

Applications: Computational Biology

Eric Xing

Lecture 19, August 14, 2008

Reading: see class homepage

© Eric Xing @ CMU, 2006-2009

Biological Data Analysis

- Dynamic, noisy, heterogeneous, high-dimensional data
- "High-resolution" inference
- Parsimonious
- Scalability
- Stability
- Sample complexity
- Confidence bound

Eric Xing

Structured Prediction Problem

• Unstructured prediction

$$\mathbf{x} = \begin{pmatrix} \mathbf{x}_{11} & \mathbf{x}_{12} & \dots \\ \mathbf{x}_{21} & \mathbf{x}_{22} & \dots \\ \vdots & \vdots & \dots \end{pmatrix} \qquad \mathbf{y} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \end{pmatrix}$$

$$\mathbf{y} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \end{pmatrix}$$

- Structured prediction
 - $x^{\text{artiof Books of Walling Sugar in it?"}} \ \ \, \Rightarrow \ \ \, y = \text{verb pron verb noun prep pron-}$

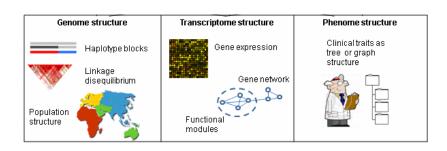
$$\mathbf{x} = \begin{pmatrix} x_{11} & x_{12} & \dots \\ x_{21} & x_{22} & \dots \\ \vdots & \vdots & \dots \end{pmatrix}$$

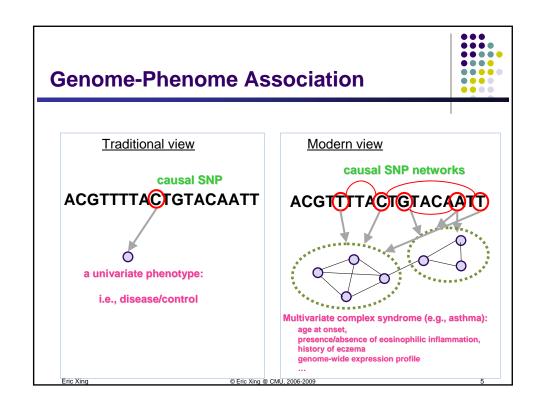
$$\mathbf{x} = \left(\begin{array}{ccc} \mathbf{x}_{11} & \mathbf{x}_{12} & \dots \\ \mathbf{x}_{21} & \mathbf{x}_{22} & \dots \\ \vdots & \vdots & \dots \end{array} \right) \qquad \mathbf{y} = \left(\begin{array}{ccc} y_{11} & y_{12} & \dots \\ y_{21} & y_{22} & \dots \\ \vdots & \vdots & \dots \end{array} \right)$$

