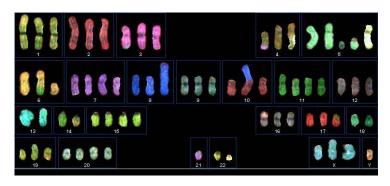


Dynamic clustering Eric Xing © Eric Xing @ CMU, 2006-2009 2

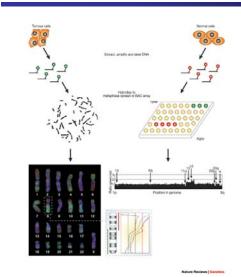
Clustering Tumor Cell States

Chromosomes of tumor cell:



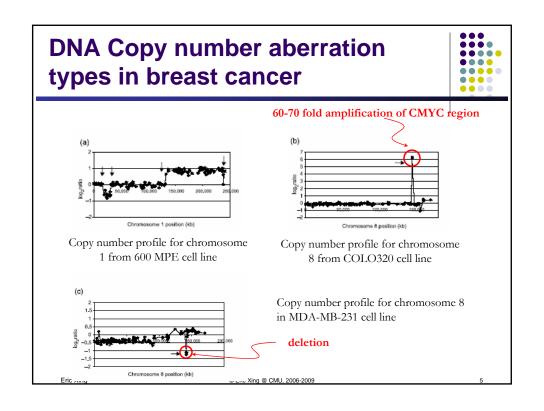
: Xing © Eric Xing @ CMU, 2

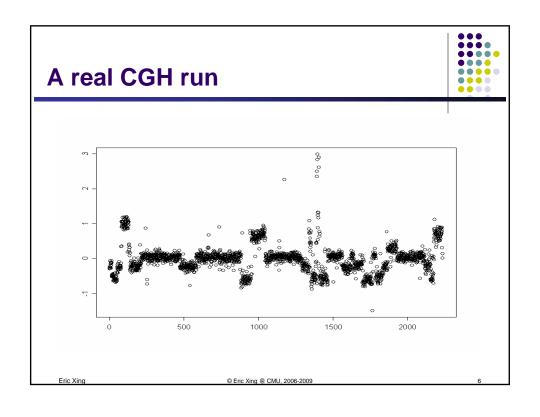
Array CGH (comparative genomic hybridization)



- The basic assumption of a CGH experiment is that the ratio of the binding of test and control DNA is proportional to the ratio of the copy numbers of sequences in the two samples.
- But various kinds of noises make the true observations less easy to interpret ...

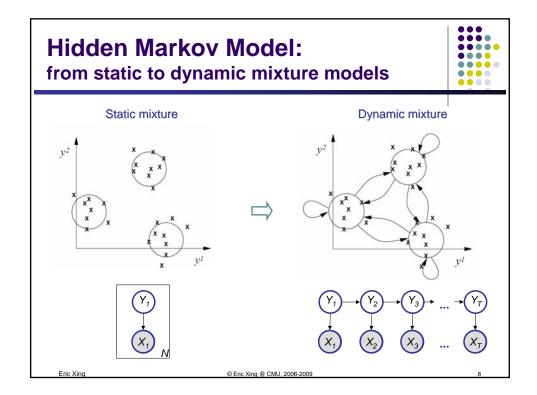
© Eric Xing @ CMU, 2006-2009





Out problem: how to cluster sequential data?

Eric Xing



The Dishonest Casino

A casino has two dice:

• Fair die

$$P(1) = P(2) = P(3) = P(5) = P(6) = 1/6$$

• Loaded die

$$P(1) = P(2) = P(3) = P(5) = 1/10$$

 $P(6) = 1/2$

Casino player switches back-&-forth between fair and loaded die once every 20 turns

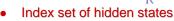
Game:

- 1. You bet \$1
- 2. You roll (always with a fair die)
- 3. Casino player rolls (maybe with fair die, maybe with loaded die)
- 4. Highest number wins \$2

© Eric Xing @ CMU, 2006-2009

Definition (of HMM)

Alphabetic set: $C = \{c_1, c_2, \dots, c_K\}$ Euclidean space:



 $I = \{1,2,\cdots,M\}$

Transition probabilities between any two states

$$p(y_t^j = 1 | y_{t-1}^i = 1) = a_{i,j},$$

 $\text{or} \quad p(y_t \mid y_{t-1}^i = 1) \sim \text{Multinomial} \Big(a_{i,1}, a_{i,2}, \dots, a_{i,M} \Big), \forall i \in \mathbb{I}.$

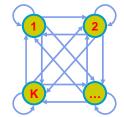
Start probabilities

$$p(y_1) \sim \text{Multinomial}(\pi_1, \pi_2, ..., \pi_M)$$

• Emission probabilities associated with each state

$$p(x_{t}\mid y_{t}^{i}=1)\sim \mathrm{Multinomial}(b_{i,1},b_{i,2},\ldots,b_{i,K}), \forall\, i\in\mathrm{I}.$$
 or in general:

$$p(\mathbf{X}_t \mid \mathbf{Y}_t^i = 1) \sim f(\cdot \mid \theta_i), \forall i \in \mathbb{I}.$$



