs single-

trait analyses and combines the results afterwards in light of

clusters of traits, our method directly infers markers with a

pleiotropic effect by combining information across multiple traits

in a single statistical framework, and does not require subnetworks

or trait clusters to be extracted a priori or at any point of running

the algorithm. The proposed GFlasso approach represents the

correlation pattern in multiple traits explicitly as a QTN, and

searches for genotype markers that are significantly and jointly

associated with multiple highly correlated traits that often appear

as a densely connected subnetwork within the whole network.

Indeed, the extent of the ‘‘jointness’’ in a marker-to-multitrait

association is automatically determined by the connectivities

among traits in the QTN, and is subject to the modulation of

the strengths of the trait correlations. Thus, the clustering

information is just one form of relationship implicitly captured

in the network, as the QTN is strictly richer than a trait-cluster. In

addition, a QTN may carry other relational information such as

Author Summary

An association study examines a phenotype against
genotypic variations over a large set of individuals in
order to find the genetic variant that gives rise to the
variation in the phenotype. Many complex disease
syndromes consist of a large number of highly related
clinical phenotypes, and the patient cohorts are routinely
surveyed with a large number of traits, such as hundreds
of clinical phenotypes and genome-wide profiling of
thousands of gene expressions, many of which are
correlated. However, most of the conventional approaches
for association mapping or eQTL analysis consider a single
phenotype at a time instead of taking advantage of the
relatedness of traits by analyzing them jointly. Assuming
that a group of tightly correlated traits may share a
common genetic basis, in this paper, we present a new
framework for association analysis that searches for
genetic variations influencing a group of correlated traits.
We explicitly represent the correlation information in
multiple quantitative traits as a quantitative trait network
and directly incorporate this network information to scan
the genome for association. Our results on simulated and
asthma data show that our approach has a significant
advantage in detecting associations when a genetic
marker perturbs synergistically a group of traits.

Association Analysis of Quantitative Trait Network
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weak correlations, heterogeneous (e.g., positive or negative)

correlations, and pathways, etc. For example, the QTN of

asthma-related traits in Figure 1 contains a large subgraph on

the left which again contains two groups of densely connected

traits. This hierarchical grouping information will be lost if we

simply apply a clustering algorithm.

Our proposed approach is based on a regularized multivariate

regression formalism, treating genotype markers as inputs and

traits as outputs. To ensure interpretable and consistent recovery

of the usually ‘‘sparse’’ causal (or ‘‘truly’’ relevant) variations

among a large number of candidate polymorphic loci, we use a

linear regression formalism with an L1 penalty, commonly known

as lasso. Lasso achieves ‘‘sparsistancy’’ in the estimated model by

setting the regression coefficients for irrelevant markers to exactly

zero [21,22]. As a brief digression for clarity, sparsistancy refers to

an asymptotic property in high-dimensional statistical inference

Figure 1. An illustration of association analysis using the QTN for asthma dataset. Nodes in the QTN represent clinical traits related to
asthma. Each pair of nodes is connected with an edge if the corresponding two traits are highly correlated. The thicknesses of edges indicate the
strength of correlation. We are interested in identifying SNPs that are associated with a subnetwork of clinical traits.
doi:10.1371/journal.pgen.1000587.g001

Association Analysis of Quantitative Trait Network
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that for an estimator of a p-dimensional vector ~hh from n
independent and identically-distributed samples, where p&n, the

probability of recovering the true non-zero elements

S~fi : hi=0g in the estimator approaches one in the limit, if

the true non-zero elements are sparse in the sense that jSjƒn%p
[22]. This property of lasso makes it a natural approach for

genome-wide association analysis, where the (sparse) set of markers

having non-zero regression coefficients are interpreted as the

markers truly associated with the phenotype. However, when

applied to an association mapping with multivariate traits, lasso is

equivalent to a single-trait analysis that needs to be repeated over

every single trait [23]. In other words, for a collection of possibly

related traits, each trait would be treated as independent of all of

the other traits, and regressed on a common set of marker

genotypes via its own lasso (Figure 2A), ignoring the possible

coupling among traits. Our innovation in GFlasso that enables a

departure from the baseline lasso for a single trait is that, in

addition to the lasso penalty, we employ a ‘‘fusion penalty’’ that

fuses regression coefficients across correlated phenotypes, using

either unweighted or weighted connectivity among individual

traits in the QTN as a guide. This additional penalty will introduce

soft constraints on the regression coefficients from the same

genomic locus to different traits connected in the QTN,

encouraging sharing of common predictors (i.e., associated

markers) among coupled responses (i.e., traits). The two different

choices of the fusion scheme lead to two variants of GFlasso: graph-

constrained fused lasso (GcFlasso) based on the constraints induced

only by the QTN topology (Figure 2B), and graph-weighted fused lasso

(GwFlasso) based on constraints with a flexible range of stringency

determined by the edge weights in the QTN (Figure 2C). In this

article, we are mainly concerned with continuous-valued traits, but

the method can be extended to include a logistic regression model

for discrete-valued traits.

The problem of estimating the regression coefficients in GFlasso

involves solving a convex program, in which a global optimum

solution can be efficiently obtained by exploring the large body of

existing work on fast algorithms for convex optimization. In this

article, we develop a fast coordinate-descent algorithm to estimate

the regression coefficients under GFlasso, from which markers

relevant to the (possibly multiple) traits in questions can be identified

from the non-zero elements in the estimated regression coefficients.

The results on two datasets, one simulated from HapMap SNP

markers and the other collected from the SARP asthma patients,

show that our method has a significantly greater power with fewer

false positives in detecting pleiotropic effects of markers than other

methods that do not exploit the correlation structure in traits.

Methods

To capture correlated genome associations to a QTN, we

employ a multivariate linear regression model as the basic model

for trait responses given inputs of genome variations such as SNPs,

with the addition of a sparsity-biasing regularizer to encourage

selection of truly relevant SNPs in the presence of many irrelevant

ones. Then, we introduce an additional regularizer of fusion

penalty to encourage the sharing of association patterns from a

common SNP to multiple inter-related traits.

There is a large literature on multivariate linear regression in

statistics [24], and this approach has been previously applied to

association analysis [23,25]. However, earlier attempts have been

solely focused on uncorrelated trait analysis. To establish a natural

connection between our proposed methods and these earlier works,

and to layout the necessary notations in our formulation, we start our

presentation with an introduction to the standard regularized

multivariate regression, which treats each trait as independent of the

other traits. Then, we extend this formulation to exploit the correlation

structure in multiple quantitative traits represented as a QTN.

Lasso Regression for Multiple Independent Traits
In a standard regression approach for a single-trait association

analysis, we assume a linear relationship between the covariates

(SNPs) and each response (trait) parameterized by a set of regression

coefficients, and estimate the parameters by optimizing a loss

function defined on SNP-trait samples given the parameters. Based

on the magnitudes of estimated regression coefficients, we draw

conclusions on which SNPs are most significantly associated with the

given trait. When data are available for multiple traits, we can apply

this single-trait approach to each trait separately as we detail below.