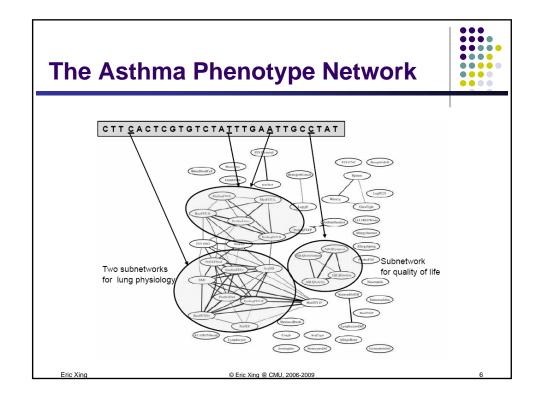
Eric Xing

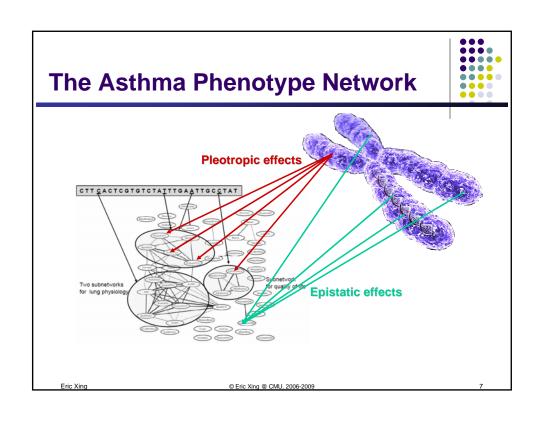
© Eric Xing @ CMU, 2006-2009

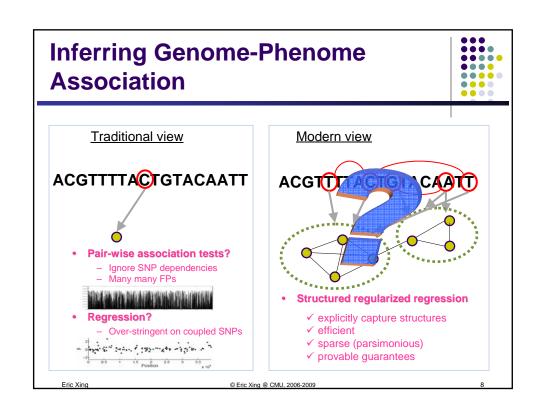
Genome and Phenome Structures

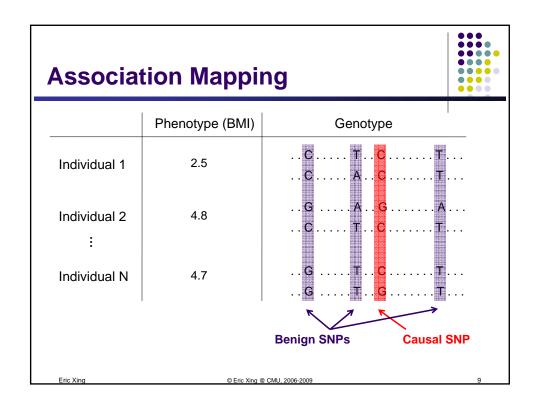




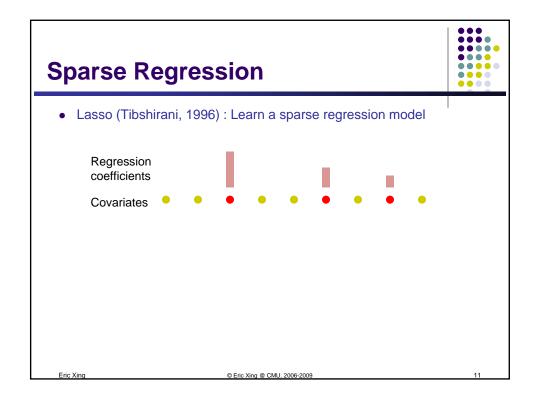


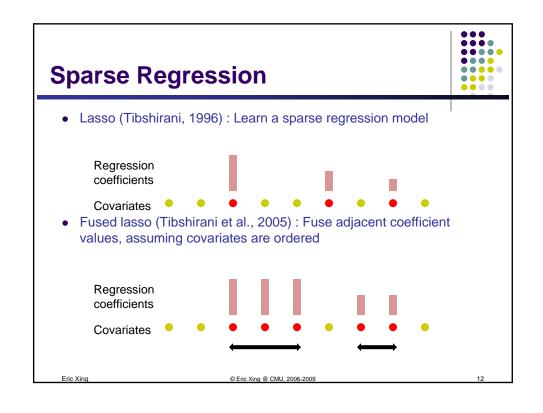






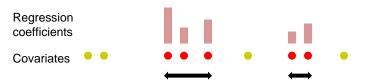
Association Mapping as Regression		
	Phenotype (BMI)	Genotype
Individual 1	2.5	0100
Individual 2	4.8	1111
Individual N	4.7	2210
	\mathbf{y}_i =	$\sum_{j=1}^{J} x_{ij} \beta_j \qquad \begin{array}{c} \text{SNPs with large} \\ \beta_j \text{ are relevant} \end{array}$