Graphical model

State automata

Eric Xing

Applications of HMMs

- Some early applications of HMMs
 - finance, but we never saw them
 - speech recognition
 - modelling ion channels
- In the mid-late 1980s HMMs entered genetics and molecular biology, and they are now firmly entrenched.
- Some current applications of HMMs to biology
 - mapping chromosomes
 - aligning biological sequences
 - predicting sequence structure
 - inferring evolutionary relationships
 - finding genes in DNA sequence

ic Xing © Eric Xing @ CMU, 2006-2009

The Dishonest Casino Model 0.05 0.95 0.95 LOADED **FAIR** P(1|F) = 1/6P(1|L) = 1/10P(2|F) = 1/6P(2|L) = 1/100.05 P(3|F) = 1/6P(3|L) = 1/10P(4|F) = 1/6P(4 | L) = 1/10P(5|L) = 1/10P(5|F) = 1/6P(6|F) = 1/6P(6 | L) = 1/2© Eric Xing @ CMU, 2006-2009

Puzzles Regarding the Dishonest Casino

GIVEN: A sequence of rolls by the casino player

1245526462146146136136661664661636616366163616515615115146123562344

QUESTION

- How likely is this sequence, given our model of how the casino works?
 - This is the **EVALUATION** problem in HMMs
- What portion of the sequence was generated with the fair die, and what portion with the loaded die?
 - This is the **DECODING** question in HMMs
- How "loaded" is the loaded die? How "fair" is the fair die? How often does the casino player change from fair to loaded, and back?
 - This is the **LEARNING** question in HMMs

Eric Xino

© Eric Xing @ CMU, 2006-2009

13

Joint Probability

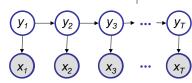
1245526462146146136136661664661636616366163616515615115146123562344

Eric Xin

© Eric Xing @ CMU, 2006-2009

Probability of a Parse

- Given a sequence $\mathbf{x} = \mathbf{x}_1, \dots, \mathbf{x}_T$ and a parse $\mathbf{y} = \mathbf{y}_1, \dots, \mathbf{y}_T$
- To find how likely is the parse: (given our HMM and the sequence)



$$\begin{array}{ll} p(\mathbf{x},\,\mathbf{y}) &= p(x_1,\ldots,x_{\mathsf{T}},\,y_1,\,\ldots,y_{\mathsf{T}}) & (\text{Joint probability}) \\ &= p(y_1)\;p(x_1\mid y_1)\;p(y_2\mid y_1)\;p(x_2\mid y_2)\;\ldots\;p(y_{\mathsf{T}}\mid y_{\mathsf{T}-1})\;p(x_{\mathsf{T}}\mid y_{\mathsf{T}}) \\ &= p(y_1)\;\mathsf{P}(y_2\mid y_1)\;\ldots\;p(y_{\mathsf{T}}\mid y_{\mathsf{T}-1})\;\times\;p(x_1\mid y_1)\;p(x_2\mid y_2)\;\ldots\;p(x_{\mathsf{T}}\mid y_{\mathsf{T}}) \end{array}$$

- Marginal probability: $p(\mathbf{x}) = \sum_{\mathbf{y}} p(\mathbf{x}, \mathbf{y}) = \sum_{\mathbf{y}_1} \sum_{\mathbf{y}_2} \cdots \sum_{\mathbf{y}_N} \pi_{\mathbf{y}_1} \prod_{t=1}^T a_{\mathbf{y}_{t-1}, \mathbf{y}_t} \prod_{t=1}^T p(\mathbf{x}_t \mid \mathbf{y}_t)$
- Posterior probability: p(y | x) = p(x, y) / p(x)

c Xing © Eric Xing @ CMU, 2006-2009

Example: the Dishonest Casino

- Let the sequence of rolls be:
 - **x**= 1, 2, 1, 5, 6, 2, 1, 6, 2, 4

- Then, what is the likelihood of
 - y = Fair, Fair, Fair, Fair, Fair, Fair, Fair, Fair, Fair?
 (say initial probs a_{0Fair} = ½, a_{0Loaded} = ½)

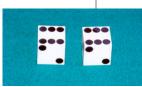
1/2 × P(1 | Fair) P(Fair | Fair) P(2 | Fair) P(Fair | Fair) ... P(4 | Fair) =

 $\frac{1}{2} \times (\frac{1}{6})^{10} \times (0.95)^9 = .00000000521158647211 = 5.21 \times 10^{-9}$

ic Xing © Eric Xing @ CMU, 2006-2009

Example: the Dishonest Casino

• So, the likelihood the die is fair in all this run is just 5.21×10^{-9}



- · OK, but what is the likelihood of
 - π = Loaded, Loaded, Loaded, Loaded, Loaded, Loaded, Loaded, Loaded, Loaded, Loaded?

½ × P(1 | Loaded) P(Loaded | Loaded) ... P(4 | Loaded) =

 $\frac{1}{2} \times (\frac{1}{10})^8 \times (\frac{1}{2})^2 (0.95)^9 = .000000000078781176215 = 0.79 \times 10^{-9}$

• Therefore, it is after all 6.59 times more likely that the die is fair all the way, than that it is loaded all the way

Eric Xing

© Eric Xing @ CMU, 2006-2009

17

Example: the Dishonest Casino

- Let the sequence of rolls be:
 - x = 1, 6, 6, 5, 6, 2, 6, 6, 3, 6

- Now, what is the likelihood $\pi = F, F, ..., F$?
 - $\frac{1}{2} \times (\frac{1}{6})^{10} \times (0.95)^9 = 0.5 \times 10^{-9}$, same as before
- What is the likelihood y = L, L, ..., L?