Let X be an N|J design matrix of genotypes for N individuals

and J SNPs, where each element xij of X is assigned 0, 1, or 2

according to the number of minor alleles at the j-th locus of the

i-th individual. Let Y denote an N|K matrix of K quantitative-

Figure 2. Illustrations for association analysis with multiple quantitative traits using various regression methods. (A) In lasso, each
phenotype represented as a circle is independently mapped to SNPs for association. (B) In graph-constrained fused lasso (GcFlasso), we consider a
QTN to search for an association between a SNP and a subnetwork of traits. (C) In graph-weighted fused lasso (GwFlasso), we consider a QTN with
edge weights.
doi:10.1371/journal.pgen.1000587.g002
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trait measurements over the same set of individuals. We use yk to

denote the k-th column (i.e., the k-th trait) of Y. A conventional

single-trait association via linear regression model can be applied

to this multiple-trait setting by fitting the model to X and each of

the K traits yk
0s separately:

yk~Xbkzek, k~1, . . . ,K, ð1Þ

where bk:½b1k, . . . ,bJk�T is a column vector of regression

coefficients for the k-th trait that can be used in a statistical test

to detect SNP markers with a significant association, and ek is a

column vector of N independent error terms with mean 0 and a

constant variance. We center each column of X and Y such thatX
i
yik~0 and

X
i
xij~0, and consider the model in Eqn 1

without an intercept. Then, an estimate of B~fb1, . . . ,bKg can

be obtained by minimizing the residual sum of squares:

B̂B~argmin
X

k

(yk{Xbk)T :(yk{Xbk): ð2Þ

The set of SNPs associated with the k-th trait can be uncovered

from the non-zero elements of the estimated coefficient vector bk,

i.e., Sk:fj : b̂bjk=0g.
In a typical genome-wide association mapping, one examines a

large number of marker loci with the goal of identifying only a

small number of markers associated with the given phenotype. A

naive application of the method in Eqn 2 to association mapping

with large J can cause several problems such as an unstable

estimate of regression coefficients and a poor interpretability of Sk

due to many irrelevant markers with non-zero regression

coefficients. In order to handle the situation with large J, sparse

regression methods such as forward stepwise selection [26], ridge

regression [25,27], and lasso [21] have been proposed. The main

idea behind these methods is to select a relatively small subset of

markers (or covariates) as associated with the trait, and set the

regression coefficients for the rest of the markers to zero. Forward

stepwise selection method iteratively selects one relevant marker at

a time while trying to improve the model fit based on Eqn 2.

However, it may not produce an optimal solution because of the

greedy nature of the algorithm. A different approach based on

regularization performs the selection in a continuous space by

penalizing the residual sum of squares in Eqn 2 with an Lq norm

(qw0) of bk
0s and shrinking the regression coefficients toward

zero. For example, ridge regression is one such method that uses

an L2 norm. However, it only shrinks the regression coefficients

for irrelevant markers toward zero, and does not set them exactly

to zero. We use lasso that employs an L1 norm as a penalty

because it has the property of setting the parameters for irrelevant

markers exactly to zero. The lasso estimate of the regression

coefficients can be obtained by solving the following

L1-regularized linear regression:

B̂Blasso~argmin
X

k

(yk{Xbk)T :(yk{Xbk)zl
X

k,j

jbjkj; ð3Þ

where l is a regularization parameter that controls the amount of

sparsity in the estimated regression coefficients. Setting l to a large

value increases the amount of penalization, setting more regression

coefficients to zero. Several efficient algorithms are available for

solving the optimization problem defined by Eqn 3 [21,28].

The lasso for multiple-trait association mapping defined in Eqn

3 is equivalent to solving a set of K independent regressions for

each trait with its own L1 penalty. In other words, it does not

provide any mechanism to combine information across multiple

traits such that the estimates B̂Blasso reflect the potential relatedness

in the regression coefficients for those correlated traits in the QTN

that can be potentially influenced by common SNPs. Below, we

extend the standard lasso and propose new penalized regression

methods for detecting markers with pleiotropic effect on correlated

quantitative traits.

Graph-Guided Fused Lasso for Multiple Correlated Traits
In order to estimate the association strengths jointly for multiple

correlated traits while maintaining sparsity, we introduce another

penalty term called graph-guided fusion penalty into the lasso

framework. This novel penalty makes use of the complex

correlation pattern among the traits represented as a QTN, and

encourages the traits which appear highly correlated in the QTN

to be influenced by a common set of genetic markers. Thus, the

GFlasso estimate of the regression coefficients reveals joint

associations of each SNP with the correlated traits in the entire

subnetwork as well as associations with each individual trait.

We assume that a QTN, denoted by G, with a set of nodes V
and a set of edges E is available from a pre-processing step. Each

edge (m,l)[E in QTN G is associated with a weight that

corresponds to some measures of strength of the correlation

between the two nodes connected by the edge. In this article, we

adopt a simple and commonly-used approach for inferring a QTN

from data, where we first compute pairwise Pearson correlation

coefficients for all pairs of phenotypes using yk
0s, and then connect

two nodes with an edge if their correlation coefficient is above a

given threshold r. The weight of each edge (m,l)[E is set to the

absolute value of the correlation coefficient, jrml j. This thresholded

correlation graph is also known as a relevance network, and has been

widely used as a representation of gene interaction networks

[29,30]. Other variations of the standard relevance network have

been suggested [31], and any of these QTNs as well as various

other methods for learning a QTN can also be used within our

proposed regression methods. The inference of a QTN and the

definition of a node-correlation score are left as a user-specified

option, and therefore, are not the main focus in this paper.

Below, we first introduce GcFlasso that makes use of only the

information of graph topology, and then, further extend this

method to GwFlasso to take into account the full information in

the QTN including edge weights.

Model I: GcFlasso
Given a QTN, it is reasonable to assume that if two traits are

highly correlated and connected with an edge in the QTN, their

variations across individuals are more likely to be explained by

genetic variations at the same loci. In GcFlasso, this bias is

encoded as an additional penalty term that encourages a fusion of

two regression coefficients bjm and bjl for each SNP marker j if

traits m and l are connected with an edge in the QTN, as follows:

B̂BGC~argmin
X

k

(yk{Xbk)T :(yk{Xbk)

zl
X

k

X

j

jbjkjzc
X

(m,l)[E

X

j

jbjm{sign(rml)bjl j,
ð4Þ

where l and c denote the regularization parameters that determine

the amount of penalization from sparsity and fusion, respectively.

The last term in Eqn 4 is called a fusion penalty [32], also known as

a total variation cost in other contexts, and encourages (but does not

strictly enforce) bjm and sign(rml)bjl to take the same value by

Association Analysis of Quantitative Trait Network
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shrinking the difference between them toward zero. As a result, the

fusion penalty tends to flatten the values of regression coefficients for

each marker across multiple highly correlated phenotypes, so that

the strength of influence of each marker becomes similar across

those traits. We assume that if two traits m and l connected with an

edge in G are negatively correlated with rmlv0, the effect of each

marker on those traits takes an opposite direction, and we fuse bjm

and ({bjl), or equivalently, bjm and sign(rml)bjl . A larger value for

c leads to a greater fusion effect, or greater sparsity in

jbjm{sign(rml)bjl j0s.

The idea of using a fusion penalty has been first proposed in the

classical regression problem for a univariate response (i.e., single

output) and high-dimensional covariates to fuse the regression

coefficients of two adjacent covariates when the covariates are

assumed to be ordered such as in time [32]. This corresponds to

coupling pairs of elements in the adjacent rows of the same column

in the J|K coefficient matrix B in Eqn 4. In GcFlasso, we

employ a similar strategy in a multiple-output regression in order

to identify pleiotropic effect of markers. Now, we let the QTN

determine which pairs of regression coefficients should be fused,

and for each edge, fuse every such coupled coefficient pair that

corresponds to the elements of the corresponding two columns in

the same row of matrix B in Eqn 4. It is possible to show the

asymptotic properties of estimators of the GFlasso methods as

N?? analogous to the ones previously shown for lasso and fused

lasso [32,33]. Recall that in genetic association mapping, our main

goal is to recover the set of SNPs that are truly relevant to the traits

in question, rather than the strengths of the associations captured

by the magnitudes of elements in B̂B. Thus, for the k-th trait, the set

of associated SNPs can be recovered from B̂B as Sk:fj : b̂bjk=0g.
When applied locally to a pair of regression coefficients for each

edge (m,l)[E in the QTN, the fusion penalty can combine

information across the two correlated traits for the given edge to

potentially increase power for detecting true associations while

reducing false positives. For example, if two traits connected by an

edge in the QTN are only weakly affected by a common SNP, the

fusion penalty for the corresponding edge can combine the two weak

signals, and detect the associations that might have been missed

under a single-trait analysis. Similarly, the information of a SNP

being irrelevant is combined across two correlated traits connected

with an edge, and both of the two regression coefficients for the

irrelevant SNP are fused to zero, resulting in fewer false positives.

