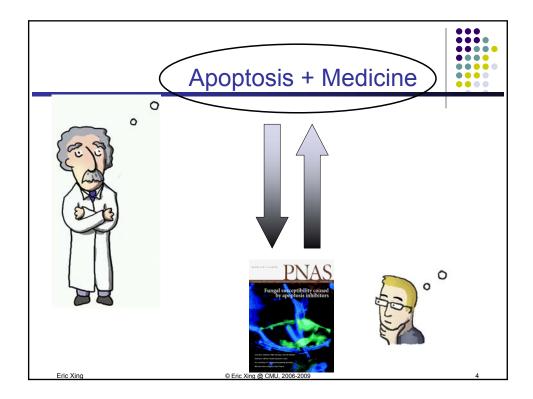


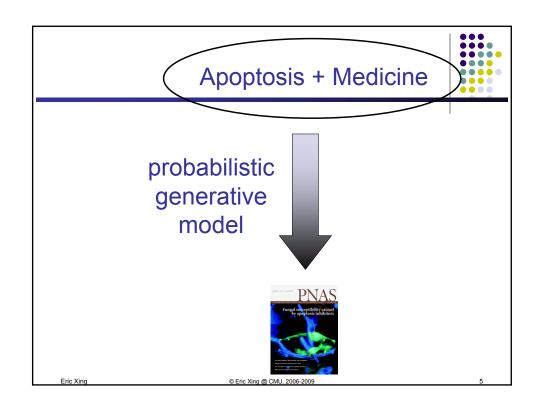
Modeling document collections

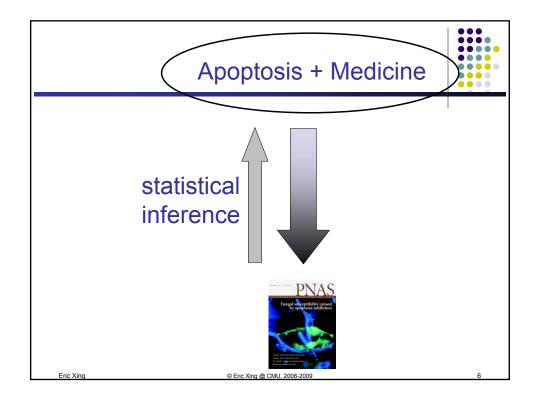
- A document collection is a dataset where each data point is itself a collection of simpler data.
 - Text documents are collections of words.
 - Segmented images are collections of regions.
 - User histories are collections of purchased items.
- Many modern problems ask questions of such data.
 - Is this text document relevant to my query?
 - Which documents are about a particular topic?
 - How have topics changed over time?
 - What does author X write about? Who is likely to write about topic Y? Who wrote this specific document?
 - Which category is this image in? Create a caption for this image.
 - What movies would I probably like?
 - and so on.....

Eric Yin

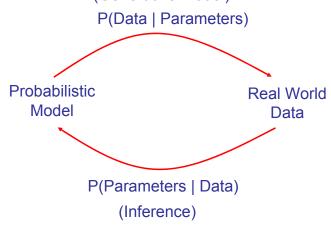
© Eric Xing @ CMU, 2006-2009







Connecting Probability Models to Data (Generative Model)



Motivation for modeling latent topical aspects

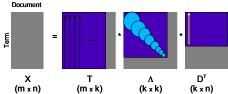
- Dimensionality reduction
 - A VSM lives in a very high-dimensional feature space (usually larger vocabulary,
 V)
 - Sparse representation of documents (|V| >> actual number of appeared words in any given document) --- often too spurious for many IR tasks
- Semantic analysis and comprehension
 - A need to define conceptual closeness,
 - to capture relation between features,
 - to distinguish and infer features from heterogeneous sources ...