Sparse Regression

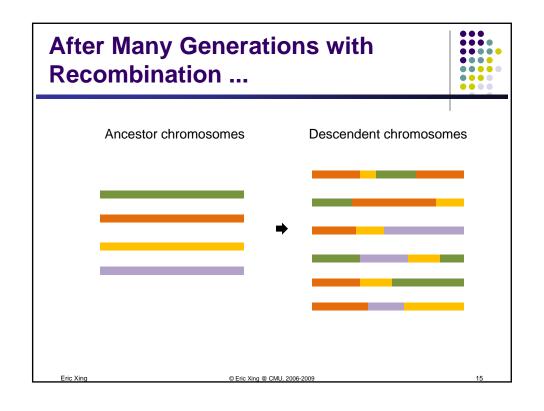
• Block-regularized regression

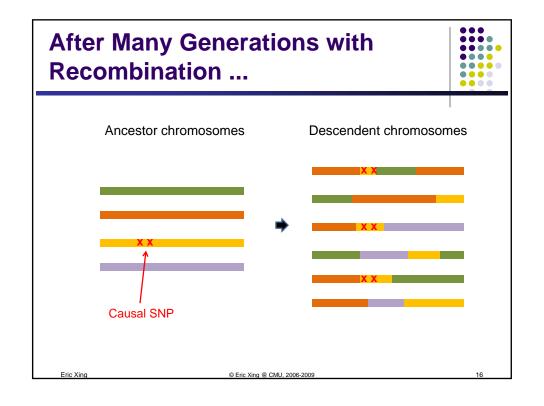


- The block boundaries are determined probabilistically.
- Motivated by association mapping problem in computational biology
 - The block structure in genome arising from a non-random recombination process

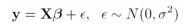
© Eric Xing @ CMU, 2006-2009

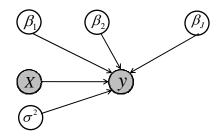
Parent chromosomes Offspring chromosomes After recombination Mother Recombination rate \wp : frequency of recombination per unit distance on chromosome (often, per kb)





Bayesian Variable Selection (George and McCulloch, 1993, Ishwaran and Rao, 2005)





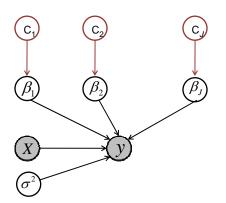
© Eric Xing @ CMU, 2006-2009

Bayesian Variable Selection

(George and McCulloch, 1993, Ishwaran and Rao, 2005)

If ${\it C_j}$ = 0 (irrelevant), ${\it \beta_j}=0$ If ${\it C_j}$ = 1 (relevant), use Laplacian prior $\beta_j | c_j \sim \frac{1}{2(2\lambda\sigma^2)} \exp\left(-\frac{|\beta_j|}{2\lambda\sigma^2}\right)$

$$\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \epsilon, \ \epsilon \sim N(0, \sigma^2)$$



© Eric Xing @ CMU, 2006-2009

Bayesian Variable Selection (George and McCulloch, 1993, Ishwaran and Rao, 2005)

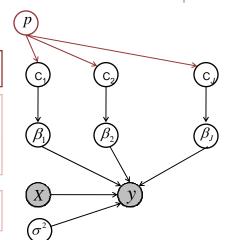
Bernoulli prior on C_i 's

$$c_j \sim \text{Bernoulli}(p)$$

If ${\it C_j}$ = 0 (irrelevant), ${\it \beta_j}=0$ If ${\it C_j}$ = 1 (relevant), use Laplacian prior

$$\beta_j | c_j \sim \frac{1}{2(2\lambda\sigma^2)} \exp\left(-\frac{|\beta_j|}{2\lambda\sigma^2}\right)$$

$$\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \epsilon, \ \epsilon \sim N(0, \sigma^2)$$



© Eric Xing @ CMU, 2006-2009

Markov Chain Prior

$$P(\mathbf{c}) = P(c_1) \prod_{j=2}^{J} P(c_j | c_{j-1})$$

Markov Chain Prior

$$P(\mathbf{c}) = P(c_1) \prod_{j=2}^{J} \underbrace{P(c_j | c_{j-1})}$$

- c_j = c_{j-1} if
 the distance between the two SNPs is small, or
 - 2) the recombination rate between the two SNPs is small