When this edge-level fusion penalty is applied to all of the edges in

the entire QTN as in the graph-guided fusion penalty, the overall

effect is that GcFlasso discovers associations between a SNP and a

phenome as well as associations between a SNP and a single

phenotype. This is because for each edge in the QTN, the fusion

effect propagates through the neighboring edges, fusing the regression

coefficients for each pair of traits connected by an edge, where the

amount of such propagation is determined by the level of local edge

connectivities. For example, within the subnetwork of densely

connected traits that form a phenome, the fusion is effectively

applied to all of its member traits, leading to an association with the

phenome. On the other hand, if the edge connections are sparse

within a subset of nodes in the QTN because of weak correlations

among them, there will be little propagation of the fusion effect

through the edges in the subgroup. As we demonstrate in the

experiments, in the GFlasso estimate of B, the set of non-zero

regression coefficients tends to show a block structure with the same

or similar values across correlated traits (or a phenome) for each

genotype marker. Unlike other previous approaches for detecting the

pleiotropic effect, which usually first apply some clustering algorithms

to learn subgroups of traits and then search for genetic variations that

perturb each subgroup, GcFlasso uses the full information on the

correlation structure in the QTN, where the subgroup information is

embedded implicitly within the QTN as densely connected

subgraphs. Thus, GcFlasso incorporates the subgrouping informa-

tion from the QTN in a more flexible manner compared to previous

approaches based on a clustering algorithm.

Although, in principle, the graph-guided fusion penalty has a

smoothing effect on the rows of B̂B, and encourages similar

magnitudes of the association strengths from a given SNP to traits

within a densely connected subgraph, the application of GcFlasso
and other GFlasso methods described in the sequel does not strictly

require the association strengths of each SNP to be identical across

all correlated traits in the observed data. We emphasize that the

GcFlasso penalty introduces a bias favoring closeness in the

magnitudes of the regression coefficients for correlated traits rather

than enforcing a hard constraint that the fused regression

coefficients must have the same value. In a high-dimensional

problem with many irrelevant SNPs, the benefit of this bias is often

greater than the potential disadvantage of obtaining biased (or

fused) results, if the appropriate amount of bias is introduced as

determined by the regularization parameters. Just as lasso achieves a

sparsity bias of the regression coefficients through the L1 penalty,

the fusion penalty plays the role of achieving another type of bias,

the sparsity in the differences of regression coefficients, by combining

information among multiple correlated traits according to the

topology of the QTN. As we demonstrate in our simulation study, in

a typical association study that involves many irrelevant SNPs, this

bias towards sparsity in the difference of regression coefficients for

neighboring traits helps increase power while reducing false

positives, since the information of a SNP being relevant or irrelevant

is shared across traits. A balance among the three terms in Eqn 4

that jointly define the objective function, the regression error, the

sparsity penalty, and the fusion penalty, will be reached if the

optimal regularization parameters l and c are used when estimating

B̂B. As we describe in the next section, such regularization

parameters can be chosen automatically through cross-validation.

Model II: GwFlasso
Now, we describe an enhanced version of GcFlasso, the

GwFlasso, which exploits not only the graph topology of a QTN,

but also the edge weights thereof. The GwFlasso method weights

each term in the fusion penalty in Eqn 4 by the amount of correlation

between the two traits being fused, so that the amount of correlation

controls the amount of fusion for each edge. More generally,

GwFlasso weights each term in the fusion penalty with a

monotonically increasing function of the absolute values of correla-

tions, and finds an estimate of the regression coefficients as follows:

B̂BGW~argmin
X

k

(yk{Xbk)T :(yk{Xbk)

zl
X

k

X

j

jbjkjzc
X

(m,l)[E

f (rml)
X

j

jbjm{sign(rml)bjl j,
ð5Þ

from which the set of QTLs Sk,Vk can be uncovered. If the two traits

m and l are highly correlated in the QTN G with a relatively large

edge weight, the fusion effect over the two traits will intensify, and as a

result the difference between the two corresponding regression

coefficients bjm and bjl will be penalized more than those for other

pairs of traits with weaker correlation. In this article, we consider

f1(r)~jrj for G1
wFlasso and f2(r)~r2 for G2

wFlasso. We note that

the GcFlasso is a special case of the GwFlasso with f (r)~1.

Compared to GcFlasso, GwFlasso is significantly more flexible

due to its usage of the edge weights to incorporate the strength of

correlation. For example, when two groups of highly correlated
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traits show a relatively weaker correlation across the two

subnetworks, GwFlasso can handle the hierarchical subgroup

structure and adjust the amount of fusion accordingly by weighting

each fusion term. In addition, when the association strength of a

SNP with pleiotropic effect varies over traits in a subnetwork,

GwFlasso can use different levels of correlations for different pairs

of traits to adjust the amount of fusion in GwFlasso. In this case,

GwFlasso tends to identify multiple blocks of fused regression

coefficients within the subnetwork, instead of a single block.

The Optimization Algorithm
The optimization problems in Eqn 4 and Eqn 5 are convex, and

can be formulated as a quadratic programming problem using the

similar approach for solving the fused lasso problem [32].

Although there are many publicly available software packages

that efficiently solve such quadratic programming problems, these

approaches do not scale in terms of computation time to a large

problem involving hundreds or thousands of traits as is the case in

a typical multiple-trait association study [34]. Since the main

difficulty of directly optimizing Eqn 4 and Eqn 5 arises from the

non-smooth function of the L1 norm, we transform this problem to

an equivalent form that involves only smooth functions [35,36],

and use a fast coordinate-descent algorithm to find the estimates of

regression coefficients.

In this section, we describe a procedure for obtaining estimates

of the regression coefficients in GwFlasso. Since GcFlasso is a

special case of GwFlasso with f (r)~1, the same procedure can be

applied to GcFlasso in a straight-forward manner. It can be

shown that solving the optimization problem in Eqn 5 is

equivalent to solving the following problem with a smooth

function of L2-norm [35,36]:

GwFlasso : min
b k , djk , djml

X

k

(yk{Xbk)T :(yk{Xbk)

zl
X

j,k

(bjk)2

djk

zc
X

(m,l)[E

f (rml)
2
X

j

(bjm{sign(rml)bjl)
2

djml

ð6Þ

subject to :
X

j,k

djk~1,
X

(m,l)[E

X

j

djml~1,

djk§0 for all j, k,

djml§0 for all j, (m,l)[E,

where djk
0s and djml

0s are additional variables that we need to

estimate. We solve the above problem using a coordinate-descent

approach that iteratively updates variables of interest, bk
0s, and (djk

0s,

djml
0s), until there is little improvement in the value of the objective

function. Using this approach, we first fix values of djk
0s and djml

0s,

and find the update equation for bjk
0s by differentiating the objective

function in Eqn 6 with respect to each bjk and setting it to 0. The

update formula for each bjk is given as:

bjk~f
X

i

xij(yik{
X

j’=j

xij’bj’k)

zc(
X

(k,l)[E

f (rkl)
2sign(rkl)bjl

djkl

z
X

(m,k)[E

f (rmk)2sign(rmk)bjm

djmk

)g

=f
X

i

x2
ijz

l

djk

zc
X

(k,l)[E

f (rkl)
2

djkl

zc
X

(m,k)[E

f (rmk)2

djmk

g:

Then, we fix bjk
0s, and optimize Eqn 6 over djk

0s and djml
0s using

the following update equations:

djk~
jbjkjP
j’,a jbj’aj

,

djml~
f (rml)jbjm{sign(rml)bjl jP

(a,b)[E

P
j’

f (rab)jbj’a{sign(rab)bj’bj
:

This coordinate-descent procedure finds the optimal bk
0s for fixed

regularization parameters, l and c. The regularization parameters

l and c can be determined automatically by a cross-validation or

by using a validation set, as was suggested for fused lasso [32]. We

divide the dataset into two groups, a training set and a validation

set, and estimate the regression coefficients using the training set

by running the coordinate-descent procedure on a grid of the

regularization parameters l and c, and select the l and c that give

the regression coefficients with the lowest squared error on the

validation set. Given the regularization parameters that we chose

in this manner, we use the combined dataset of both the training

and validation sets in order to obtain the final estimate of the

regression coefficients.

The coordinate-descent algorithm for GwFlasso runs reason-

ably fast for fixed l and c, but for a large problem, this type of grid

search can be time-consuming. In order to improve the efficiency

in computation time, we take a gradient-descent approach that

iteratively updates l and c until we reach convergence with little

additional improvement in the cross-validation error C(l,c) as we

describe below. Given the values of the regularization parameters

at the t-th iteration (l(t),c(t)), we obtain (l(tz1),c(tz1)) as follows:

(l(tz1),c(tz1))/(l(t),c(t)){g+C(l(t),c(t)),

where the gradient +C(l(t),c(t)) is approximated by a finite

difference vector

+C(l(t),c(t))~(
C(l(t)zh,c(t)){C(l(t),c(t))

h
,
C(l(t),c(t)zh){C(l(t),c(t))

h
):

The term C(l,c) in the above equation can be evaluated by solving

Eqn 6 with the given l and c.

We determine the initial values l(0) and c(0) for the gradient

descent as follows. We first search for l(0) that produces the

minimum cross-validation error by solving lasso with c~0. Then,

we fix l at l(0), and perform another one-dimensional search in

the direction of c, starting from 0 to find the optimal c(0) for

GwFlasso along this path. In our experiments, we found that the

initial values obtained by this procedure was sufficiently close to

the global optimum, and that it converged to the optimum within

a relatively small number of iterations. Figure 3 shows a typical

example of cross-validation errors over the grid of (l,c) from

GwFlasso. In our experiments, we found that our gradient-

descent type of method converged roughly to the same values for

the l and c as were selected by the grid search method.

Results

Simulation Study
We performed a simulation study to evaluate the power of the

proposed GFlasso methods, and compared the results with those
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from single-marker/single-trait regression analyses as well as other

multivariate regression methods.

We simulated genotype data of 50 SNPs for 250 individuals

based on the HapMap data [15] in the region of 8.79–9.20 M in

chromosome 7. The first 60 individuals came from the parents of

the HapMap CEU panel. We generated genotypes for additional

190 individuals by randomly mating the original 60 individuals

from the CEU panel. Since our primary goal was to evaluate the

advantage of exploiting correlation among multiple traits by using

GFlasso, we sampled 50 SNPs randomly from the 697 SNPs in the

region in order to reduce the correlation among SNPs from the

linkage disequilibrium (LD). We included only those SNPs with

minor allele frequencies greater than 0.1.

Given the simulated genotype, we set the number of phenotypes

to 10, and simulated the matrix of true regression coefficients by

first choosing SNP-trait pairs with true associations and assigning

values for the strengths of associations for the selected pairs as we

describe below. We assumed three groups of correlated traits of

sizes 3, 3, and 4. Three causal SNPs were randomly selected for

the first group of traits, and four causal SNPs were selected for

each of the other two groups, so that the shared relevant SNPs

induce correlation among the traits within each cluster. In

addition, we assumed another causal SNP for traits in both of

the first two clusters in order to model the situation of a higher-

level correlation structure across two subnetworks. Finally, we

assumed one additional causal SNP for all of the phenotypes. In

our simulation study, we assumed that shared causal SNPs are the

only factors that induce correlations among traits, although in

general there might be other genotypic effects or environmental

factors that influence the correlation structure among traits.

Once the SNP-trait pairs with true association were selected, we

considered the following two cases of association strengths for

these pairs, while setting the rest of the regression coefficients to 0.

N Case 1. The regression coefficients for all of the SNP-trait

pairs with true association were set to the same value. This

corresponds to the situation where the basic assumption of the

fusion penalty holds, and each SNP has the same effect across

the traits in each subnetwork.

N Case 2. The regression coefficients for the SNP-trait pairs with

true associations were set to different values randomly generated

from a uniform distribution over an interval ½a,b�. Here, our goal

is to see whether the GFlasso methods have the flexibility to

adjust the effect of fusion penalty in order to introduce an

appropriate amount of bias without sacrificing the power.

Then, we simulated phenotype data based on the linear

regression model with noise distributed as N(0,1), using the

simulated genotypes as covariates.

We compared the results from the GFlasso methods with those

from other methods given below:

N Single-SNP/single-trait regression analysis. We

used ({log p-valueð Þ) for each SNP-trait pair as a measure

of strength of association.

N Regularized multivariate regression methods for
a single output such as ridge regression and
lasso. These methods do not take into account the

correlation structure in traits. We used a validation set to

select the regularization parameter. The absolute values of the

regression coefficients were used as a measure of association

strength.

N PCA-based regression method for taking into account
trait correlations. This method first transforms the output

variables (traits) into a smaller number of variables that explain

most of the variability in the original data, performs a standard

multivariate regression on each of the transformed output

separately, and then transforms the estimated regression

coefficients back into the original space [17,18]. Although it

considers the trait correlation structure through PCA, the

structural information in this approach is less explicit than in the

GFlasso methods. We used lasso as a sparse multivariate

regression method in the transformed output space. Again, the

absolute values of the regression coefficients were used as a

measure of association strength.

For methods that require a specification of the values of the

regularization parameters such as ridge regression, lasso, and the

GFlasso methods, we used (N{30) samples out of the total N
samples as a training set, and the remaining 30 samples as a

validation set. Once we determined the regularization parameters,

we used the entire dataset of size N to estimate the final regression

coefficients given the selected regularization parameters.

As an illustrative example of the behaviors of the different methods,

a graphical display of the QTN and the estimated QTL sets fSkg for

all K traits in the QTN is presented in Figure 4 for a simulated dataset

of N~100 samples, with association strengths (i.e., regression

coefficients bjk
0s) all set to 0.8 for SNP-trait pairs with true associations

(Case 1). The 10|10 trait correlation matrix in Figure 4A shows

blocks of correlated traits. Using a threshold r~0:3, we obtained a

QTN in Figure 4B, where the black pixels in the lower triangular part

indicate the presence of edges between two traits. Given the true

regression coefficients in Figure 4C, we recovered the SNP-trait pairs

with true association using our methods and competing ones

mentioned above. It is apparent from Figure 4 that many false

positives show up in the results of the single-marker/single-trait

analyses, multivariate regression methods, and the PCA-based method.

