Graphical Models (IV)

Applications in IR
— Probabilistic Topic Models

Eric Xing
Carnegie Mellon University
June 7, 2007

NLP and Data Mining

We want:
- Semantic-based search
- Infer topics and categorize documents
- Multimedia inference
- Automatic translation
- Predict how topics evolve
- ...
Apoptosis + Medicine

probabilistic generative model

Apoptosis + Medicine
“…probability theory is more fundamentally concerned with the structure of reasoning and causation than with numbers.”

Glenn Shafer and Judea Pearl
Introduction to Readings in Uncertain Reasoning, Morgan Kaufmann, 1990
This Talk

- A recap of graphical model
- Two families of probabilistic topics models and approximate inference
 - Bayesian admixture models
 - Random models
- Three applications
 - Topic evolution
 - Machine translation
 - Multimedia inference

Probabilistic Graphical Models

- Graph-theoretic representations of probabilistic distributions

\[
p(X_1, X_2, X_3, X_4, X_5, X_6) = p(X_1) p(X_2|X_1) p(X_3|X_2) p(X_4|X_3) p(X_5|X_4) p(X_6|X_5, X_4)
\]

- Bayesian philosophy

- Modular combination of heterogeneous parts -- divide and conquer
Many modern problems in data mining/NLP can be formulated as probabilistic inference problems

\[P(\text{query variable} | \text{query data} \& \text{KB}) \]

- Is this text document relevant to my query?
- Which category is this image in?
- What movies would I probably like?
- Create a caption for this image.
- Modeling document collections

General purpose algorithms exist to fully automate such computation

- Computational cost depends on the topology of the network
- Exact inference:
 - The junction tree algorithm
- Approximate inference:
 - Loopy belief propagation, variational inference, Monte Carlo sampling

Two types of GMs

- **Directed edges** give causality relationships (Bayesian Network or Directed Graphical Model):

- **Undirected edges** simply give correlations between variables (Markov Random Field or Undirected Graphical model):
This Talk

- A graphical model primer
- Two families of probabilistic topics models and approximate inference
 - Bayesian admixture models
 - Random models
- Three applications
 - Topic evolution
 - Machine translation
 - Multimedia inference

How to Model Semantic?

- Q: What is it about?
- A: Mainly MT, with syntax, some learning

<table>
<thead>
<tr>
<th>MT</th>
<th>Syntax</th>
<th>Learning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.6</td>
<td>0.3</td>
<td>0.1</td>
</tr>
</tbody>
</table>

A Hierarchical Phrase-Based Model for Statistical Machine Translation

We present a statistical phrase-based Translation model that uses hierarchical phrases—phrases that contain sub-phrases. The model is formally a synchronous context-free grammar but is learned from a bitext without any syntactic information. Thus it can be seen as a shift to the formal machinery of syntax based translation systems without any linguistic commitment. In our experiments using BLEU as a metric, the hierarchical Phrase based model achieves a relative improvement of 7.5% over Pharaoh, a state-of-the-art phrase-based system.
Why this is Useful?

- Q: What is it about?
 - A: Mainly MT, with syntax, some learning

<table>
<thead>
<tr>
<th>MT</th>
<th>Syntax</th>
<th>Learning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.6</td>
<td>0.3</td>
<td>0.1</td>
</tr>
</tbody>
</table>

- Q: give me similar document?
 - Structured way of browsing the collection

- Other tasks
 - Dimensionality reduction
 - TF-IDF vs. topic mixing proportion
 - Classification, clustering, and more …

A Hierarchical Phrase-Based Model for Statistical Machine Translation

We present a statistical phrase-based Translation model that uses hierarchical phrases—phrases that contain sub-phrases. The model is formally a synchronous context-free grammar but is learned from a bitext without any syntactic information. Thus it can be seen as a shift to the formal machinery of syntax based translation systems without any linguistic commitment. In our experiments using BLEU as a metric, the hierarchical Phrase-based model achieves a relative improvement of 7.5% over Pharaoh, a state-of-the-art phrase-based system.