© Eric Xing @ CMU, 2006-2009

Markov Chain Prior

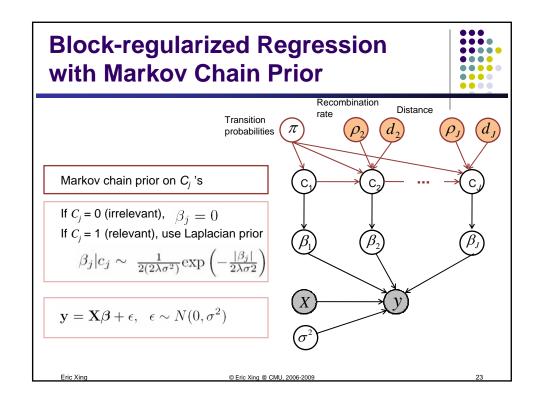
$$P(\mathbf{c}) = P(c_1) \prod_{j=2}^{J} \underbrace{P(c_j | c_{j-1})}_{}$$

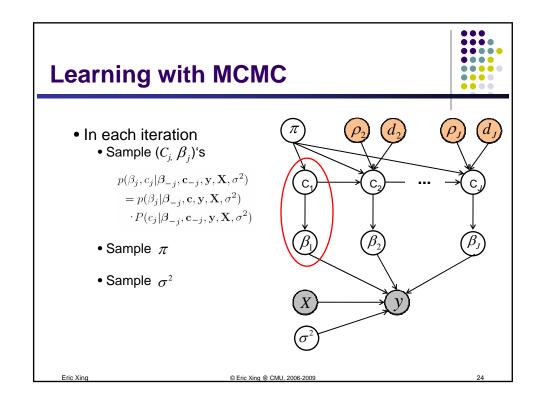
Poisson process

$$\begin{split} P(c_{j}|c_{j-1}) &= \exp(-d_{j}\rho_{j}) \ \delta(c_{j},c_{j-1}) \\ &+ (1 - \exp(-d_{j}\rho_{j})) \ \Pi_{c_{j-1},c_{j}} \end{split}$$

- ρ_j : Recombination rate at jth SNP
- d_j : Distance between jth and (j-1)th SNP
- Π : Transition probability matrix

$$\left(\begin{array}{ccc} \pi_0 & 1 - \pi_0 \\ 1 - \pi_1 & \pi_1 \end{array}\right)$$