Furthermore, these reference benches do not identify the block

structure of SNPs affecting multiple traits jointly, which is clear in the

true regression coefficients. On the other hand, the results from

GcFlasso in Figures 4I–K show fewer false positives, and reveal clear

block structures. This experiment suggests that borrowing information

Figure 3. Cross-validation error surface over a grid of
regularization parameters (l ,ª ) from GwFlasso. Our goal is to
find values for l and c that give the lowest cross-validation error. We
use a gradient-descent type of search algorithm to explore this surface
of cross-validation error.
doi:10.1371/journal.pgen.1000587.g003
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across correlated traits in a QTN, as in the GFlasso methods, can

significantly increase the power of discovering true causal SNPs. Since

GcFlasso uses an unweighted trait network, often the regression

coefficients for a given SNP have been fused excessively across traits

even between only weakly correlated traits, especially among the first

six traits on the upper left corner of Figure 4B that involve two smaller

subnetworks within the subnetwork. This undesirable property of

GcFlasso mostly disappeared when we incorporated the edge weights

in G1
wFlasso and G2

wFlasso as shown in Figure 4J and Figure 4K.

Next, we systematically and quantitatively evaluated the

performance of the association methods based on two criteria,

sensitivity/specificity on the uncovered QTL sets Sk,Vk, and the

trait prediction error. The sensitivity and specificity measure

whether the given method can successfully detect the truly

associated SNPs with low false positives. The 1-specificity and

sensitivity are equivalent to type I error rate and 1-type II error rate,

respectively, and their plot is widely known as a receiver operating

characteristic (ROC) curve. Once we identify causal SNPs for a trait

related to disease susceptibility, we may want to use this information

to predict whether a new individual possessing the particular allele

at these causal SNP loci has an increased risk for the disease. The

trait prediction error measures the accuracy of this prediction by

evaluating the results of association analysis on a new set of

previously unseen individuals. In order to compute the prediction

error in our simulation study, we generated an additional dataset of

50 individuals, ynew and Xnew, and computed the phenotype

prediction error as the sum of squared differences between the true

values ynew and predicted values ŷynew of the phenotypes,X
k

(ynew
k {ŷynew

k )’:(ynew
k {ŷynew

k ), where ŷyk
new~Xnew b̂bk. For both

criteria for measuring performance, we computed results averaged

over 50 randomly generated datasets. Below, we report the

performance of GFlasso under a wide spectrum of test conditions

likely to be encountered in a realistic genome-wide association

analysis of a QTN.

Varying Sample Sizes
First, we varied the sample size of the dataset to see how the sample

size affects the performance of the different methods for association

analysis. We used datasets of sizes 50, 100, 150, 200, and 250, with

association strength fixed at 0.5 for all associated SNP-trait pairs (Case

1), and we set the threshold r for trait correlations to be 0.3 to learn the

QTN. The results are summarized in Figure 5, where the ROC curves

were averaged over 50 datasets. The results confirmed that the lasso-

based methods such as lasso and GFlasso methods are more successful

in identifying true associations than the other methods. In addition, it

can be seen that the ROC curves for GcFlasso, G1
wFlasso, and

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Results of association analysis by different methods based on a single simulated dataset. Association strength 0.8 and
threshold r~0:3 for the QTN were used. (A) The 10|10 correlation coefficient matrix of traits. It contains three blocks of correlated traits of sizes 3, 3,
and 4, respectively. (B) The correlation coefficient matrix in (A) thresholded at r~0:3. The black pixels in the lower triangular part of the matrix
indicate edges included in GFlasso. (C) The true regression coefficients and sparsity pattern used in simulation. (D) {log p-valueð Þ, where p-values
were obtained from single-SNP permutation tests performed for each phenotype separately. (E) Black pixels indicate SNP-trait pairs with significant
association at a~0:01 based on the results of p-values in (D). Values of the estimated regression coefficients are shown for (F) ridge regression, (G)
PCA-based regression, (H) lasso, (I) GcFlasso, (J) G1

wFlasso, and (K) G2
wFlasso. In Panels (C)–(K), rows correspond to SNPs, and columns to

phenotypes. Columns for traits in (C)–(K) are aligned with the columns in (A) and (B).
doi:10.1371/journal.pgen.1000587.g004
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G2
wFlasso almost entirely overlap, whereas other methods are

significantly inferior. We found that across all sample sizes, including

a graph-guided fusion penalty as in GFlasso to take advantage of the

correlation structure in traits can significantly increase the power for

detecting true associations while reducing false positives, compared to

lasso and other methods.

Varying Signal-to-Noise Ratios
We examined how varying the signal-to-noise ratio affects the

performances of the different methods. We simulated datasets with

regression coefficients set to 0.3, 0.5, 0.8, and 1.0, respectively, with

sample size N~100. For each dataset, we set the values of the

regression coefficients to the same value (again, Case 1). A threshold of

r~0:1 was used to generate trait correlation networks. We applied

our methods and the other benchmark methods to recover the SNP-

trait pairs with true associations. The resulting ROC curves averaged

over 50 datasets are shown in Figure 6. It can be seen that the lasso-

based methods have a greater power with fewer false positives than the

other methods for all of the different signal-to-noise ratios. Among the

GFlasso methods, G1
wFlasso and G2

wFlasso outperformed the other

methods for all of the four chosen association strengths. However, the

performance of GcFlasso was significantly compromised and became

worse than the standard lasso when the association strength was set to

high values of 0.8 and 1.0. This is because at the relatively low

threshold r~0:1, the QTN contained many edges between pairs of

traits that were only weakly correlated, and GcFlasso with

unweighted fusion penalty did not distinguish edges for strong

correlation from those for weak correlation. In contrast, G1
wFlasso

and G2
wFlasso had the flexibility to handle different strengths of trait

correlations in the QTN through a weighted fusion penalty, and

consistently outperformed the other methods.

Varying QTN Generation Schemes
Next, we examined the sensitivity of the GFlasso methods to how

the trait correlation network is generated, by varying the threshold r
of edge weights from 0.1 to 0.3, 0.5 and 0.7. With lower values of r,

more edges would be included in the QTN, some of which represent

only weak correlations. The purpose of this experiment was to see

whether the performance of the GFlasso methods is negatively

affected by the presence of these weak and possibly spurious edges

that were included due to noise rather than from a true correlation.

The results for QTL recovery averaged over 50 datasets with sample

size N~100 and association strength 0.8 (Case 1), are presented in

Figure 7. We also include the ROC curves for the methods that did

not use the QTN in each panel of Figure 7 for the ease of

comparison. As in Figure 6, GcFlasso did not have the flexibility of

accommodating edges of varying correlation strength in the QTN,

and again, this deficiency compromised the performance of

GcFlasso at the low threshold r~0:1, as shown in Figure 7A. On

the other hand, G1
wFlasso and G2

wFlasso exhibited a greater power

than all other methods even at a low threshold r~0:1. As the

threshold r increased, the inferred QTN included only those edges

Figure 5. ROC curves comparing the performance of association analysis methods when the sample size varies. Panels show (A)
N~50, (B) N~100, (C) N~150, (D) N~200, and (E) N~250. The association strength was 0.5, and the threshold r for producing the QTN was set to
0.3. The results were averaged over 50 simulated datasets. The ROC curves for GcFlasso, G1

wFlasso, and G2
wFlasso almost entirely overlap.

doi:10.1371/journal.pgen.1000587.g005
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with significant correlations. Thus, the performance of GcFlasso
approached that of G1

wFlasso and G2
wFlasso, and the ROC curves

of the three methods in the GFlasso family overlapped almost

entirely (Figure 7B and Figure 7C). When the threshold became even

higher, e.g., r~0:7, the number of edges in the QTN became close

to 0, effectively removing the fusion penalty. As a result, the

performances of all of the graph-guided methods approached that of

lasso, and the four ROC curves became overlapping (Figure 7D).