Eric Xing

Latent Semantic Indexing

(Deerwester et al., 1990)

Classic attempt at solving this problem in information retrieval

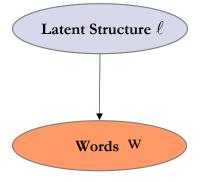


- Uses SVD to reduce document representations
- Models synonymy and polysemy
- Computing SVD is slow
- Non-probabilistic model

Eric Xin

© Eric Xing @ CMU, 2006-2009

Latent Semantic Structure



Distribution over words

$$P(\mathbf{w}) = \sum_{\ell} P(\mathbf{w}, \ell)$$

Inferring latent structure

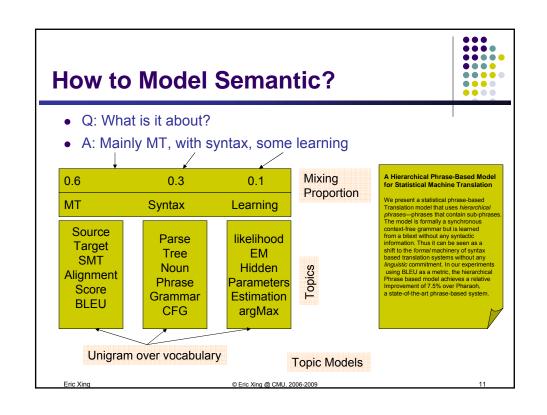
$$P(\ell \mid \mathbf{w}) = \frac{P(\mathbf{w} \mid \ell)P(\ell)}{P(\mathbf{w})}$$

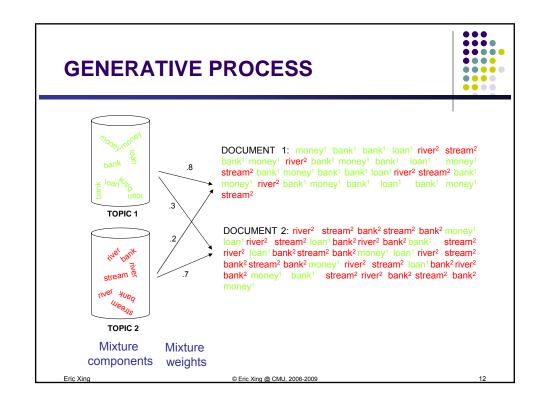
Prediction

$$P(w_{n+1} | \mathbf{w}) = ...$$

Eric Xing

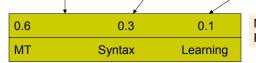
© Eric Xing @ CMU, 2006-2009





Why this is Useful?

- Q: What is it about?
- A: Mainly MT, with syntax, some learning



Mixing
Proportion

A Hierarchical Phrase-Based Model for Statistical Machine Translation

Measurement of statistical phrase based with the proportion of the

- Q: give me similar document?
 - Structured way of browsing the collection
- Other tasks
 - Dimensionality reduction
 - TF-IDF vs. topic mixing proportion
 - · Classification, clustering, and more ...

Translation model that uses hierarchical phrases—phrases that contain sub-phras The model is formally a synchronous context-free grammar but is learned from a bitext without any syntactic information. Thus it can be seen as a shift to the formal machinery of syntax based translation systems without any linguistic commitment. In our experiments using BLEU as a metric, the hierarchical Phrase based model achieves a relative Improvement of 7.5% over Pharaoh,

