
Mixed Membership Stochastic Blockmodels

Edoardo M. Airoldi 1,2, David M. Blei 1, Stephen E. Fienberg 3,4 & Eric P. Xing 4∗
1 Department of Computer Science, 2 Lewis-Sigler Institute, Princeton University

3 Department of Statistics, 4 School of Computer Science, Carnegie Mellon University
eairoldi@Princeton.EDU

Abstract

In many settings, such as protein interactions and gene regulatory networks, col-
lections of author-recipient email, and social networks, the data consist of pair-
wise measurements, e.g., presence or absence of links between pairs of objects.
Analyzing such data with probabilistic models requires non-standard assumptions,
since the usual independence or exchangeability assumptions no longer hold. In
this paper, we introduce a class of latent variable models for pairwise measure-
ments: mixed membership stochastic blockmodels. Models in this class combine
a global model of dense patches of connectivity (blockmodel) and a local model
to instantiate node-specific variability in the connections (mixed membership).
We develop a general variational inference algorithm for fast approximate poste-
rior inference. We demonstrate the advantages of mixed membership stochastic
blockmodel with applications to social networks and protein interaction networks.

1 Introduction

The problem of modeling relational information among objects, such as pairwise relations repre-
sented as graphs, arises in a number of settings in machine learning. For example, scientific liter-
ature connects papers by citation, the Web connects pages by links, and protein-protein interaction
data connects proteins by physical interaction records. In these settings, we often wish to infer hid-
den attributes of the objects from the observed measurements on pairwise properties. For example,
we might want to compute a clustering of the web-pages, predict the functions of a protein, or assess
the degree of relevance of a scientific abstract to a scholar’s query. Unlike traditional attribute data
collected over individual objects, relational data violate the classical independence or exchangeabil-
ity assumptions made in machine learning and statistics. The objects are dependent by their very
nature, and this interdependence suggests a different set of assumptions is more appropriate.

Recently proposed models aim at resolving relational information into a collection of connectivity
patterns. Such models are based on assumptions that often ignore useful technical necessities, or
important empirical regularities. For instance, exponential random graph models [11] summarize
the variability in a collection of paired measurements with a set of relational motifs, but do not
provide unit-specific representations useful for making predictions. Latent space models [4] project
individual units of analysis into a low-dimensional latent space, but do not provide a group structure
into such space useful for clustering. Stochastic blockmodels [8, 6] resolve paired measurements
into groups and connectivity between pairs of groups, but constrain each unit to instantiate the con-
nectivity patterns of a single group as observed in most applications. Mixed membership models,
such as latent Dirichlet allocation [1], have emerged in recent years as a flexible modeling tool for
data where the single group assumption is violated by the heterogeneity within a unit of analysis—
e.g., a document, or a node in a graph. They have been successfully applied in many domains, such
as document analysis [1], image processing [7], and population genetics [9]. Mixed membership
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models associate each unit of analysis with multiple groups rather than a single groups, via a mem-
bership probability-like vector. The concurrent membership of a data in different groups can capture
its different aspects, such as different underlying topics for words constituting each document. The
mixed membership formalism is a particularly natural idea for relational data, where the objects can
bear multiple latent roles or cluster-memberships that influence their relationships to others. Exist-
ing mixed membership models, however, are not appropriate for relational data because they assume
that the data are conditionally independent given their latent membership vectors. Conditional inde-
pendence assumptions that technically instantiate mixed membership in recent work, however, are
inappropriate for the relational data settings. In such settings, an objects is described by its rela-
tionships to others. Thus assuming that the ensemble of mixed membership vectors help govern the
relationships of each object would be more appropriate.

Here we develop mixed membership models for relational data and we describe a fast variational
inference algorithm for inference and estimation. Our model captures the multiple roles that ob-
jects exhibit in interaction with others, and the relationships between those roles in determining the
observed interaction matrix. We apply our model to protein interaction and social networks.