 $\frac{1}{2} \times (\frac{1}{10})^4 \times (\frac{1}{2})^6 (0.95)^9 = .00000049238235134735 = 5 \times 10^{-7}$

So, it is 100 times more likely the die is loaded

Eric Xing

© Eric Xing @ CMU, 2006-2009

1. Evaluation

GIVEN an HMM M. and a sequence x, FIND Prob (x | M)

ALGO. Forward

2. Decoding

GIVEN an HMM M. and a sequence x,

FIND the sequence y of states that maximizes, e.g., P(y | x, M),

or the most probable subsequence of states

ALGO. Viterbi, Forward-backward

Learning

GIVEN an HMM M, with unspecified transition/emission probs.,

and a sequence x,

FIND parameters $\theta = (\pi_i, a_{ii}, \eta_{ik})$ that maximize $P(x \mid \theta)$

ALGO. Baum-Welch (EM)

© Eric Xing @ CMU, 2006-2009

The Forward Algorithm

- We want to calculate P(x), the likelihood of x, given the HMM
 - Sum over all possible ways of generating x:

$$p(\mathbf{x}) = \sum_{\mathbf{y}} p(\mathbf{x}, \mathbf{y}) = \sum_{\mathbf{y}_1} \sum_{\mathbf{y}_2} \cdots \sum_{\mathbf{y}_N} \pi_{\mathbf{y}_1} \prod_{t=2}^T a_{\mathbf{y}_{t-1}, \mathbf{y}_t} \prod_{t=1}^T p(\mathbf{x}_t \mid \mathbf{y}_t)$$
• To avoid summing over an exponential number of paths \mathbf{y} , define

$$\alpha(\boldsymbol{y}_{t}^{k}=1)=\alpha_{t}^{k}\stackrel{\text{def}}{=}P(\boldsymbol{x}_{1},...,\boldsymbol{x}_{t},\boldsymbol{y}_{t}^{k}=1) \qquad \text{(the forward probability)}$$

• The recursion:

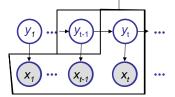
$$\alpha_t^k = p(x_t \mid y_t^k = 1) \sum_i \alpha_{t-1}^i a_{i,k}$$

$$P(\mathbf{x}) = \sum_{k} \alpha_{T}^{k}$$

The Forward Algorithm – derivation

• Compute the forward probability:

$$\alpha_t^k = P(x_1, ..., x_{t-1}, x_t, y_t^k = 1)$$



$$\begin{split} &= \sum_{y_{t-1}} P(x_1, \dots, x_{t-1}, y_{t-1}) P(y_t^k = 1 \mid y_{t-1}, x_1, \dots, x_{t-1}) P(x_t \mid y_t^k = 1, x_1, \dots, x_{t-1}, y_{t-1}) \\ &= \sum_{y_{t-1}} P(x_1, \dots, x_{t-1}, y_{t-1}) P(y_t^k = 1 \mid y_{t-1}) P(x_t \mid y_t^k = 1) \\ &= P(x_t \mid y_t^k = 1) \sum_{i} P(x_1, \dots, x_{t-1}, y_{t-1}^i = 1) P(y_t^k = 1 \mid y_{t-1}^i = 1) \\ &= P(x_t \mid y_t^k = 1) \sum_{i} \alpha_{t-1}^i a_{i,k} \end{split}$$

Chain rule: $P(A, B, C) = P(A)P(B \mid A)P(C \mid A, B)$

Eric Xing

© Eric Xing @ CMU, 2006-2009

21

The Forward Algorithm

• We can compute α_t^k for all k, t, using dynamic programming!

Initialization:

$$\alpha_1^k = P(x_1, y_1^k = 1)$$

$$= P(x_1 | y_1^k = 1)P(y_1^k = 1)$$

$$= P(x_1 | y_1^k = 1)\pi_k$$

$$\alpha_1^k = P(x_1 \mid y_1^k = 1)\pi_k$$

Iteration:

$$\alpha_t^k = P(\mathbf{x}_t \mid \mathbf{y}_t^k = 1) \sum_i \alpha_{t-1}^i \mathbf{a}_{i,k}$$

Termination:

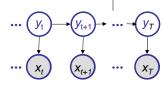
$$P(\mathbf{x}) = \sum_{k} \alpha_{T}^{k}$$

Eric Xing

© Eric Xing @ CMU, 2006-2009

The Backward Algorithm

• We want to compute $P(y_t^k = 1 | x)$, the posterior probability distribution on the tth position, given x