Words in Contexts

- “It was a nice shot.”
the opposition Labor Party fared even worse, with a predicted 35 seats, seven less than last election.
Method One:

- **Hierarchical Bayesian Admixture**
Admixture Models

- Objects are bags of elements
- Mixtures are distributions over elements
- Objects have mixing vector \(\theta \)
 - Represents each mixtures’ contributions
- Object is generated as follows:
 - Pick a mixture component from \(\theta \)
 - Pick an element from that component

Topic Models = Admixture Models

Generating a document

- Draw \(\theta \) from the prior
 - For each word \(n \)
 - Draw \(z_n \) from \(\text{multinomial}(\theta) \)
 - Draw \(w_n | z_n, \{\beta_{ik}\} \) from \(\text{multinomial}(\beta_{z_n}) \)
Prior Comparison

- **Dirichlet (LDA)** (Blei et al. 2003)
 - Conjugate prior means efficient inference
 - Can only capture variations in each topic’s intensity independently

- **Logistic Normal (CTM=LoNTAM)** (Blei & Lafferty 2005, Ahmed & Xing 2006)
 - Capture the intuition that some topics are highly correlated and can rise up in intensity together
 - Not a conjugate prior implies hard inference

Approximate Inference

(e.g., MF, Jordan et al 1999, GMF, Xing et al 2004)

- **Log Partition Function**
 \[
 \log \left(1 + \sum_{\gamma=1}^{K} e^{-\gamma} \right)
 \]

- **Multivariate Quadratic Approx.**
 - Closed Form Solution for \(\mu^*, \Sigma^*\)
 - Ahmed & Xing

- **Tangent Approx.**
 - Numerical Optimization to fit \(\mu^*, \text{Diag}(\Sigma^*)\)
 - Blei & Lafferty

- **\(\Sigma^*\) is full matrix**
- **\(\Sigma^*\) is assumed to be diagonal**
Variational Inference

\[
\begin{align*}
P(\gamma, z_{1:n} | D) & \quad \text{Approximate the Integral} \\
& \quad \text{Approximate the Posterior} \\
\arg \min_{\mu^*, \Sigma^*, \phi_{1:n}^*} KL(q || p) & \quad \text{Solve} \\
q(\gamma, z_{1:n}) &= q(\gamma | \mu^*, \Sigma^*) \prod q(z_i | \phi_i) \\
\end{align*}
\]

Variational Inference With no Tears

\[
\begin{align*}
P(\gamma, z | D) & \quad \text{Iterate until Convergence} \\
\text{Pretend you know } E[Z_{1:n}] & \quad P(\gamma | E[z_{1:n}], \mu, \Sigma) \\
\text{Now you know } E[\gamma] & \quad P(z_{1:n} | \gamma, w_{1:k}, \beta_{1:k}) \\
\end{align*}
\]

More Formally:

\[
q^*(X_C) = P\left(X_C | \langle S_y \rangle_{\beta_y}, \forall y \in X_{MB} \right)
\]

Message Passing Scheme (GMF)

Equivalent to previous method (Xing et. al.2003)
LoNTAM Variations Inference

- Fully Factored Distribution

\[q(y, z_{in}) = q(y) \prod q(z_i) \]

- Two clusters: \(\lambda \) and \(Z_{1:n} \)

\[q^*(X_c) = P\left(X_c \mid \langle S_{\gamma} \rangle_{q_y} : \forall y \in X_{mb}\right) \]

- Fixed Point Equations

\[
q_y^*(\gamma) = P\left(\gamma \mid \langle S_{\gamma} \rangle_{q_y}, \mu, \Sigma\right) \\
q_z^*(z) = P\left(z \mid \langle S_{\gamma} \rangle_{q_y}, \beta_{ik}\right)
\]

Variational \(\gamma \)

\[
q_{\lambda}^*(\gamma) = P\left(\gamma \mid \langle S_{\gamma} \rangle_{q_y}, \mu, \Sigma\right) \\
\propto P(\gamma \mid \mu, \Sigma) P(\langle S_{\gamma} \rangle_{q_y} \mid \gamma)
\]

\[
S_z = m = \left[\sum_n I(z_a = 1), \ldots, \sum_n I(z_a = k)\right]
\]

\[
\propto N(\gamma \mid \mu, \Sigma) \exp\left(\langle m \rangle_{q_y}, \gamma - N \times C(\gamma)\right)
\]

\[
\propto \exp\left(-\frac{1}{2} \gamma' \Sigma^{-1} \gamma + \gamma^{\Sigma^{-1}} m + \langle m \rangle_{q_y}, \gamma - N \times C(\gamma)\right)
\]

\[
C(\gamma) = C(\gamma) + g_{1}^{*} (\gamma - \gamma_{-}) + 0.5 (\lambda - \gamma_{-}) H (\gamma - \gamma_{-})
\]

\[
q_{\lambda}^*(\gamma) = N(\gamma \mid \mu, \Sigma) \\
\mu = \Sigma \{\Sigma^{-1} \mu + NH \gamma + \langle m \rangle - N \gamma\}
\]