2 The Basic Mixed Membership Blockmodel

Observations consist of pairwise measurements, represented as a graph G = (N , Y ), where Y (p, q)
denotes the measurement taken on the pair of nodes (p, q). In this section we consider observations
consisting of a single binary matrix, where Y (p, q) ∈ {0, 1}, i.e., the data can be represented with a
directed graph. The model generalizes to two important settings, however, as we discuss below—a
collection of matrices and/or other types of measurements. We summarize a collection of pairwise
measurements with a mapping from nodes to sets of nodes, called blocks, and pairwise relations
among the blocks themselves. Intuitively, the inference process aims at identifying nodes that are
similar to one another in terms of their connectivity to blocks of nodes. Similar nodes are mapped to
the same block. Individual nodes are allowed to instantiate connectivity patterns of multiple blocks.
Thus, the goal of the analysis with a Mixed Membership Blockmodel (MMB) is to identify (i) the
mixed membership mapping of nodes, i.e., the units of analysis, to a fixed number of blocks, K,
and (ii) the pairwise relations among the blocks. Pairwise measurements among N nodes are then
generated according to latent distributions of block-membership for each node and a matrix of block-
to-block interaction strength. Latent per-node distributions are specified by simplicial vectors. Each
node is associated with a randomly drawn vector, say ~πi for node i, where πi,g denotes the probabil-
ity of node i belonging to group g. In this fractional sense, each node can belong to multiple groups
with different degrees of affiliation. The probabilities of interactions between different groups are
defined by a matrix of Bernoulli rates B(K×K), where B(g, h) represents the probability of having
a connection from a node in group g to a node in group h. The indicator vector ~zp→q denotes the
specific block membership of node p when it connects to node q, while ~zp←q denotes the specific
block membership of node q when it is connected from node p. The complete generative process for
a graph G = (N , Y ) is as follows:

• For each node p ∈ N :

– Draw a K dimensional mixed membership vector ~πp ∼ Dirichlet
(
~α

)
.

• For each pair of nodes (p, q) ∈ N ×N :

– Draw membership indicator for the initiator, ~zp→q ∼ Multinomial
(
~πp

)
.

– Draw membership indicator for the receiver, ~zq→p ∼ Multinomial
(
~πq

)
.

– Sample the value of their interaction, Y (p, q) ∼ Bernoulli
(
~z >p→qB ~zp←q

)
.

Note that the group membership of each node is context dependent, i.e., each node may assume
different membership when interacting with different peers. Statistically, each node is an admixture
of group-specific interactions. The two sets of latent group indicators are denoted by {~zp→q : p, q ∈
N} =: Z→ and {~zp←q : p, q ∈ N} =: Z←. Further, the pairs of group memberships that underlie
interactions, e.g., (~zp→q, ~zp←q) for Y (p, q), need not be equal; this fact is useful for characterizing
asymmetric interaction networks. Equality may be enforced when modeling symmetric interactions.
The joint probability of the data Y and the latent variables {~π1:N , Z→, Z←} sampled according to
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Figure 1: A graphical model
of the mixed membership block-
model (MMB). We did not draw all
the arrows out of the block model
B for clarity. All the pairwise mea-
surements, Y (p, q), depend on it.

the MMB is:

p(Y, ~π1:N , Z→, Z←|~α,B) =
∏
p,q

P (Y (p, q)|~zp→q, ~zp←q, B)P (~zp→q|~πp)P (~zp←q|~πq)
∏
p

P (~πp|~α).

Introducing Sparsity. Adjacency matrices encoding binary pairwise measurements often contain
a large amount of zeros, or non-interactions; they are sparse. It is useful to distinguish two sources
of non-interaction: they may be the result of the rarity of interactions in general, or they may be
an indication that the pair of relevant blocks rarely interact. In applications to social sciences, for
instance, nodes may represent people and blocks may represent social communities. In this setting,
it is reasonable to expect that a large portion of the non-interactions is due to limited opportunities
of contact between people in a large population, or by design of the questionnaire, rather than due to
deliberate choices, the structure of which the blockmodel is trying to estimate. It is useful to account
for these two sources of sparsity at the model level. A good estimate of the portion of zeros that
should not be explained by the blockmodel B reduces the bias of the estimates of its elements.