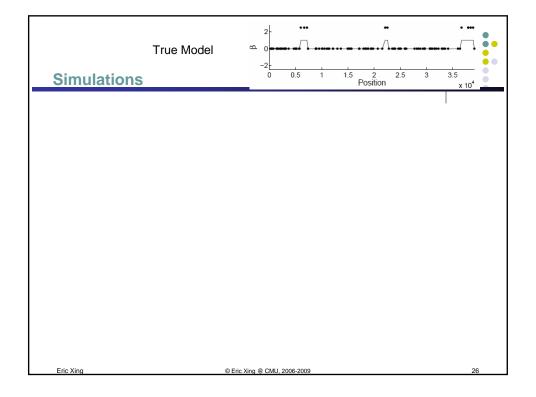


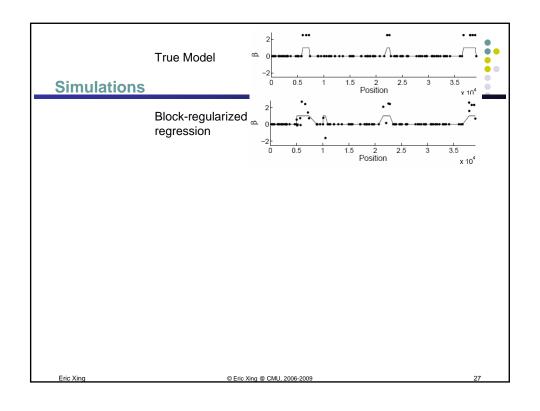


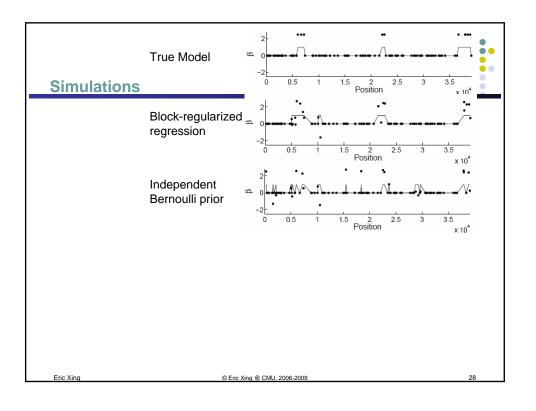
Experiments

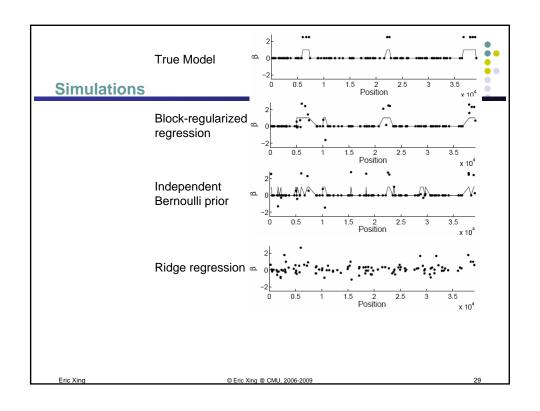
- Simulation study
 - Comparison with
 - Bayesian variable selection with independent Bernoulli prior
 - Lasso
 - Ridge regression
 - Simulate covariates from *ms* (Hudson, 2002)
 - Estimate recombination rates using PHASE (Li and Stephens, 2004)
 - 10 relevant SNPs out of 100-250 SNPs
 - 180 individuals
 - MCMC sampling for 5000 iterations after 2000 burn-in
- Mouse dataset