Eric Xing
Tangent Approximation

Graph showing tangent approximation

Test on Synthetic Text

Graphs illustrating test on synthetic text
Comparison: accuracy and speed

L2 error in topic vector est. and # of iterations

- Varying Num. of Topics
- Varying Voc. Size
- Varying Num. Words Per Document

Comparison: perplexity
Topics and topic graphs

Result on PNAS collection

- PNAS abstracts from 1997-2002
 - 2500 documents
 - Average of 170 words per document
- Fitted 40-topics model using both approaches
- Use low dimensional representation to predict the abstract category
 - Use SVM classifier
 - 85% for training and 15% for testing

Classification Accuracy

<table>
<thead>
<tr>
<th>Category</th>
<th>Doc</th>
<th>BL</th>
<th>AX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Genetics</td>
<td>21</td>
<td>61.9</td>
<td>61.9</td>
</tr>
<tr>
<td>Biochemistry</td>
<td>86</td>
<td>65.1</td>
<td>77.9</td>
</tr>
<tr>
<td>Immunology</td>
<td>24</td>
<td>70.8</td>
<td>66.6</td>
</tr>
<tr>
<td>Biophysics</td>
<td>15</td>
<td>53.3</td>
<td>66.6</td>
</tr>
<tr>
<td>Total</td>
<td>146</td>
<td>64.3</td>
<td>72.6</td>
</tr>
</tbody>
</table>
Method Two:

- Layered Boltzmann machines

The Harmonium

hidden units

visible units

Boltzmann machines:

\[
p(x,h \mid \theta) = \exp \left\{ \sum_i \theta_i \phi_i(x_i) + \sum_j \theta_j \phi_j(h_j) + \sum_{i,j} \theta_{i,j} \phi_{i,j}(x_i, h_j) - A(\theta) \right\}
\]
Properties of Harmoniums

- Factors are marginally dependent.
- Factors are conditionally independent given observations on the visible nodes.
\[P(\ell | w) = \prod_i P(\ell_i | w) \]
- Iterative Gibbs sampling.
- Learning with contrastive divergence

A Binomial Word-count Model

\[h_j = 3: \text{topic } j \text{ has strength } 3 \]
\[h_j \in \mathbb{R}, \quad \langle h_j \rangle = \sum_i W_{i,j} x_i \]
\[x_i = n: \text{word } i \text{ has count } n \]
\[x_i \in \mathbb{I} \]

\[
p(h | x) = \prod_j \text{Normal}_{h_j} \left[\sum_i W_{i,j} \bar{x}_i, 1 \right]
\]
\[
p(x | h) = \prod_i \text{Bi}_{x_i} \left[N, \frac{\exp(\alpha_i + \sum_j W_{i,j} h_j)}{1 + \exp(\alpha_i + \sum_j W_{i,j} h_j)} \right]
\]
\[\Rightarrow p(x) \propto \exp \left\{ \sum \alpha_i x_i - \log \Gamma(x_i) - \log \Gamma(N - x_i) + \frac{1}{2} \sum_j \left\{ \langle x_j \rangle - \sum_i W_{i,j} x_i \right\}^2 \right\} \]

Bi\(_N\)[\(N, p\)] = \(C_N^p (1-p)^{N-p} = C_N^p \left(\frac{N}{N+1}\right)^p (1-p)^{N-p} \)

Let \(p = \frac{\exp(\alpha_i + \sum_j W_{i,j} h_j)}{1 + \exp(\alpha_i + \sum_j W_{i,j} h_j)}\),
\[\text{Bi}_i[N, p] = C_N^p \left(\frac{N}{N+1}\right)^p \]
\[\propto C_N^p \exp \left\{ \left(\alpha_i + \sum_j W_{i,j} h_j\right) x_i + A_i \right\} \]
Reduce to softmax when \(N=1\)!
The Computational Trade-off

Undirected model: Learning is hard, inference is easy.

Directed Model: Learning is "easier", inference is hard.

Example: Document Retrieval.

Retrieval is based on comparing (posterior) topic distributions of documents.
- **directed models**: inference is slow. Learning is relatively "easy".
- **undirected model**: inference is fast. Learning is slow but can be done offline.