Overall, we conclude that when flexible structured methods such as

G1
wFlasso and G2

wFlasso are used, taking into account the

correlation structure in phenotypes improves the power of detecting

true causal SNPs regardless of the values for r. In addition, once the

QTN contains edges that capture strong correlations, including

more edges beyond this point by further lowering the threshold r
does not significantly affect the performance of G1

wFlasso and

G2
wFlasso.

Given the SNP-trait pairs that the association methods found as

associated, and the corresponding regression coefficients, we comput-

ed prediction errors to see if these SNPs with non-zero regression

coefficients had a predictive power for traits of previously unseen

individuals. Figure 8 shows the trait prediction error using the model

learned from the above experiments summarized in Figure 7. It can be

seen that G1
wFlasso and G2

wFlasso generally offer a better predictive

power than other methods, except for the case where the set of edges

for the QTN becomes nearly empty due to the high correlation

threshold r~0:7 (Figure 8D). In this case, all of the GFlasso methods

and lasso performed similarly.

Variable Association Strength between a SNP and
Correlated Traits

Since the fusion penalty tends to fuse the regression coefficients

to be the same value within a densely connected subgraph, one

may suspect that the bias introduced by this penalty can reduce

the power when the true association strengths of a SNP to

different traits are not the same within each subgraph. In order to

examine how the performance is affected in this case, we

considered the situation where the association strengths of each

causal SNP are not uniform across traits within each subnetwork,

but vary within the interval of ½a,b� (Case 2). We experimented

with two different intervals [0.3, 0.6] and [0.6, 0.9], and

summarized the results in Figure 9. Sample size N~200 with

thresholds r~0:1 and 0.3 were used, and the ROC curves were

averaged over the 50 datasets. We found that GcFlasso
sometimes performed worse than lasso that does not take into

Figure 6. ROC curves comparing the performance of association analysis methods when the association strength varies. Panels show
results for association strength (A) 0.3, (B) 0.5, (C) 0.8, and (D) 1.0. The sample size was 100, and the threshold r for producing the QTN was set to 0.1.
The results were averaged over 50 simulated datasets. In Panel (A), the ROC curves for GcFlasso, G1

wFlasso and G2
wFlasso almost entirely overlap. In

Panel (B), the ROC curves for G1
wFlasso and G2

wFlasso almost entirely overlap.
doi:10.1371/journal.pgen.1000587.g006
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account the trait correlation structure, as can be seen in

Figure 9C. However, G1
wFlasso and G2

wFlasso remained

dominating over the other methods. Our results suggest that

with the flexibility of the weighted fusion penalty as in G1
wFlasso

and G2
wFlasso, the benefit of borrowing information across

correlated traits outweighes the adverse effect of encouraging the

regression coefficients to be fused even when their values are not

the same.

Figure 7. ROC curves comparing association analysis methods when the threshold r for producing the QTN varies. Panels show the
threshold (A) r~0:1, (B) r~0:3, (C) r~0:5, and (D) r~0:7. The sample size was 100, and the association strength was 0.8. The results were averaged
over 50 simulated datasets. In Panels (B) and (C), the ROC curves for GcFlasso, G1

wFlasso and G2
wFlasso almost entirely overlap. In Panel (D), the ROC

curves for lasso, GcFlasso, G1
wFlasso and G2

wFlasso almost entirely overlap.
doi:10.1371/journal.pgen.1000587.g007

Figure 8. Comparison of association analysis methods in terms of phenotype prediction error. Panels show the prediction errors when
the threshold r for producing the QTN is (A) r~0:1, (B) r~0:3, (C) r~0:5, and (D) r~0:7. The results were averaged over 50 simulated datasets. The
box in each box plot shows the lower quartile, median, and upper quartile values, and the whiskers show the range of the prediction errors in the 50
simulated datasets.
doi:10.1371/journal.pgen.1000587.g008
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Computation Time and Scalability
The scalability of our methods can be assessed from Figure 10,

where the computation time for solving the optimization problem

for lasso, GcFlasso, G1
wFlasso, and G2

wFlasso with fixed

regularization parameters is shown. In Figure 10A, the number

of traits in the QTN was fixed at 250, and the number of SNPs

varied over the illustrated range. With 100 SNPs and 250 traits,

the running time was around 20 minutes for the GFlasso methods,

suggesting that a sliding-window scheme along the genome would

be more reasonable for a whole-genome scan than considering all

of the SNPs in a single model. Figure 10B shows the time cost over

varying number of traits, with the total number of SNPs fixed at

50. We found that the GFlasso methods could handle at least

hundreds of traits reasonably well. For a large dataset with more

than several thousand traits, one might consider first breaking

down the whole network into smaller components and then

running GFlasso on each component separately.

Association Analysis of Polymorphisms in IL-4R Gene and
Severe-Asthma Traits

We applied our methods to a dataset collected from 543 asthma

patients as a part of the Severe Asthma Research Program (SARP)

[14]. The genotype data were obtained for 34 SNPs within or near

the IL-4R gene that spans a 40 kb region on chromosome 16. This

gene has been previously shown to be implicated in severe asthma

[37]. We used the publicly available software PHASE [38] to

impute missing alleles and phase the genotypes. The phenotype

data included 53 clinical traits related to severe asthma such as age

of onset, family history, and severity of various symptoms. Our

goal was to examine whether any of the SNPs in the IL-4R gene

were associated with a subnetwork of correlated traits rather than

an individual trait. We standardized measurements for each

phenotype to have mean 0 and standard deviation 1 so that their

values were roughly in the same range across phenotypes.

Before searching for associations between SNPs and traits, we

first examined the correlation structure in the 53 clinical traits in

question. We first computed the pairwise correlations between

these traits as depicted in Figure 11A, and thresholded the

correlations at r~0:7 to obtain the QTN in Figure 1. The rows

and columns in the matrix in Figure 11A were ordered via an

agglomerative hierarchical clustering algorithm so that highly

correlated traits were next to each other in the linear ordering and

formed apparent blocks in the matrix corresponding to subsets of

highly inter-correlated traits. Recall that GcFlasso uses only edge

Figure 9. ROC curves comparing association analysis methods. The association strength of a causal SNP is not uniform across correlated
phenotypes that the SNP is associated with, and varies within the intervals of [0.3, 0.6] or [0.6, 0.9]. Panels show (A) association strength = [0.3, 0.6]
when the threshold r~0:1 is used for QTNs, (B) association strength = [0.3, 0.6] when r~0:3, (C) association strength = [0.6, 0.9] when r~0:1, and (D)
association strength = [0.6, 0.9] when r~0:3. The sample size was 200. The results were averaged over 50 simulated datasets.
doi:10.1371/journal.pgen.1000587.g009
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connectivities but not their weights in the QTN. For the ease of

comparison, we graphically display this QTN in Figure 11B,

where the black pixel at position (i,j) indicates that the i-th and

j-th phenotypes are connected with an edge in the QTN. It is easy

to see the correspondences between the blocks (i.e., clusters) of

black pixels in Figure 11B and the subgraphs of correlated traits in

Figure 1. For example, the traits representing quality of life of the

patients (the nodes for QLEnvironment, QLSymptom, QLEmo-

tion, and QLActivity) appear as a small subnetwork near the

center of Figure 1 as well as the block of black pixels at the upper

left corner of Figure 11B. We find another subnetwork consisting

of three traits related to asthma symptoms (the nodes for Wheezy,

Sputum, ChestTight) near the upper right corner of Figure 1 and

as the second cluster from the left in Figure 11B. The cluster of

traits from columns 11 through 18 and the next cluster from

columns 19 through 25 in Figure 11B correspond to the two

densely connected subnetworks within the large subnetwork on the

left-hand side of Figure 1 that consists of traits related to lung

physiology (the nodes for BaseFEV1, PreFEFPred, PostbroPred,

PredrugFEV1P, MaxFEV1P, etc.). Based on Figure 1 and

Figure 11B, we concluded that the QTN obtained at threshold

r~0:7 captured the previously known clusters of asthma-related

traits, and we used this network in our multiple-trait association

analysis with GFlasso methods.