A sparsity parameter ρ ∈ [0, 1] can be introduced in the model above to characterize the source
of non-interaction. Instead of sampling a relation Y (p.q) directly the Bernoulli with parameter
specified as above, we down-weight the probability of successful interaction to (1−ρ)·~z >p→qB ~zp←q.
This is the result of assuming that the probability of a non-interaction comes from a mixture, 1 −
σpq = (1 − ρ) · ~z >p→q(1 − B) ~zp←q + ρ, where the weight ρ capture the portion zeros that should
not be explained by the blockmodel B. A large value of ρ will cause the interactions in the matrix
to be weighted more than non-interactions, in determining plausible values for {~α,B, ~π1:N}.

Recall that {~α,B} are constant quantities to be estimated, while {~π1:N , Z→, Z←} are unknown vari-
able quantities whose posterior distribution needs to be determined. Below, we detail the variational
expectation-maximization (EM) procedure to carry out approximate estimation and inference.

2.1 Variational E-Step

During the E-step, we update the posterior distribution over the unknown variable quantities
{~π1:N , Z→, Z←}. The normalizing constant of the posterior is the marginal probability of the data,
which requires an intractable integral over the simplicial vectors ~πp,

p(Y | ~α,B) =
∫

~π1:N

∑
zp←q,zp→q

p(Y, ~π1:N , Z→, Z←|~α,B). (1)

We appeal to mean-field variational methods [5] to approximate the posterior of interest. The main
idea behind variational methods is to posit a simple distribution of the latent variables with free
parameters, which are fit to make the approximation close in Kullback-Leibler divergence to the
true posterior of interest. The log of the marginal probability in Equation 1 can be bound as follows,

log p(Y | α,B) ≥ Eq

[
log p(Y, ~π1:N , Z→, Z←|α,B)

]
−Eq

[
log q(~π1:N , Z→, Z←)

]
, (2)

by introducing a distribution of the latent variables q that depends on a set of free parameters.
We specify q as the mean-field fully-factorized family, q(~π1:N , Z→, Z← | ~γ1:N ,Φ→,Φ←), where
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{~γ1:N ,Φ→,Φ←} are the set of free variational parameters that can be set to tighten the bound. We
then tighten the bound with respect to the variational parameters, to minimize the KL divergence
between q and the true posterior. The update for the variational multinomial parameters is

φ̂p→q,g ∝ e Eq

[
log πp,g

]
·
∏
h

(
B(g, h)Y (p,q)·

(
1−B(g, h)

)1−Y (p,q)
)φp←q,h

(3)

φ̂p←q,h ∝ e Eq

[
log πq,h

]
·
∏
g

(
B(g, h)Y (p,q)·

(
1−B(g, h)

)1−Y (p,q)
)φp→q,g

, (4)

for g, h = 1, . . . ,K. The update for the variational Dirichlet parameters γp,k is

γ̂p,k = αk +
∑

q

φp→q,k +
∑

q

φp←q,k, (5)

for all nodes p = 1, . . . , N and k = 1, . . . ,K.