We start by computing

$$P(y_t^k = 1, \mathbf{x}) = P(x_1, ..., x_t, y_t^k = 1, x_{t+1}, ..., x_T)$$

$$= P(x_1, ..., x_t, y_t^k = 1) P(x_{t+1}, ..., x_T \mid x_1, ..., x_t, y_t^k = 1)$$

$$= P(x_1, ..., x_t, y_t^k = 1) P(x_{t+1}, ..., x_T \mid y_t^k = 1)$$

Forward, α_t^k Backward, $\beta_t^k = P(x_{t+1},...,x_T \mid y_t^k = 1)$

The recursion:

$$\beta_t^k = \sum_i a_{k,i} p(x_{t+1} | y_{t+1}^i = 1) \beta_{t+1}^i$$

The Backward Algorithm derivation

Define the backward probability:

$$\beta_{t}^{k} = P(x_{t+1}, ..., x_{T} \mid y_{t}^{k} = 1)$$

$$= \sum_{y_{t+1}} P(x_{t+1}, ..., x_{T}, y_{t+1} \mid y_{t}^{k} = 1)$$

$$= \sum_{i} P(y_{t+1}^{i} = 1 \mid y_{t}^{k} = 1) p(x_{t+1} \mid y_{t+1}^{i} = 1, y_{t}^{k} = 1) P(x_{t+2}, ..., x_{T} \mid x_{t+1}, y_{t+1}^{i} = 1, y_{t}^{k} = 1)$$

$$= \sum_{i} P(y_{t+1}^{i} = 1 \mid y_{t}^{k} = 1) p(x_{t+1} \mid y_{t+1}^{i} = 1) P(x_{t+2}, ..., x_{T} \mid y_{t+1}^{i} = 1)$$

$$= \sum_{i} a_{k,i} p(x_{t+1} \mid y_{t+1}^{i} = 1) \beta_{t+1}^{i}$$

Chain rule: $P(A, B, C \mid \alpha) = P(A \mid \alpha)P(B \mid A, \alpha)P(C \mid A, B, \alpha)$

The Backward Algorithm

• We can compute β_t^k for all k, t, using dynamic programming!

Initialization:

$$\beta_{\tau}^{k} = 1, \ \forall k$$

Iteration:

$$\beta_t^k = \sum_i a_{k,i} P(x_{t+1} | y_{t+1}^i = 1) \beta_{t+1}^i$$

Termination:

$$P(\mathbf{x}) = \sum_{k} \alpha_1^k \beta_1^k$$

Eric Xino

© Eric Xing @ CMU, 2006-2009

Example:

x = 1, 2, 1, 5, 6, 2, 1, 6, 2, 4

$$\alpha_{t}^{k} = P(x_{t} \mid y_{t}^{k} = 1) \sum_{i} \alpha_{t-1}^{i} a_{i,k}$$
$$\beta_{t}^{k} = \sum_{i} a_{k,i} P(x_{t+1} \mid y_{t+1}^{i} = 1) \beta_{t+1}^{i}$$

Eric Xing

© Eric Xing @ CMU, 2006-2009

Posterior decoding

We can now calculate

$$P(y_t^k = 1 \mid \mathbf{x}) = \frac{P(y_t^k = 1, \mathbf{x})}{P(\mathbf{x})} = \frac{\alpha_t^k \beta_t^k}{P(\mathbf{x})}$$

- Then, we can ask
 - What is the most likely state at position *t* of sequence **x**:

$$\mathbf{k}_{t}^{*} = \operatorname{arg\,max}_{k} P(\mathbf{y}_{t}^{k} = 1 \mid \mathbf{x})$$

- Note that this is an MPA of a single hidden state, what if we want to a MPA of a whole hidden state sequence?
- Posterior Decoding: $\left\{ y_{t}^{k_{t}^{*}} = 1 : t = 1 \cdots T \right\}$
- This is different from MPA of a whole sequence states
- This can be understood as bit error rate vs. word error rate

of hidden

X	y	P(x,y)
0	0	0.35
0	1	0.05
1	0	0.3
1	1	0.3

vs. word error rate

Eric Xino

© Eric Xing @ CMU, 2006-2009

Example: MPA of X? MPA of (X, Y)?

27

Viterbi decoding

GIVEN x = x₁, ..., x_T, we want to find y = y₁, ..., y_T, such that P(y|x) is maximized:

$$\mathbf{y}^* = \operatorname{argmax}_{\mathbf{y}} P(\mathbf{y} | \mathbf{x}) = \operatorname{argmax}_{\pi} P(\mathbf{y}, \mathbf{x})$$

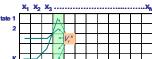
• Le

$$V_t^k = \max_{\{y_1, \dots, y_{t-1}\}} P(x_1, \dots, x_{t-1}, y_1, \dots, y_{t-1}, x_t, y_t^k = 1)$$

= Probability of most likely **sequence of states** ending at state $y_1 = k$

The recursion:

$$V_t^k = p(x_t | y_t^k = 1) \max_i a_{i,k} V_{t-1}^i$$



- Underflows are a significant problem $p(x_1,...,x_t,y_1,...,y_t) = \pi_{y_1}a_{y_1,y_2}\cdots a_{y_{t-1},y_t}b_{y_1,x_1}\cdots b_{y_t,x_t}$
 - These numbers become extremely small underflow
 - Solution: Take the logs of all values: $V_t^k = \log p(x_t | y_t^k = 1) + \max_i (\log(a_{i,k}) + V_{t-1}^i)$

Eric Xing

© Eric Xing @ CMU, 2006-2009

Computational Complexity and implementation details

 What is the running time, and space required, for Forward, and Backward?

$$\alpha_{t}^{k} = p(x_{t} | y_{t}^{k} = 1) \sum_{i} \alpha_{t-1}^{i} a_{i,k}$$

$$\beta_{t}^{k} = \sum_{i} a_{k,i} p(x_{t+1} | y_{t+1}^{i} = 1) \beta_{t+1}^{i}$$

$$V_{t}^{k} = p(x_{t} | y_{t}^{k} = 1) \max_{i} a_{i,k} V_{t-1}^{i}$$

Time: $O(K^2N)$; Space: O(KN).