A comprehensive comparison of QTL mapping using GFlasso

and other methods is presented in Figures 11D–11L, of which

each panel displays the matrix of estimated association strengths of

all marker genotypes versus all phenotypic traits. The rows and

columns represent genotypes and phenotypes, respectively. The

phenotypes in the columns are ordered in the same way as in

Figure 11A and Figure 11B. We first performed a baseline single-

marker/single-trait pairwise association analysis with a permuta-

tion test, and obtained p-values after 5000 permutations. The

{log p-valueð Þ0s are shown in Figure 11D. Based on these

p-values, the SNP-trait pairs significant at a~0:05 and 0.01 are

shown as black pixels in Figure 11E and Figure 11F. The strengths

of associations found by the six different multivariate regression

methods including ridge regression, PCA-based method, lasso,

GcFlasso, G1
wFlasso, and G2

wFlasso are shown in Figures 11G–

L, respectively. We selected the regularization parameters in lasso,

GcFlasso, G1
wFlasso, and G2

wFlasso using a five-fold cross

validation. For all of these methods, we used the absolute values of

the estimated regression coefficients as a measure of association

strength.

As can be seen from Figure 11, all of the methods for association

analysis except for the PCA-based one in Figure 11H found the

SNP in row 30 near the bottom, known as Q551R, as significantly

associated with a block of correlated phenotypes in columns 11–18

of Figure 11A that are related to lung physiology (consisting of

BaseFEV1, PreFEFPred, AvgNO, BMI, PostbroPred, BaseFEV-

Per, PredrugFEV1P, MaxFEV1P, FEV1Diff, and PostFEF). In

particular, the p-values for this SNP across this block of traits from

the single-marker analyses were 2:0|10{4. This SNP Q551R

resides in exon 12 of gene IL-4R, and codes for amino-acid

changes in the intracellular signaling portion of the receptor. It has

been previously found to be associated with severe asthma and its

traits for lung physiology [37], and our results confirmed this

previous finding.

In addition, the results from the single-marker analyses in

Figures 11D–F showed that on the upstream of SNP Q551R,

there was a set of adjacent SNPs (rows 24–27) that had generally a

high level of association with the same subset of traits for lung-

physiology with p-values ranging from 2:0|10{4 to 7:6|10{3.

In contrast, lasso set the regression coefficients for most of this

block of SNPs to zero (Figure 11I). When we examined the LD

structure in this region as shown in Figure 11C, we found that the

SNPs in rows 26 and 27 were in a strong LD with SNP Q551R

(r2~0:89 and 0.76, respectively). Thus, lasso was able to ignore

the possibly irrelevant markers (rows 26 and 27) that are merely in

a strong LD with the causal SNP (SNP Q551R) by setting the

corresponding regression coefficients to zero. This confirmed that

lasso is an effective method for finding the sparse structure in

regression coefficients. On the other hand, the other two SNPs in

the same block in rows 24 and 25 were in a weak LD with SNP

Q551R (r2~0:29 and 0.42, respectively). This suggests that these

two SNPs might be unknown causal SNPs that lasso missed

because of its property of favoring sparsity. The results from ridge

regression as shown in Figure 11G did not show a sparse structure

as in the lasso estimates. In fact, in statistical literature, it is well-

known that ridge regression performs poorly in problems that

 

Figure 10. Comparison of the computation time for lasso, GcFlasso, G1
wFlasso, and G2

wFlasso. (A) We varied the number of SNPs with the
number of phenotypes fixed at 250. (B) We varied the number of phenotypes with the number of SNPs fixed at 50. The QTNs were obtained using
threshold r~0:3. The number of edges in the QTNs ranged from 900 to 950 in each case.
doi:10.1371/journal.pgen.1000587.g010
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Figure 11. Results from the association analysis of the asthma dataset. (A) The correlation matrix of 53 asthma-related clinical traits. A pixel
at row i and column j corresponds to the absolute magnitude of correlation between node i and j in the QTN depicted in Figure 1. (B) The trait
correlation matrix thresholded at r~0:7. The black pixels in the lower triangular part of the matrix indicate edges between each pair of traits. (C) The
matrix of r2s shows the linkage disequilibrium structure in the 34 SNPs in gene IL-4R. (D) {log p-valueð Þ from single-marker/single-trait association
tests after 2000 permutations. (E) The SNP-trait pairs that the single-marker/single-trait analyses with permutation tests in (D) find significant at
a~0:05 are shown as black pixels. (F) The SNP-trait pairs with significant association at a~0:01 based on the p-values in (D) are shown as black pixels.
Estimated bk

0s are shown for (G) ridge regression, (H) PCA-based regression, (I) lasso, (J) GcFlasso, (K) G1
wFlasso, and (L) G2

wFlasso. In Panels (D)–(L),
rows correspond to SNPs, and columns to phenotypes.
doi:10.1371/journal.pgen.1000587.g011
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require a selection of a small number of markers affecting

phenotypes, compared to lasso. Since the methods in the GFlasso

family include the lasso penalty, the results from GcFlasso,

G1
wFlasso, and G2

wFlasso in Figures 11J–L showed the same

property of sparsity as lasso in their estimates, and the regression

coefficients corresponding to the SNPs in rows 24–27 and lung-

physiology traits were set to zero.

Because of the fusion penalty, the regression coefficients

estimated by our methods formed a block structure, where each

block corresponds to a SNP associated with several correlated

traits. It is clear that the horizontal bars in Figures 11J–L are

generally aligned with the blocks of highly correlated traits in

Figure 11A. Although the fusion penalty tends to fuse the values of

regression coefficients for each SNP across correlated traits to the

same value, each horizontal bar does not always necessarily consist

of regression coefficients of the same value, but often contain

several small blocks of fused values. This is because the fusion

penalty only introduces bias towards a shared association strength

of relevant SNPs among correlated traits with the flexibility of

adapting to the data rather than being a hard constraint. The

same block structure was much weaker in the results from lasso

shown in Figure 11I. For example, Figures 11J–L show that SNPs

rs3024660 (row 22) and rs3024622 (row 18) on the upstream of

SNP Q551R are associated with the same block of traits as SNP

Q551R, generating an interesting new hypothesis that these two

SNPs as well as SNP Q551R might be jointly associated with the

same subset of traits for lung physiology. Although the single-

marker/single-trait analyses also found these two SNPs reasonably

significant (p-values of SNP rs3024660 in the range of 2:0|10{4

and 4:0|10{4, and SNP rs3024622 in the range of 1:5|10{2

and 3:8|10{2 across the traits for lung physiology), the results

were more noisy with many positives for SNPs in LD such as SNPs

in rows 20–24. Also, this block structure shared by these two SNPs

and SNP Q551R was not obvious in the results of the other

multivariate regression methods that analyzed each trait separate-

ly.