Nested Variational Inference. To improve convergence, we employed a nested variational in-
ference scheme based on an alternative schedule of updates to the traditional ordering. In a naı̈ve
iteration scheme for variational inference, one initializes the variational Dirichlet parameters ~γ1:N

and the variational multinomial parameters (~φp→q, ~φp←q) to non-informative values, and then iter-
ates until convergence the following two steps: (i) update ~φp→q and φp←q for all edges (p, q), and
(ii) update ~γp for all nodes p ∈ N . At each variational inference cycle we allocate NK + 2N2K
scalars. In our experiments, the naı̈ve variational algorithm often failed to converge, or converged
only after many iterations. We attribute this behavior to the dependence between ~γ1:N and B, which
is not accounted for by the naı̈ve algorithm. The nested variational inference algorithm retains por-
tion of this dependence across iterations by choosing a particular path to convergence. We simply
keep the block of free parameters (~φp→q, ~φp←q) at an optimal solution given the other variational
parameters. These parameters are involved in the updates of parameters in ~γ1:N and in B, thus
effectively providing a channel to maintain some dependence among them. From a computational
perspective, the nested algorithm trades time for space thus allowing us to deal with large graphs. At
each variational cycle we allocate NK + 2K scalars only. The algorithm can be parallelized, and,
empirically, it leads to a better local optimum of the likelihood bound per unit of running time.

2.2 M-Step

During the M-step, we maximize the lower bound in Equation 2, used as a surrogate for the like-
lihood, with respect to the unknown constants {~α,B}. In other words, we compute the empirical
Bayes estimates of the hyper-parameters. The M-step is equivalent to finding the MLE using ex-
pected sufficient statistics under the variational distribution. We consider the maximization step for
each parameter in turn. A closed form solution for the approximate maximum likelihood estimate
of ~α does not exist. We used linear-time Newton-Raphson, with gradient and Hessian

∂L~α

∂αk
= N

(
ψ

( ∑
k

αk

)
−ψ(αk)

)
+

∑
p

(
ψ(γp,k)− ψ

( ∑
k

γp,k

))
, and

∂L~α

∂αk1αk2

= N

(
I(k1=k2) · ψ

′(αk1)− ψ′
( ∑

k

αk

))
,

respectively. The approximate MLE of B is

B̂(g, h) =

∑
p,q Y (p, q) · φp→qg φp←qh∑

p,q φp→qg φp←qh
, (6)

for every pair (g, h) ∈ [1,K]2. Finally, the approximate MLE of the sparsity parameter ρ is

ρ̂ =

∑
p,q

(
1− Y (p, q)

)
·
( ∑

g,h φp→qg φp←qh

)∑
p,q

∑
g,h φp→qg φp←qh

. (7)
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Alternatively, we can fix ρ prior to the analysis; the density of the interaction matrix is estimated
with d̂ =

∑
p,q Y (p, q)/N2, and the sparsity parameter is set to ρ̃ = (1 − d̂). This latter estimator

attributes all the information in the non-interactions to the point mass, i.e., to latent sources other
than the block model B or the mixed membership vectors ~π1:N . It does however provide a quick
recipe to reduce the computational burden during exploratory analyses.

Several model selection strategies exist for hierarchical models. In our setting, model selection
translates into the choice of the number of blocks, K. Below, we chose K with held-out likelihood
in a cross-validation experiment, on large networks, and with approximate BIC, on small networks.

2.3 Summarizing and De-Noising Pairwise Measurements

It is useful to consider two perspectives when analyzing data with MMB: (i) we summarize the data,
Y , in terms of the global blockmodel, B, and the node-specific mixed memberships, Πs, (ii) we de-
noise the data, Y , in terms of the global blockmodel,B, and interaction-specific single memberships,
Zs. In both cases the model depends on a small set of unknown constants to be estimated: α, and
B. The likelihood is the same in both cases, although, the rationale for including the set of latent
variables Zs differ. When summarizing data, we could integrate out the Zs analytically; this leads
to numerical optimization of a smaller set of variational parameters, Γs. We choose to keep the Zs
to simplify inference. When de-noising, the Zs are instrumental in estimating posterior expectations
of each interactions individually—a network analog to the Kalman Filter. The posterior expectations
of an interaction is computed as ~πp

′B ~πq, and ~φp→q
′B ~φp←q, in the two cases.