- Useful implementation technique to avoid underflows
 - Viterbi: sum of logs
 - Forward/Backward: rescaling at each position by multiplying by a constant

c Xing © Eric Xing @ CMU, 2006-2009

Learning HMM: two scenarios

- **Supervised learning**: estimation when the "right answer" is known
 - Examples:

GIVEN: a genomic region $x = x_1...x_{1,000,000}$ where we have good (experimental) annotations of the CpG islands

GIVEN: the casino player allows us to observe him one evening, as he changes dice and produces 10,000 rolls

- Unsupervised learning: estimation when the "right answer" is unknown
 - Examples:

GIVEN: the porcupine genome; we don't know how frequent are the CpG islands there, neither do we know their composition

GIVEN: 10,000 rolls of the casino player, but we don't see when he changes dice

• **QUESTION:** Update the parameters θ of the model to maximize $P(x|\theta)$ --- Maximal likelihood (ML) estimation

Supervised ML estimation

- Given $x = x_1...x_N$ for which the true state path $y = y_1...y_N$ is known,
 - Define:

 A_{ij} = # times state transition $i \rightarrow j$ occurs in y B_{ik} = # times state i in y emits k in x

• We can show that the maximum likelihood parameters θ are:

$$\begin{aligned} & a_{ij}^{ML} = \frac{\#(i \to j)}{\#(i \to \bullet)} = \frac{\sum_{n} \sum_{t=2}^{T} y_{n,t-1}^{i} y_{n,t}^{j}}{\sum_{n} \sum_{t=2}^{T} y_{n,t-1}^{i}} = \frac{A_{ij}}{\sum_{j} A_{ij}} \\ & b_{ik}^{ML} = \frac{\#(i \to k)}{\#(i \to \bullet)} = \frac{\sum_{n} \sum_{t=1}^{T} y_{n,t}^{i} x_{n,t}^{k}}{\sum_{n} \sum_{t=1}^{T} y_{n,t}^{i}} = \frac{B_{ik}}{\sum_{k'} B_{ik'}} \end{aligned}$$

(Homework!)

• What if y is continuous? We can treat $\{(x_{n,t}, y_{n,t}): t=1:T, n=1:N\}$ as $\mathbb{N} \times T$ observations of, e.g., a Gaussian, and apply learning rules for Gaussian ...

Eric Xing

© Eric Xing @ CMU, 2006-2009

(Homework!)

Pseudocounts

- Solution for small training sets:
 - Add pseudocounts

 A_{ij} = # times state transition $i \rightarrow j$ occurs in $\mathbf{y} + R_{ij}$ B_{ik} = # times state i in \mathbf{y} emits k in $\mathbf{x} + S_{ik}$

- R_{ij} , S_{ij} are pseudocounts representing our prior belief
- Total pseudocounts: $R_i = \Sigma_i R_{ij}$, $S_i = \Sigma_k S_{ik}$,
 - --- "strength" of prior belief,
 - · --- total number of imaginary instances in the prior
- Larger total pseudocounts ⇒ strong prior belief
- Small total pseudocounts: just to avoid 0 probabilities --smoothing

Eric Xing

© Eric Xing @ CMU, 2006-2009

Unsupervised ML estimation

- Given $x = x_1...x_N$ for which the true state path $y = y_1...y_N$ is
 - **EXPECTATION MAXIMIZATION**
 - o. Starting with our best guess of a model M, parameters θ .

 - 1. Estimate A_{ij} , B_{ik} in the training data

 How? $A_{ij} = \sum_{n,r} \left\langle y_{n,r-1}^i y_{n,t}^i \right\rangle$ $B_{ik} = \sum_{n,r} \left\langle y_{n,r}^i \right\rangle x_{n,r}^k$, How? (homework)
 - 2. Update θ according to A_{ij} , B_{ik}
 - Now a "supervised learning" problem
 - 3. Repeat 1 & 2, until convergence

This is called the Baum-Welch Algorithm

We can get to a provably more (or equally) likely parameter set θ each iteration

The Baum Welch algorithm

• The complete log likelihood

$$\ell_{c}(\theta; \mathbf{x}, \mathbf{y}) = \log p(\mathbf{x}, \mathbf{y}) = \log \prod_{n} \left(p(y_{n,1}) \prod_{t=2}^{T} p(y_{n,t} \mid y_{n,t-1}) \prod_{t=1}^{T} p(x_{n,t} \mid x_{n,t}) \right)$$