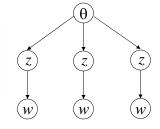
Eric Xing

© Eric Xing @ CMU, 2006-2009

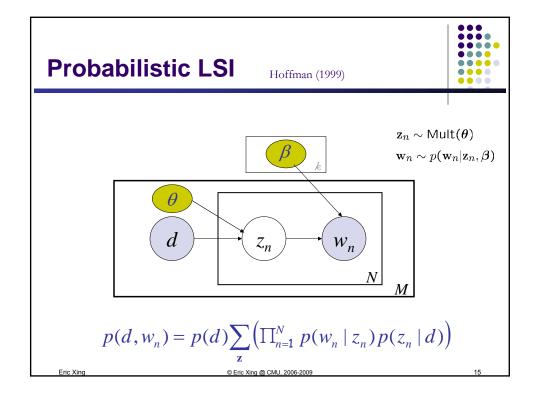
11

A generative model for documents

$$P(w_i) = \sum_{j=1}^T P(w_i|z_i=j)P(z_i=j)$$

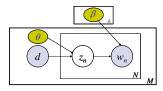


Eric Xing



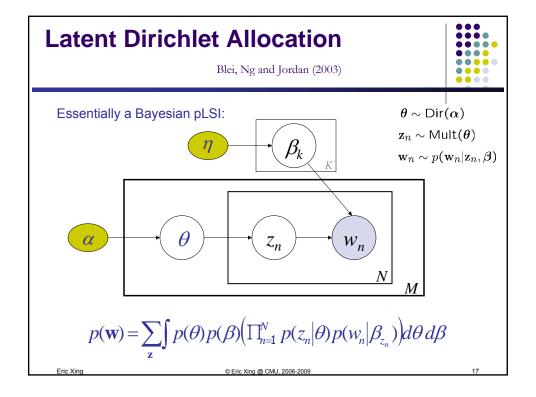
Probabilistic LSI

- A "generative" model
- Models each word in a document as a sample from a mixture model.
- Each word is generated from a single topic, different words in the document may be generated from different topics.
- A topic is characterized by a distribution over words.
- Each document is represented as a list of mixing proportions for the components (i.e. topic vector θ).



Eric Xing

© Eric Xing @ CMU, 2006-2009

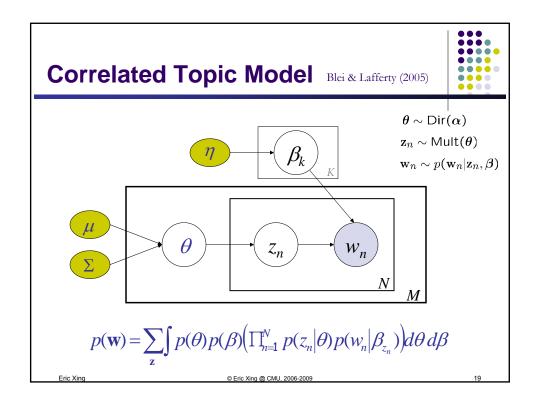


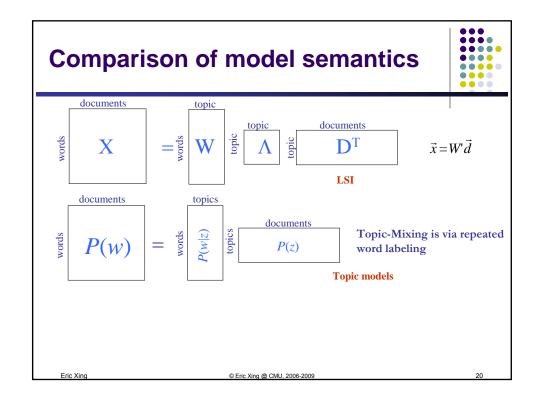
LDA

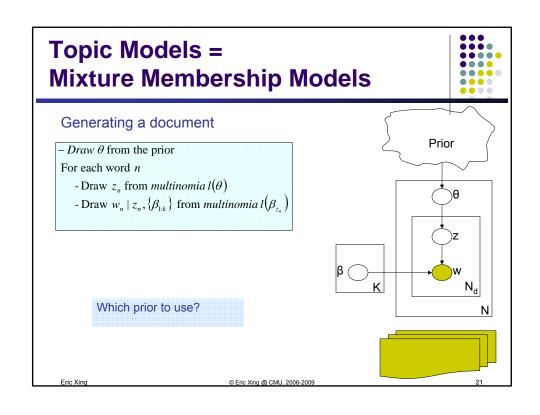
- · Generative model
- Models each word in a document as a sample from a mixture model.
- Each word is generated from a single topic, different words in the document may be generated from different topics.
- A topic is characterized by a distribution over words.
- Each document is represented as a list of mixing proportions for the components (i.e. topic vector).
- The topic vectors and the word rates each follows a Dirichlet prior --- essentially a Bayesian pLSI