In order to see how the threshold r for creating the QTN affects

the results, we fit lasso and our methods in the GFlasso family for

different values of r, and summarized the results in Table 1. When

the threshold was high at r~0:9, only a very small number of

edges were included in the QTN, and the graph-guided fusion

penalty of GFlasso had little effect. Thus, the number of non-zero

regression coefficients found by GcFlasso, G1
wFlasso, and

G2
wFlasso was similar to the result of lasso that does not have a

fusion penalty. When we lowered the threshold to r~0:7, the

number of non-zero regression coefficients decreased significantly

for the GFlasso methods. However, as we further lowered the

threshold, the number of non-zero regression coefficients generally

remained unchanged. This is because most of the significant

correlation structure was captured in the QTN at r~0:7 as can be

seen in Figure 11B. Adding more edges by further lowering r did

not add any significant correlation information to the QTN, and

the results of the GFlasso methods were not sensitive to these

additional edges with relatively little information.

In summary, the GFlasso methods identified the previously

known causal SNP (SNP Q551R) as significantly associated with

the lung physiology traits, while maintaining an overall sparse

pattern in estimated regression coefficients to reduce false

positives. The property of the GFlasso estimates having a block

structure for a SNP jointly associated with a set of correlated traits

led to an interesting new hypothesis that two additional SNPs

(rs3024660 and rs3024622) on the upstream of SNP Q551R may

be jointly influencing the same set of traits on lung physiology as

SNP Q551R, which may be validated in a future follow-up study.

Discussion

When multiple phenotypes are involved in association mapping,

it is important to combine the information across phenotypes and

make use of the full information available in data in order to

achieve the maximum power. Most of the previous approaches

either considered each phenotype separately, or used relatively

primitive types of phenotype correlation structures such as

surrogate phenotypes transformed through PCA or the mean

values of subgroups of phenotypes found by clustering algorithms.

Networks or graphs have been extensively studied as a

representation of the correlation structure of phenotypes such as

gene expression or clinical traits because they provide a flexible

and explicit form of representation for capturing dependencies

[39–41]. A QTN contains rich information on phenotype

interaction patterns such as densely connected subgraphs that

can be interpreted as a cluster of phenotypes participating in the

same biological process. Developing a tool for multiple-phenotype

association mapping that can directly leverage this full graph

structure of a QTN can offer a way to combine the large body of

previous research in network analysis with the work on association

mapping.

In this article, we proposed a new family of regression methods

called GFlasso that directly incorporates the correlation structure

represented as a QTN and uses this information to guide the

estimation process. These methods considered a multitude of

phenotypes jointly, and estimated a joint association model in a

single statistical framework. Often, we are interested in detecting

genetic variations that perturb a sub-module of phenotypes rather

than a single phenotype, and GFlasso achieved this through a

fusion penalty, in addition to the lasso penalty, that encourages

parsimony in the estimated model. The fusion penalty locally fused

two regression coefficients for a pair of correlated phenotypes, and

this effect propagated through edges of the QTN, effectively

applying fusion to all of the phenotypes within each subgraph.

GcFlasso used an unweighted graph structure as a guide to find a

subset of relevant covariates that jointly affect highly correlated

outputs, whereas GwFlasso used additional information of edge

weights to further control the coupling among phenotypes. Using

simulated and asthma datasets, we demonstrated that including

richer information on phenotype structure as in GwFlasso and

GcFlasso improves the accuracy in detecting true associations.

The fusion penalty in GFlasso introduced a bias that the

amount of influence of a shared QTL is similar over the set of

correlated traits in order to increase the power for detecting weak

signal and reduce false positives. The simulation results showed

that the benefit of information sharing due to the fusion penalty

outweighed the risk of low-variance bias on fused regression

Table 1. Summary of results for the association analysis of
the asthma dataset.

r
Number of
edges Number of nonzero regression coefficients

Lasso GcFlasso G1
wFlasso G2

wFlasso

0.3 421 105 106 108

0.5 165 125 108 107 107

0.7 71 105 105 110

0.9 11 125 123 123

doi:10.1371/journal.pgen.1000587.t001
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coefficients when in reality the magnitudes of the coefficients can

be highly variable. Perhaps a more effective approach and a

promising future direction would be to encourage each SNP

marker to be jointly relevant or irrelevant to the subset of

correlated traits, but still allow the marker to have a different

amount of influence on each of the traits. This would reduce the

bias introduced by the fusion penalty and further improve the

performance of GFlasso, since the only information shared across

correlated traits is the sparsity pattern but not the magnitudes of

the regression coefficients.

We have used a simple scheme of a thresholded correlation

graph for learning the QTN of phenotypes to be used in GFlasso.

Many different types of network-learning algorithms have been

developed previously. For example, graphical Gaussian models

(GGMs) [42] were constructed based on partial correlations that

capture the direct influence of interacting nodes, and have been

commonly used for inferring gene networks from microarray data

[43]. Furthermore, in order to handle the case of a large number

of nodes and a relatively small sample size, methods for estimating

sparse GGMs have been developed [44]. It would be interesting to

see if using more sophisticated graph learning algorithms can

improve the performance of GFlasso.

In this study, we assumed that the graph structure of a QTN is

available from a pre-processing step. One of the possible

extensions of the proposed method is to learn the QTN and the

regression coefficients jointly by combining GFlasso with the

graphical lasso [45] that learns a sparse covariance matrix for

phenotypes. In Geronemo and Lirnet, both the module network

structure and the markers of regulators regulating the modules

were learned simultaneously, although these methods only focused

on modeling the relationship between regulators and target genes

[9,20]. Extending GFlasso to learn both the graph structure and

regression coefficients jointly may further increase the power in an

association analysis.

For any new multivariate genetic-association methods, a natural

question is whether the new method can scale to a genome-scale

analysis. The current implementation of GFlasso leaves this to be

determined by a user-specified tradeoffs between power and

computation time. As shown in Figure 10, the larger the number

of traits and genotypes to be modeled jointly, naturally the greater

the computational cost. Thus, users are offered a wide range of

tradeoff between computation time and power of the analysis,

from single-marker/single-trait per test as in the conversional

analysis, to J-markers=K-traits per test with our methods still at a

reasonable time (comparable to the time cost of standard lasso),

where J,K*102. Therefore, instead of scanning the whole

genome one marker at a time for each trait separately as in a

classical analysis, with our method, one can scan J markers at a

time using a sliding window for each phenome represented as

subnetworks in a QTN. An important future direction is to scale

up our methods for even larger values of J and K , and our

proposed graph-guided regression formalism represents a nontriv-

ial and practical initial foray into this direction. We expect that

with the development of a new mathematical optimization

methodology and faster computing machinery, it will become

feasible to handle a wider range of structure sizes based on our

model, and a genome-wide association study can depart further

away from an unstructured single-marker/single-trait analysis.

Finally, it is important to point out that as of now GFlasso

considers only dependencies among phenotypes, and does not

assume any dependencies among the markers. Since recombina-

tions break chromosomes during meiosis at non-random sites,

segments of chromosomes rather than an individual nucleotide are

inherited as a unit from ancestors to descendants, creating a

relatively low diversity in observed haplotypes than would be

expected if each allele were inherited independently. Thus, SNPs in

high LD are likely to be jointly associated with a phenotype in a

regression-based penetrance function. In our future research, we

plan to apply the same idea of the graph-guided fusion penalty for

phenotypes to incorporate the LD structure among genotypes. It is

straightforward to introduce another fusion penalty for correlated

markers based on the genotype correlation graph and weight each

term in the penalty using values that reflect the recombination rates

and distances between each pair of genetic markers. This would

allow a genome-phenome association analysis for identifying a block

of correlated markers influencing a set of correlated phenotypes.

Software for our proposed method is available at http://www.

sailing.cs.cmu.edu/gflasso.html. A preliminary version of this

method was presented at the 19th international conference on

intelligent systems for molecular biology (ISMB 2009).
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