• The expected complete log likelihood

$$\left\langle \ell_{c}(\boldsymbol{\theta}; \mathbf{x}, \mathbf{y}) \right\rangle = \sum_{n} \left(\left\langle \boldsymbol{y}_{n,1}^{i} \right\rangle_{p(\boldsymbol{y}_{n,1}|\mathbf{x}_{n})} \log \pi_{i} \right) + \sum_{n} \sum_{t=2}^{T} \left(\left\langle \boldsymbol{y}_{n,t-1}^{i} \boldsymbol{y}_{n,t}^{j} \right\rangle_{p(\boldsymbol{y}_{n,t-1},\boldsymbol{y}_{n,t}|\mathbf{x}_{n})} \log a_{i,j} \right) + \sum_{n} \sum_{t=1}^{T} \left(\boldsymbol{x}_{n,t}^{k} \left\langle \boldsymbol{y}_{n,t}^{i} \right\rangle_{p(\boldsymbol{y}_{n,t}|\mathbf{x}_{n})} \log b_{i,k} \right)$$

- EM
 - The E step

$$\begin{split} & \gamma_{n,t}^i = \left< y_{n,t}^i \right> = p(y_{n,t}^i = 1 \,|\, \mathbf{x}_n) \\ & \qquad \qquad \boldsymbol{\xi}_{n,t}^{i,j} = \left< y_{n,t-1}^i y_{n,t}^j \right> = p(y_{n,t-1}^i = 1, y_{n,t}^j = 1 \,|\, \mathbf{x}_n) \end{split}$$

$$\bullet \quad \text{The M step ("symbolically" identical to MLE)} \end{split}$$

$$\pi_{i}^{ML} = \frac{\sum_{n} \gamma_{n,1}^{i}}{N} \qquad a_{ij}^{ML} = \frac{\sum_{n} \sum_{t=2}^{T} \xi_{n,t}^{i,j}}{\sum_{n} \sum_{t=1}^{T-1} \gamma_{n,t}^{i}} \qquad b_{ik}^{ML} = \frac{\sum_{n} \sum_{t=1}^{T} \gamma_{n,t}^{i} \chi_{n,t}^{k}}{\sum_{n} \sum_{t=1}^{T-1} \gamma_{n,t}^{i}}$$

Summary

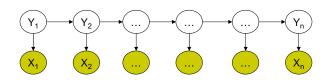
- Modeling hidden transitional trajectories (in discrete state space, such as cluster label, DNA copy number, dice-choice, etc.) underlying observed sequence data (discrete, such as dice outcomes; or continuous, such as CGH signals)
- · Useful for parsing, segmenting sequential data
- Important HMM computations:
 - The joint likelihood of a parse and data can be written as a product to local terms (i.e., initial prob, transition prob, emission prob.)
 - Computing marginal likelihood of the observed sequence: forward algorithm
 - Predicting a single hidden state: forward-backward
 - Predicting an entire sequence of hidden states: viterbi
 - Learning HMM parameters: an EM algorithm known as Baum-Welch

ric Xing

© Eric Xing @ CMU, 2006-2009

35

Shortcomings of Hidden Markov Model



- HMM models capture dependences between each state and only its corresponding observation
 - NLP example: In a sentence segmentation task, each segmental state may depend not just
 on a single word (and the adjacent segmental stages), but also on the (non-local) features of
 the whole line such as line length, indentation, amount of white space, etc.
- Mismatch between learning objective function and prediction objective function
 - HMM learns a joint distribution of states and observations P(Y, X), but in a prediction task, we need the conditional probability P(Y|X)

Eric Xin

© Eric Xing @ CMU, 2006-2009

Recall Generative vs. Discriminative Classifiers

- Goal: Wish to learn f: $X \rightarrow Y$, e.g., P(Y|X)
- Generative classifiers (e.g., Naïve Bayes):
 - Assume some functional form for P(X|Y), P(Y)
 This is a 'generative' model of the data!

- Estimate parameters of P(X|Y), P(Y) directly from training data
- Use Bayes rule to calculate P(Y|X= x)
- Discriminative classifiers (e.g., logistic regression)
 - Directly assume some functional form for P(Y|X) This is a 'discriminative' model of the data!

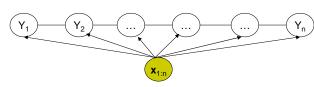
• Estimate parameters of P(Y|X) directly from training data

Eric Xino

© Eric Xing @ CMU, 2006-2009

37

Conditional Random Fields



$$P(\mathbf{y}_{1:n}|\mathbf{x}_{1:n}) = \frac{1}{Z(\mathbf{x}_{1:n})} \prod_{i=1}^{n} \phi(y_i, y_{i-1}, \mathbf{x}_{1:n}) = \frac{1}{Z(\mathbf{x}_{1:n}, \mathbf{w})} \prod_{i=1}^{n} \exp(\mathbf{w}^T \mathbf{f}(y_i, y_{i-1}, \mathbf{x}_{1:n}))$$

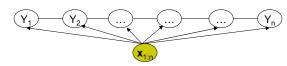
- CRF is a partially directed model
 - Discriminative model
 - Usage of global normalizer Z(x)
 - Models the dependence between each state and the entire observation sequence