Comparison of model semantics

- **LSI**: $\bar{x} = W^* \tilde{d}$
- **LDA**: $p(X) \leftarrow Z \leftarrow \tilde{\theta}$
- **Harmonium**: $p(X) \leftarrow W^T \tilde{\theta}$
Multi-Source Data

TRECVID 2004 Example Images

Inter-Source Associations

Z and X are marginally dependent (same as GM-LDA)
Multi-wing Harmoniums

Learning and Inference

- Maximal likelihood learning based on gradient ascent.
 \[\delta \theta \propto \{ f_i(x_i) \}_{\text{data}} - \{ f_i(x_i) \}_p \]

 - Gradient computation requires model distribution \(p(\cdot) \)
 - \(p(\cdot) \) is intractable

- Contrastive Divergence
 - Approximate \(p(\cdot) \) with Gibbs sampling

- Variational approximation
 - GMF approximation
 \[q(x, z, h) = \prod_i q(x_i | v_i) \prod_k q(z_k | \mu_k, \sigma_k) \prod_j q(h_j | y_j) \]
Inter-source Inference

- GMF approximation to DWH

\[q(x, z, h) = \prod_i q(x_i | N, \nu) \prod_k q(z_k | \mu_k, \sigma_k) \prod_j q(h_j | \gamma_j) \]

- Expected mean value of topic strength:

\[\gamma_j = \sum_i W_{i,j} \nu_i + \sum_k U_{k,j} \mu_k \]

- Expected mean value of image-feature:

\[\mu_k = \sigma^2_k \left(\beta_k + \sum_j U_{k,j} \gamma_j \right) \]

- Expected mean count

\[NV_i = N \frac{\exp(\gamma_j + \sum_j W_{i,j} \nu_j)}{1 + \exp(\gamma_j + \sum_j W_{i,j} \nu_j)} \]

Examples of Latent Topics

\(T_1\)	storms gulf hawaii low forecast southeast showers
\(T_2\)	rebounds 14 shouting tests guard cut hawks
\(T_3\)	engine flying craft asteroid say hour aerodynamic
\(T_4\)	safe cross red sure dry providing services
\(T_5\)	losing jersey sixth antonio david york orlando
This Talk

- A graphical model primer
- Two families of probabilistic topics models and approximate inference
 - Bayesian admixture models
 - Random models
- Three applications
 - Learning topic graphs and topic evolution
 - Machine translation
 - Multimedia inference
Application 1: How to model topic correlation?

(a) CTM (b) PAM (c) sCTM

And topic evolution?
Sparse Correlated Model (SCTM)

NIPS: Example Network
NIPS: Held-out Perplexity

![Graphs showing topic trends and perplexity](image)

How to Model Topic Evolution

- Topic Trends
- Topic Keywords
- Topic correlations
- Number of topics

The Dynamic Correlated Topic model

![Diagrams showing topic evolution over years](image)
The Dynamic CTM

Topic Trends
Topic Words over Time

Topic Correlations Over Time
Application 2: Machine translation

B. Zhao and E.P Xing, ACL 2006

Word Alignment

The economy and trade relations between Russia and Tianjin develop steadily.
The Statistical Formulation

\[\hat{a} = \arg \max_a \Pr(f \mid e, a) \Pr(e) \]

BiTAM Model-1

- Graphical Model (a language to encode dependencies)

\[
p(F \mid A, E, \alpha, B) = \int_\theta p(\theta \mid \alpha) \prod_{n=1}^{N} \sum_{z_n} p(z_n \mid \theta) p(f_n \mid a_n, e_n, B_n) d\theta
\]
An upgrade path for BiTAMs

Sent-pair level topics

Word-pair level topics

HMM for Alignment

Word-Pair & HMM

Experiments

- **Training data**
 - Small: Treebank 316 doc-pairs (133K English words)
 - Large: FBIS-Beijing, Sinorama, XinHuaNews, (15M English words).