3 Empirical Results

We evaluated the MMB on simulated data and on three collections of pairwise measurements. Re-
sults on simulated data show that variational EM accurately recovers the mixed membership map,
~π1:N , and the blockmodel, B, when data are sampled accordingly to the model. Cross-validation
suggests an accurate estimate for K. Nested variational scheduling of parameter updates makes
inference parallelizable and a typically reaches a better solution than the naı̈ve scheduling.

First we consider, whom-do-like relations among 18 novices in a New England monastery. The
unsupervised analysis demonstrates the type of patterns that MMB recovers from data, and allows us
to contrast the summaries of the original measurements achieved through prediction and de-noising.

The data was collected by Sampson during his stay at the monastery, while the novices were prepar-
ing to join a monastic order [10]. Sampson’s original analysis was rooted in direct anthropological
observations. He strongly suggested the existence of tight factions among the novices: the loyal
opposition (whose members joined the monastery first), the young turks (who joined later on), the
outcasts (who were not accepted in the two main factions), and the waverers (who did not take sides).
The events that took place during Sampson’s stay at the monastery supported his observations—
members of the young turks resigned or were expelled over religious differences (John and Gre-
gory). Scholars in the social sciences typically regard the labels assigned by Sampson to the novices
(and his conclusions, more in general) as ground truth to the extent of assessing the quality of results
of quantitative analyses; we shall do the same. Using the variational EM algorithm above, we fit an
array of mixed membership blockmodels with different values of K, and collected model estimates
{α̂, B̂} and posterior mixed membership vectors ~π1:18 for the novices. We used an approximation
of BIC to choose the value of K supported by the data. This criterion selects K̂ = 3, the same
number of proper groups that Sampson identified based on anthropological observations—the wa-
verers are interstitial members, rather than a group. Figure 2 shows the patterns that the mixed
membership blockmodel with K̂ = 3 recovers from data. In particular, the top-left panel shows a
graphical representation of the blockmodel B̂. The block that we can identify a-posteriori with the
loyal opposition is portrayed as central to the monastery, while the block identified with the outcasts
shows the lowest internal coherence, in accordance with Sampson’s observations. The top-right
panel illustrates the posterior means of the mixed membership scores, E[~π|Y ], for the 18 monks in
the monastery. The monks cluster according to Sampson’s classification, with Young Turks, Loyal
Opposition, and Outcasts dominating each corner respectively. We can see the central role played
by John Bosco and Gregory, who exhibit relations in all three groups, as well as the uncertain affili-
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Figure 2: Top-Left: Estimated blockmodel, B̂. Top-Right: Posterior mixed membership vectors,
~π1:18, projected in the simplex. The estimates correspond to a model with B̂ top-left, and α̂ = 0.058.
Numbered points can be mapped to monks’ names using the legend on the right. The colors identify
the four factions defined by Sampson’s anthropological observations. Bottom: Original adjacency
matrix of whom-do-like sociometric relations (left), relations predicted using approximate MLEs
for ~π1:N and B (center), and relations de-noised using the model including Zs indicators (right).

ations of Ramuald and Victor; Amand’s uncertain affiliation, however, is not captured. The bottom
panels contrast the different resolution of the original adjacency matrix of whom-do-like sociomet-
ric relations (left panel) obtained in different uses of MMB. If the goal of the analysis if to find a
parsimonious summary of the data, the amount of relational information that is captured by in α̂, B̂,
and E[~π|Y ] leads to a coarse reconstruction of the original sociomatrix (central panel). If the goal
of the analysis if to de-noising a collection of pairwise measurements, the amount of relational in-
formation that is revealed by α̂, B̂,E[~π|Y ] and E[Z→, Z←|Y ] leads to a finer reconstruction of the
original sociomatrix, Y—relations in Y are re-weighted according to how much they make sense to
the model (right panel). In conclusion, the unsupervised analysis of the sociometric relations with
MMB offers quantitative support to several of Sampson’s anthropological observations.