Eric Xing

© Eric Xing @ CMU, 2006-2009

Conditional Random Fields

General parametric form:



$$P(\mathbf{y}|\mathbf{x}) = \frac{1}{Z(\mathbf{x}, \lambda, \mu)} \exp(\sum_{i=1}^{n} (\sum_{k} \lambda_{k} f_{k}(y_{i}, y_{i-1}, \mathbf{x}) + \sum_{l} \mu_{l} g_{l}(y_{i}, \mathbf{x})))$$
$$= \frac{1}{Z(\mathbf{x}, \lambda, \mu)} \exp(\sum_{i=1}^{n} (\lambda^{T} \mathbf{f}(y_{i}, y_{i-1}, \mathbf{x}) + \mu^{T} \mathbf{g}(y_{i}, \mathbf{x})))$$

where
$$Z(\mathbf{x}, \lambda, \mu) = \sum_{\mathbf{y}} \exp(\sum_{i=1}^{n} (\lambda^{T} \mathbf{f}(y_i, y_{i-1}, \mathbf{x}) + \mu^{T} \mathbf{g}(y_i, \mathbf{x})))$$

Eric Xin

© Eric Xing @ CMU, 2006-2009

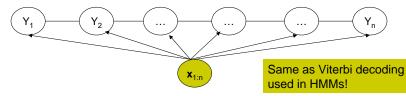
39

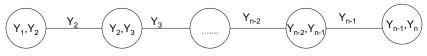
CRFs: Inference

• Given CRF parameters λ and $\mu,$ find the \textbf{y}^* that maximizes $\textbf{P}(\textbf{y}|\overset{'}{\textbf{x}})$

$$\mathbf{y}^* = \arg\max_{\mathbf{y}} \exp(\sum_{i=1}^n (\lambda^T \mathbf{f}(y_i, y_{i-1}, \mathbf{x}) + \mu^T \mathbf{g}(y_i, \mathbf{x})))$$

- Can ignore Z(x) because it is not a function of y
- Run the max-product algorithm on the junction-tree of CRF:





Eric Xing

CRF learning

• Given $\{(\mathbf{x}_d, \mathbf{y}_d)\}_{d=1}^N$, find λ^* , μ^* such that

$$\lambda*, \mu* = \arg\max_{\lambda,\mu} L(\lambda, \mu) = \arg\max_{\lambda,\mu} \prod_{d=1}^{N} P(\mathbf{y}_{d}|\mathbf{x}_{d}, \lambda, \mu)$$

$$= \arg\max_{\lambda,\mu} \prod_{d=1}^{N} \frac{1}{Z(\mathbf{x}_{d}, \lambda, \mu)} \exp(\sum_{i=1}^{n} (\lambda^{T} \mathbf{f}(y_{d,i}, y_{d,i-1}, \mathbf{x}_{d}) + \mu^{T} \mathbf{g}(y_{d,i}, \mathbf{x}_{d})))$$

$$= \arg\max_{\lambda,\mu} \sum_{d=1}^{N} (\sum_{i=1}^{n} (\lambda^{T} \mathbf{f}(y_{d,i}, y_{d,i-1}, \mathbf{x}_{d}) + \mu^{T} \mathbf{g}(y_{d,i}, \mathbf{x}_{d})) - \log Z(\mathbf{x}_{d}, \lambda, \mu))$$

Computing the gradient w.r.t λ:

Gradient of the log-partition function in an exponential family is the expectation of the sufficient statistics.

$$\nabla_{\lambda} L(\lambda, \mu) = \sum_{d=1}^{N} \left(\sum_{i=1}^{n} \mathbf{f}(y_{d,i}, y_{d,i-1}, \mathbf{x}_d) - \sum_{\mathbf{y}} \left(P(\mathbf{y} | \mathbf{x}_d) \sum_{i=1}^{n} \mathbf{f}(y_{d,i}, y_{d,i-1}, \mathbf{x}_d) \right) \right)$$

Eric Xing

© Eric Xing @ CMU, 2006-2009

CRF learning

$$\nabla_{\lambda} L(\lambda, \mu) = \sum_{d=1}^{N} \left(\sum_{i=1}^{n} \mathbf{f}(y_{d,i}, y_{d,i-1}, \mathbf{x}_d) - \sum_{\mathbf{y}} \left(P(\mathbf{y} | \mathbf{x}_d) \sum_{i=1}^{n} \mathbf{f}(y_i, y_{i-1}, \mathbf{x}_d) \right) \right)$$

- Computing the model expectations:
 - Requires exponentially large number of summations: Is it intractable?

$$\sum_{\mathbf{y}} (P(\mathbf{y}|\mathbf{x}_d) \sum_{i=1}^n \mathbf{f}(y_i, y_{i-1}, \mathbf{x}_d)) = \sum_{i=1}^n (\sum_{\mathbf{y}} \mathbf{f}(y_i, y_{i-1}, \mathbf{x}_d) P(\mathbf{y}|\mathbf{x}_d))$$

$$= \sum_{i=1}^n \sum_{y_i, y_{i-1}} \mathbf{f}(y_i, y_{i-1}, \mathbf{x}_d) P(y_i, y_{i-1}|\mathbf{x}_d)$$

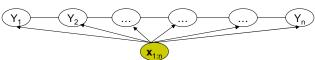
Expectation of **f** over the corresponding marginal probability of neighboring nodes!!