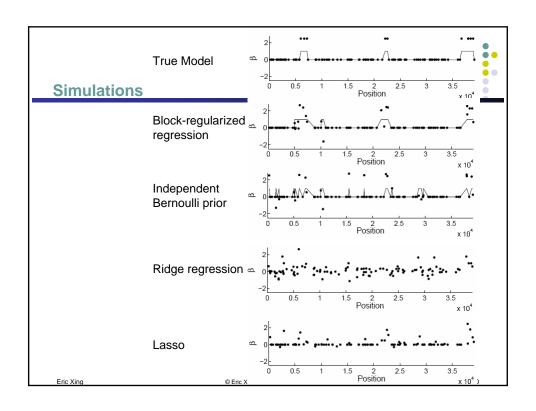
Fric Xino

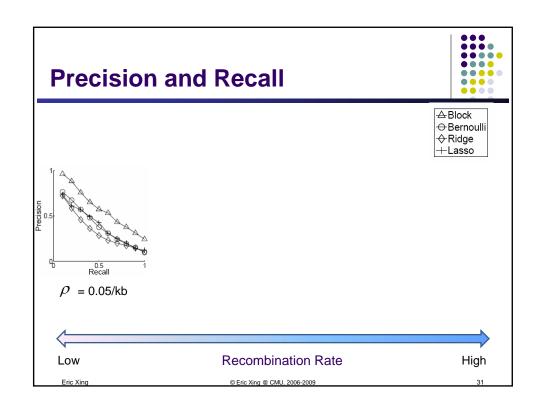


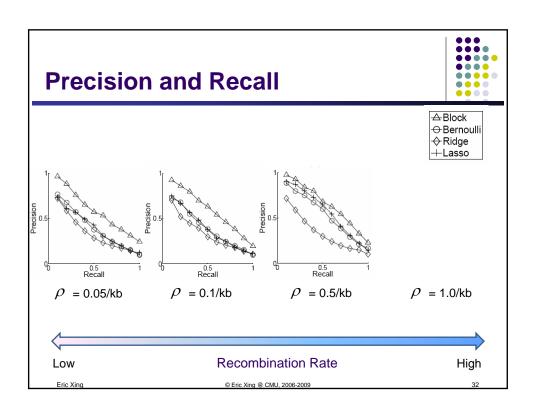


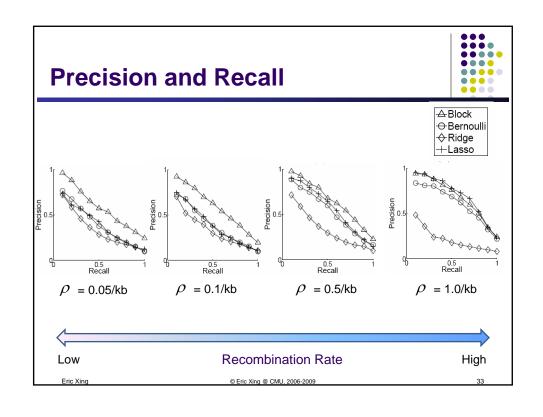


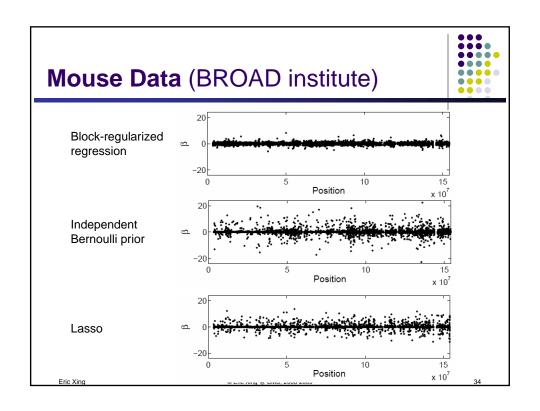


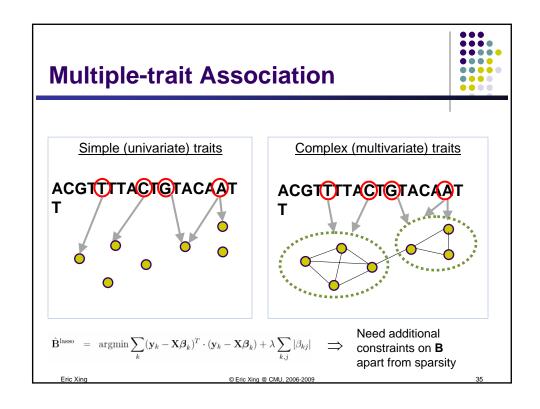


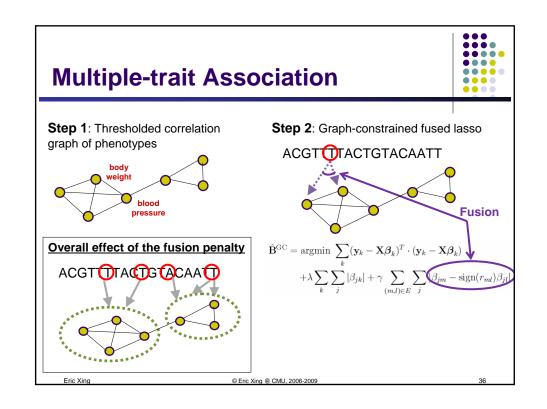






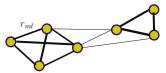




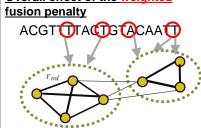


Multiple-trait Association

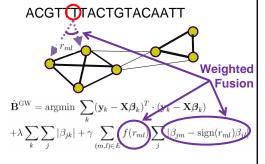
Step 1: Thresholded correlation graph of phenotypes with weights



Overall effect of the weighted



Step 2: Graph-weighted fused lasso



ing © Eric Xing @ CMU, 2006-2

Convex Optimization

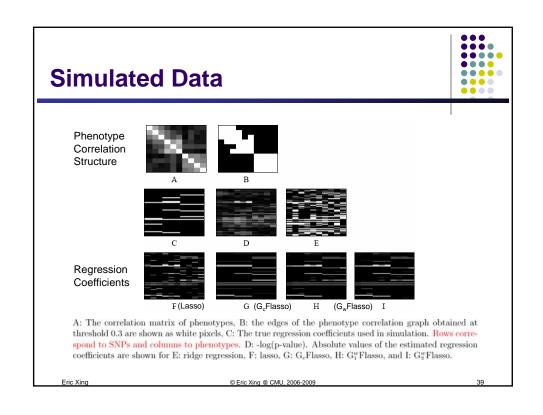
- Quadratic programming formulation
 - Graph-constrained fused lasso