Second, we consider a friendship network among a group of 69 students in grades 7–12. The analysis
here directly compares clustering results obtained by MMB to published clustering results obtained
by competing models, in a setting where a fair amount of social segregation is expected [2, 3].

The data is a collection of friendship relations among 69 students in one of the 80 schools surveyed
in the National Study of Adolescent Health. The original population in the school of interest con-
sisted of 71 students. Two students expressed no friendship preferences and were excluded from the
analysis. We used variational EM algorithm to fit an array of mixed membership blockmodels with
different values ofK, collected model estimates, and used an approximation to BIC to selectK. This
procedure identifies K̂ = 6 as the model-size that best explains the data; note that six is the number
of grade-groups in the student population. The blocks are clearly interpretable a-posteriori in terms
of grades, thus providing a mapping between grades and blocks. Conditionally on such a mapping,
we assign students to the grade they are most associated with, according to their posterior-mean
mixed membership vectors, E[~πn|Y ]. To be fair in the comparison with competing models, we as-
sign students with a unique grade—despite MMB allows for mixed membership. Table 1 computes
the correspondence of grades to blocks by quoting the number of students in each grade-block pair,
for MMB versus the mixture blockmodel (MB) in [2], and the latent space cluster model (LSCM) in
[3]. The higher the sum of counts on diagonal elements is the better is the correspondence, while the
higher the sum of counts off diagonal elements is the worse is the correspondence. MMB performs
best by allocating 63 students to their grades, versus 57 of MB, and 37 of LSCM. Correspondence
only partially partially captures goodness of fit, however, it is a good metric in the setting we con-
sider, where a fair amount of clustering is present. Moreover, the extra-flexibility MMB offers over
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MMB Clusters MB Clusters LSCM Clusters
Grade 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

7 13 1 0 0 0 0 13 1 0 0 0 0 13 1 0 0 0 0
8 0 9 2 0 0 1 0 10 2 0 0 0 0 11 1 0 0 0
9 0 0 16 0 0 0 0 0 10 0 0 6 0 0 7 6 3 0

10 0 0 0 10 0 0 0 0 0 10 0 0 0 0 0 0 3 7
11 0 0 1 0 11 1 0 0 1 0 11 1 0 0 0 0 3 10
12 0 0 0 0 0 4 0 0 0 0 0 4 0 0 0 0 0 4

Table 1: Grade levels versus (highest) expected posterior membership for the 69 students, according
to three alternative models. MMSB is the proposed mixed membership stochastic blockmodel, MSB
is the mixture blockmodel in [2], and LSCM is the latent space cluster model in [3].

MB and LSCM reduces bias in the prediction of the membership of students to blocks. In other
words, mixed membership does not absorb noise in this example, rather it accommodates variability
in the friendship relation that is instrumental in producing better predictions.

Third, we consider physical interactions among 871 proteins in yeast. The analysis allows us to eval-
uate the utility of MMB in summarizing and de-noising complex connectivity patterns quantitatively,
using an independent set of functional annotations—consider two models that suggest different sets
of interactions as reliable; we prefer the model that reveals functionally relevant interactions.