- Tractable!
 - Can compute marginals using the sum-product algorithm on the chain

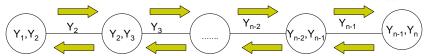
Eric Xin

CRF learning

Computing marginals using junction-tree calibration:



 $\alpha^0(y_i, y_{i-1}) = \exp(\lambda^T \mathbf{f}(y_i, y_{i-1}, \mathbf{x}_d))$ Junction Tree Initialization: $+\mu^T \mathbf{g}(y_i, \mathbf{x}_d))$



After calibration:

Also called

$$P(y_i,y_{i-1}|\mathbf{x}_d) \propto \alpha(y_i,y_{i-1}) \qquad \text{forward-backward algorithm}$$

$$\Rightarrow P(y_i,y_{i-1}|\mathbf{x}_d) = \frac{\alpha(y_i,y_{i-1})}{\sum_{y_i,y_{i-1}}\alpha(y_i,y_{i-1})} = \alpha'(y_i,y_{i-1})$$

CRF learning

Computing feature expectations using calibrated potentials:

$$\sum_{y_i, y_{i-1}} \mathbf{f}(y_i, y_{i-1}, \mathbf{x}_d) P(y_i, y_{i-1} | \mathbf{x}_d) = \sum_{y_i, y_{i-1}} \mathbf{f}(y_i, y_{i-1}, \mathbf{x}_d) \alpha'(y_i, y_{i-1})$$

• Now we know how to compute $\nabla_{\lambda} L(\lambda, \mu)$:

$$\nabla_{\lambda} L(\lambda, \mu) = \sum_{d=1}^{N} \left(\sum_{i=1}^{n} \mathbf{f}(y_{d,i}, y_{d,i-1}, \mathbf{x}_{d}) - \sum_{\mathbf{y}} (P(\mathbf{y}|\mathbf{x}_{d}) \sum_{i=1}^{n} \mathbf{f}(y_{i}, y_{i-1}, \mathbf{x}_{d})) \right)$$

$$= \sum_{d=1}^{N} \left(\sum_{i=1}^{n} (\mathbf{f}(y_{d,i}, y_{d,i-1}, \mathbf{x}_{d}) - \sum_{y_{i}, y_{i-1}} \alpha'(y_{i}, y_{i-1}) \mathbf{f}(y_{i}, y_{i-1}, \mathbf{x}_{d})) \right)$$

Learning can now be done using gradient ascent:

$$\lambda^{(t+1)} = \lambda^{(t)} + \eta \nabla_{\lambda} L(\lambda^{(t)}, \mu^{(t)})$$

$$\mu^{(t+1)} = \mu^{(t)} + \eta \nabla_{\mu} L(\lambda^{(t)}, \mu^{(t)})$$

CRF learning

• In practice, we use a Gaussian Regularizer for the parameter vector to improve generalizability

$$\lambda*, \mu* = \arg\max_{\lambda,\mu} \sum_{d=1}^{N} \log P(\mathbf{y}_{d}|\mathbf{x}_{d}, \lambda, \mu) - \frac{1}{2\sigma^{2}} (\lambda^{T}\lambda + \mu^{T}\mu)$$

- In practice, gradient ascent has very slow convergence
 - Alternatives:
 - Conjugate Gradient method
 - Limited Memory Quasi-Newton Methods

Eric Xin

Eric Xing @ CMU, 2006-200

CRFs: some empirical results

• Comparison of error rates on synthetic data

• CRF error

Data is increasingly higher order in the direction of arrow

CRFs achieve the lowest error rate for higher order data

CRFs: some empirical results

• Parts of Speech tagging

model	error	oov error
HMM	5.69%	45.99%
MEMM	6.37%	54.61%
CRF	5.55%	48.05%
MEMM ⁺	4.81%	26.99%
CRF ⁺	4.27%	23.76%

⁺Using spelling features

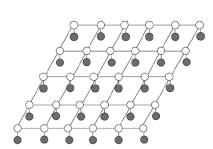
- Using same set of features: HMM >=< CRF > MEMM
- Using additional overlapping features: CRF+ > MEMM+ >> HMM

ic Xing © Eric Xing @ CMU, 2006-2009

.-

Other CRFs

- So far we have discussed only 1dimensional chain CRFs
 - Inference and learning: exact
- We could also have CRFs for arbitrary graph structure
 - E.g: Grid CRFs
 - Inference and learning no longer tractable
 - Approximate techniques used
 - MCMC Sampling
 - Variational Inference
 - Loopy Belief Propagation
 - We will discuss these techniques in the future



Eric Xin

Summary

- Conditional Random Fields are partially directed discriminative models
- Inference for 1-D chain CRFs is exact
 - Same as Max-product or Viterbi decoding
- Learning also is exact
 - globally optimum parameters can be learned
 - Requires using sum-product or forward-backward algorithm
- CRFs involving arbitrary graph structure are intractable in general
 - E.g.: Grid CRFs
 - Inference and learning require approximation techniques

 MCMC sampling

 - Variational methods
 - Loopy BP