<table>
<thead>
<tr>
<th>Train</th>
<th>#Doc.</th>
<th>#Sent.</th>
<th>#Tokens English</th>
<th>#Tokens Chinese</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treebank</td>
<td>316</td>
<td>4172</td>
<td>133K</td>
<td>105K</td>
</tr>
<tr>
<td>FBIS.BJ</td>
<td>6,111</td>
<td>105K</td>
<td>4.18M</td>
<td>3.54M</td>
</tr>
<tr>
<td>Sinorama</td>
<td>2,373</td>
<td>103K</td>
<td>3.81M</td>
<td>3.60M</td>
</tr>
<tr>
<td>XinHua</td>
<td>19,140</td>
<td>115K</td>
<td>3.85M</td>
<td>3.93M</td>
</tr>
<tr>
<td>FOUO</td>
<td>15,478</td>
<td>368K</td>
<td>13.14M</td>
<td>11.93M</td>
</tr>
<tr>
<td>Test</td>
<td>95</td>
<td>627</td>
<td>25,500</td>
<td>19,726</td>
</tr>
</tbody>
</table>

- **Word Alignment Accuracy & Translation Quality**
 - F-measure
 - BLEU
Topics

<table>
<thead>
<tr>
<th>T1</th>
<th>Teams, sports, disabled, games members, people, cause, water, national, handicapped</th>
</tr>
</thead>
<tbody>
<tr>
<td>T2</td>
<td>Shenzhen, singapore, hongkong, stock, national, investment, yuan, options, million, dollar</td>
</tr>
<tr>
<td>T3</td>
<td>Chongqing, company, takeover, shenzhen, tianjin, city, national, government, project, companies</td>
</tr>
<tr>
<td>T4</td>
<td>Hongkong, trade, export, import, foreign, tech., high, 1998, year, technology</td>
</tr>
<tr>
<td>T5</td>
<td>House, construction, government, employee, living, provinces, macau, anhui, yuan</td>
</tr>
<tr>
<td>T6</td>
<td>Gas, company, energy, usa, russia, france, chongqing, resource, china, economy, oil</td>
</tr>
</tbody>
</table>

Comparison

![Graph comparing negative log-likelihood of HMI-STAN vs IBM Model-4 and HMI with forward-backward EM](image-url)
HM-BiTAM versus others

Translation Evaluations
Application 3: video representation/classification

- **Video**: a complex, multi-modal data type for representation and classification
 - Image, text (closed-captions, speech transcript), audio

- **Goal**: classify video segments called **video shots** into semantic categories

<table>
<thead>
<tr>
<th>Systems</th>
<th>1-gram</th>
<th>2-gram</th>
<th>3-gram</th>
<th>4-gram</th>
<th>BLEU@4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hero Sys.</td>
<td>73.92</td>
<td>40.57</td>
<td>23.21</td>
<td>13.84</td>
<td>30.70</td>
</tr>
<tr>
<td>Gale Sys.</td>
<td>75.63</td>
<td>42.71</td>
<td>25.00</td>
<td>14.30</td>
<td>32.78</td>
</tr>
<tr>
<td>HM-BiTAM</td>
<td>76.77</td>
<td>42.99</td>
<td>25.42</td>
<td>14.04</td>
<td>33.19</td>
</tr>
<tr>
<td>Ground Truth</td>
<td>76.10</td>
<td>43.85</td>
<td>26.70</td>
<td>15.73</td>
<td>34.17</td>
</tr>
</tbody>
</table>
Harmoniums for Multi-modal Data

- Dual-wing harmoniums (DWH) [Xing et al. 05]
 - modeling bi-modal data: captioned images, video
 - learning hidden topics from two "wings" of observed features

\begin{align*}
H_j & \cdots & H_k \\
X_j & \cdots & X_N \\
Z_j & \cdots & Z_M \\
\text{text features} & & \text{image features}
\end{align*}

Mixture-of-Harmoniums (MoH)

- A family of category-specific dual-wing harmoniums

\begin{align*}
\gamma \\
H_j & \cdots & H_k \\
X_j & \cdots & X_N \\
\text{category 1} \\
H_j & \cdots & H_k \\
X_j & \cdots & X_N \\
\text{category 2} \\
H_j & \cdots & H_k \\
X_j & \cdots & X_N \\
\text{category T}
\end{align*}

- classification by finding the "best-fitting" harmonium
Hierarchical Harmonium (HH)

- Incorporate category labels as a layer of hidden nodes on top of latent topic nodes

Semantic Topics by FoH

- Revealing “sub-topics” of each category
- Co-clusters of both text and image features
Semantic Topics by HH

- Reveal the "common topics" of all the data

Inter-category relationship
Classification Accuracy

- Harmonium models outperform directed models (e.g., LDA)

![Classification Accuracy Chart]

Conclusion

- GM-based topic models are cool
 - Flexible
 - Modular
 - Interactive

- There are many ways of implementing topic models
 - Directed
 - Undirected

- Efficient Inference/learning algorithms
 - GMF, with Laplace approx. for non-conjugate dist.
 - MCMC

- Many applications
 - ...