Pairwise measurements consist of a hand-curated collection of physical protein interactions made
available by the Munich Institute of Protein Sequencing (MIPS). The yeast genome database pro-
vides independent functional annotations for each protein, which we use for evaluating the func-
tional content of the protein networks derived with the MMB from the MIPS data, as detailed below.
We explored a large model space, K = 2 . . . 225, and used five-fold cross-validation to identify
a blockmodel B that would reduce the dimensionality of the physical interactions among proteins
in the training set, while revealing robust aspects of connectivity that could be leveraged to predict
physical interactions among proteins in the test set. We determined that a fairly parsimonious model,
K = 50, provides a good description of the observed physical interaction network. This finding sup-
ports the hypothesis that proteins derived from the MIPS data are interpretable in terms functional
biological contexts. Alternatively, the blocks might encode signal at a finer resolution, such as that
of protein complexes. If that was the case, however, we would expect the optimal number of blocks
to be significantly higher; 871/5 ≈ 175, given an average size of five proteins in a protein complex.
At this stage, we evaluated the functional content of in the posterior induced by MMB. The goal is to
assess to what extent MMB reveals substantive information about the functionality of proteins that
can be used to inform subsequent analyses. To do this, first, we fit a model on the whole data set to
estimate the blockmodel,B(50×50), and the mixed membership vectors between proteins and blocks,
~π1:871, and second, we either impute physical interactions by thresholding the posterior expectations
computed using blockmodel and mixed membership map (prediction task), or we de-noise the ob-
served interactions using the blockmodel and mixed membership map (de-noising task). Posterior
expectations of each interaction are in [0, 1]. Thresholding such expectations at q, for instance, leads
to a collection of binary physical interactions that are at reliable with probability p ≥ q. We use the
independent set of functional annotations from the yeast database to decide which interactions are

MMB (K=50; MIPS de-noised with Zs & B)
MMB (K=50; MIPS summarized with Πs & B)

Recall (unnormalized)

Pr
ec

is
io

n

Figure 3: Functional content of the MIPS collection of protein interactions (yellow diamond) on a
precision-recall plot, compared against other published collections of interactions and microarray
data, and to the posterior estimates of the MMB models—computed as described in the text.

7



functionally meaningful; namely those between pairs of proteins that share at least one functional
annotation. In this sense, between two models that suggest different sets of interactions as reliable,
our evaluation assigns a higher score to the model that reveals functionally relevant interactions.
Figure 3 shows the functional content of the original MIPS collection of physical interactions (point
no.2), and of the collections of interactions computed using (B,Πs), the light blue (−×) line, and
using (B,Zs), the dark blue (−+) line, thresholded at ten different levels—precision-recall curves.
The posterior means of Πs provide a parsimonious representation for the MIPS collection, and lead
to precise interaction estimates, in moderate amount (−× line). The posterior means of Zs provide a
richer representation for the data, and describe most of the functional content of the MIPS collection
with high precision (−+ line). Most importantly, notice the estimated protein interaction networks,
i.e., ex-es and crosses, corresponding to lower levels of recall feature a more precise functional con-
tent than the original. This means that the proposed latent block structure is helpful in summarizing
the collection of interactions—by ranking them properly. On closer inspection, dense blocks of
predicted interactions contain known functional predictions that were not in the MIPS collection,
thus effectively improving the quality of the data that instantiate activity specific to few biological
contexts, such as biopolymer catabolism and homeostasis. In conclusion, results suggest that MMB
successfully reduces the dimensionality of the data, while revealing substantive information about
the multiple functionality of proteins that can be used to inform subsequent analyses.

Remarks. A. In the relational setting, cross-validation is feasible if the blockmodel estimated
on training data can be expected to hold on test data; for this to happen the network must be of
reasonable size, so that we can expect members of each block to be in both training and test sets.
In this setting, scheduling of variational updates is important; nested variational scheduling leads to
efficient and parallelizable inference. B. MMB includes two sources of variability, B,Πs, that are
apparently in competition for explaining the data, possibly raising an identifiability issue. This is
not the case, however, as the blockmodel B captures global/asymmetric relations, while the mixed
membership vectors Πs capture local/symmetric relations. This difference practically eliminates the
issue, unless there is no signal in the data to begin with. C. MMB generalizes to two important cases.
First, multiple data collections Y1:M on the same objects can be generated by the same latent vectors.
This might be useful, for instance, for analyzing multivariate sociometric relations simultaneously.
Second, in the MMSB the data generating distribution is a Bernoulli, but B can be a matrix of
parameterizes for any kind of distribution. For instance, technologies for measuring interactions
between pairs of proteins, such as mass spectrometry and tandem affinity purification, which return
a probabilistic assessment about the presence of interactions, thus setting the range of Y ∈ [0, 1].
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