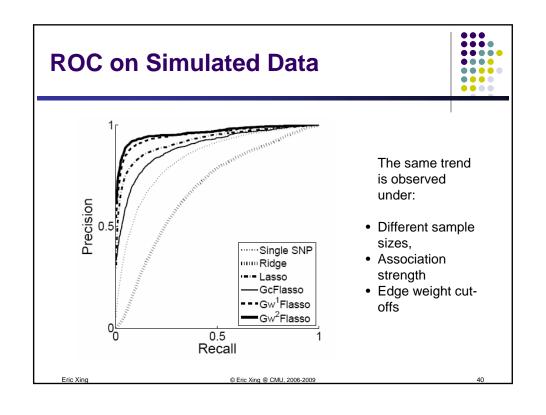
$$\begin{split} & \hat{\mathbf{B}}^{\mathrm{GC}} = \mathrm{argmin} \; \sum_k (\mathbf{y}_k - \mathbf{X}\boldsymbol{\beta}_k)^T \cdot (\mathbf{y}_k - \mathbf{X}\boldsymbol{\beta}_k) \\ \bullet \quad & \text{Gra} \quad \text{s. t.} \quad \sum_k \sum_j |\beta_{jk}| \leq s_1 \; \text{and} \; \sum_{(m,l) \in E} \sum_j |\beta_{jm} - \mathrm{sign}(r_{ml})\beta_{jl}| \leq s_2 \end{split}$$

$$\hat{\mathbf{B}}^{\mathrm{GW}} = \mathrm{argmin} \, \sum_k (\mathbf{y}_k - \mathbf{X}\boldsymbol{\beta}_k)^T \cdot (\mathbf{y}_k - \mathbf{X}\boldsymbol{\beta}_k)$$

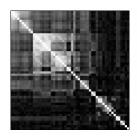
 $\bullet \quad \text{Many} \quad \sum_k \sum_j |\beta_{jk}| \leq s_1 \text{ and } \sum_{(m,l) \in E} f(r_{ml}) \sum_j |\beta_{jm} - \text{sign}(r_{ml})\beta_{jl}| \leq s_2 \\ \text{optimization problems can be used}$

Eric Xino

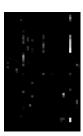




Asthma Multiple-trait Association



Single-marker Single-trait test



Lasso

Graphconstrained Fused lasso

Graphweighted Fused lasso

Eric Xin

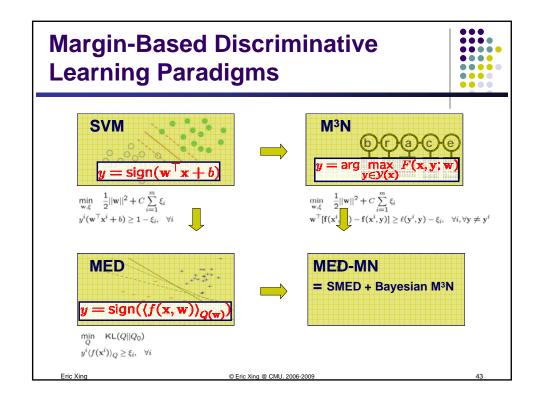
© Eric Xing @ CMU, 2006-2009

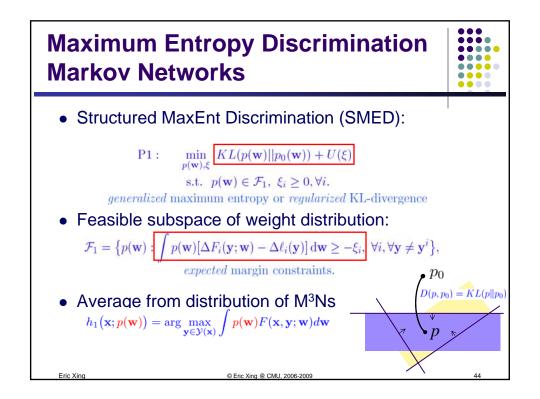
Summary

- Likelihood-based Structured Input or Structured Output
 - Block-regularized regression makes use of the prior knowledge on the block structure such as distance and recombination rate between adjacent SNPs.
 - Graph-guided fused lasso framework incorporates correlation information among phenotypes to detect pleiotropic effect of genotypic variations.
- Future Work
 - Combine structural information in both genome and phenome in a single statistical method

Eric Xino

© Eric Xing @ CMU, 2006-2009





Solution to MaxEnDNet

- Theorem:
 - Posterior Distribution:

$$p(\mathbf{w}) = \frac{1}{Z(\alpha)} p_0(\mathbf{w}) \exp \left\{ \sum_{i, \mathbf{y}} \alpha_i(\mathbf{y}) [\Delta F_i(\mathbf{y}; \mathbf{w}) - \Delta \ell_i(\mathbf{y})] \right\}$$

– Dual Optimization Problem:

D1:
$$\max_{\alpha} -\log Z(\alpha) - U^{*}(\alpha)$$
s.t. $\alpha_{i}(\mathbf{y}) \geq 0, \ \forall i, \ \forall \mathbf{y},$

 $U^{\star}(\cdot)$ is the conjugate of the $U(\cdot)$, i.e., $U^{\star}(\alpha) = \sup_{\xi} \left(\sum_{i,y} \alpha_i(y) \xi_i - U(\xi) \right)$

Eric Xin

© Eric Xing @ CMU, 2006-200

45

Gaussian MaxEnDNet (reduction to M³N)

- Theorem
 - Assume

$$F(\mathbf{x}, \mathbf{y}; \mathbf{w}) = \mathbf{w}^{\top} \mathbf{f}(\mathbf{x}, \mathbf{y}), U(\xi) = C \sum_{i} \xi_{i}, \text{and } p_{0}(\mathbf{w}) = \mathcal{N}(\mathbf{w}|0, I)$$

Dual optimiza

$$p(\mathbf{w}) = \mathcal{N}(\mathbf{w}|\mu_{\mathbf{w}}, I), \text{ where } \mu_{\mathbf{w}} = \sum_{i, \mathbf{y}} \alpha_i(\mathbf{y}) \Delta \mathbf{f}_i(\mathbf{y})$$

- $\max_{\alpha} \sum_{i,\mathbf{y}} \alpha_i(\mathbf{y}) \Delta \ell_i(\mathbf{y}) \frac{1}{2} \| \sum_{i,\mathbf{y}} \alpha_i(\mathbf{y}) \Delta \mathbf{f}_i(\mathbf{y}) \|^2$ s.t. $\sum_{\mathbf{y}} \alpha_i(\mathbf{y}) = C; \ \alpha_i(\mathbf{y}) \ge 0, \ \forall i, \ \forall \mathbf{y},$
- Predictive rule:

$$h_1(\mathbf{x}) = \arg\max_{\mathbf{y} \in \mathcal{Y}(\mathbf{x})} \int p(\mathbf{w}) F(\mathbf{x}, \mathbf{y}; \mathbf{w}) \, d\mathbf{w} = \arg\max_{\mathbf{y} \in \mathcal{Y}(\mathbf{x})} \mu_{\mathbf{w}}^{\top} \mathbf{f}(\mathbf{x}, \mathbf{y})$$

- Thus, MaxEnDNet subsumes M³Ns and admits all the merits of maxmargin learning
- Furthermore, MaxEnDNet has at least three advantages ...

Eric Xin

© Eric Xing @ CMU, 2006-2009

Three Advantages

 An averaging Model: PAC-Bayesian prediction error guarantee

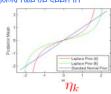
$$\Pr_{Q}(M(h, \mathbf{x}, \mathbf{y}) \leq 0) \leq \Pr_{\mathcal{D}}(M(h, \mathbf{x}, \mathbf{y}) \leq \gamma) + O\left(\sqrt{\frac{\gamma^{-2} KL(p||p_0) \ln(N|\mathcal{Y}|) + \ln N + \ln \delta^{-1}}{N}}\right)$$

Entropy regularization: Introducing useful biases

Standard Normal prior => reduction to standard M3N (we've seen it)

Laplace prior => Posterior shrinkage effects (sparse M3N)

$$\forall k, \ \langle w_k \rangle_p = \frac{2\eta_k}{\lambda - \eta_k^2}$$



Integration of Generative and Discriminative principles

Incorporate latent variables and structures (PoMEN)

Semisupervised learning (with partially labeled data)

Eric Xina

© Eric Xing @ CMU, 2006-2009

Key Challenges

Extremely high dimensionality and low data volume

- d ~ 1M
- Sample complexity with bounded error?

Sparsity bias of the model

- Often <100 features out of the !M are relevant
- Regularization schemes to enforce sparsity

Structures and hidden variables

- Inputs and outputs often bear intricate structures (e.g., chain or graphical dependencies)
- How to capture other latent structures between unobserved variables

Generalizability and scalability

Move efficient convex opt solver and Bayesian inference algorithms

Provable theoretical guarantees

- Consistency and sparsistency
- Stability, convergence rate, etc.