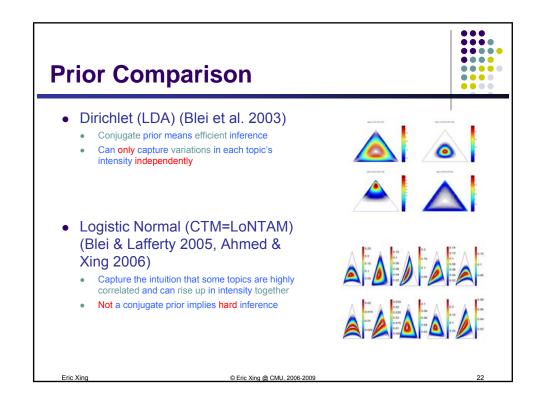
Eric Xing

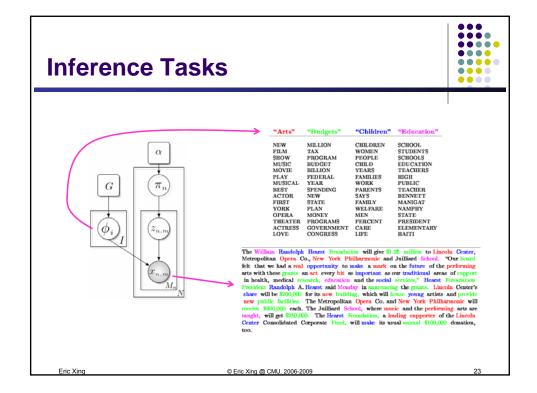
© Eric Xing @ CMU, 2006-2009











Bayesian inference

• A possible query:

$$p(\pi_n \mid D) = ?$$
$$p(z_{n,m} \mid D) = ?$$

Close form solution?
$$p(\pi_n \mid D) = \frac{p(\pi_n, D)}{p(D)}$$

$$\sum \int \left(\prod \left(\prod p(x_n \mid A_n) p(x_n \mid A_n) \right) p(x_n \mid A_n) \right) dx$$

$$= \frac{\sum\limits_{\{z_{n,m}\}} \int \left(\prod\limits_{n} \left(\prod\limits_{m} p(x_{n,m} \mid \phi_{z_{n}}) p(z_{n,m} \mid \pi_{n}) \right) p(\pi_{n} \mid \alpha) \right) p(\phi \mid G) d\pi_{-i} d\phi}{p(D)}$$

$$p(D) = \sum_{\{z_{n,m}\}} \int \cdots \int \left(\prod_{n} \left(\prod_{m} p(x_{n,m} \mid \phi_{z_{n}}) p(z_{n,m} \mid \pi_{n}) \right) p(\pi_{n} \mid \alpha) \right) p(\phi \mid \mathcal{G}) d\pi_{1} \cdots d\pi_{N} d\phi$$

 Sum in the denominator over Tⁿ terms, and integrate over n k-dimensional topic vectors

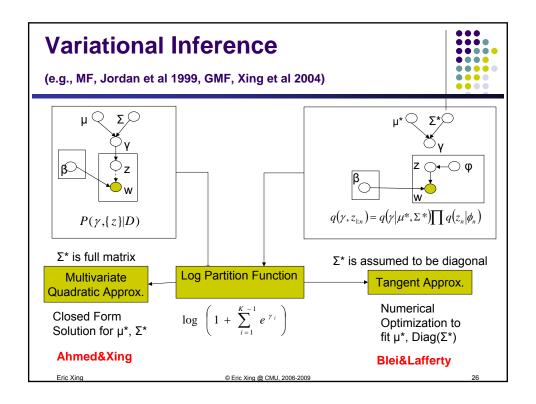
Eric Xin

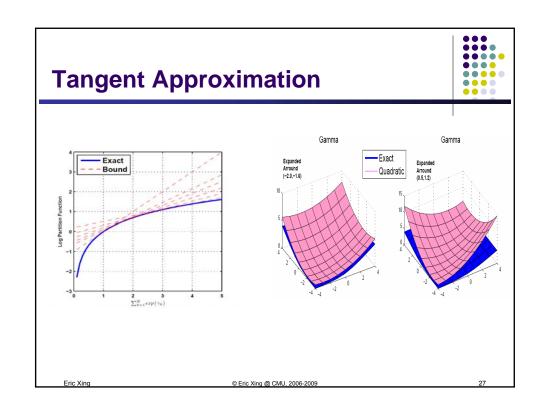
Approximate Inference

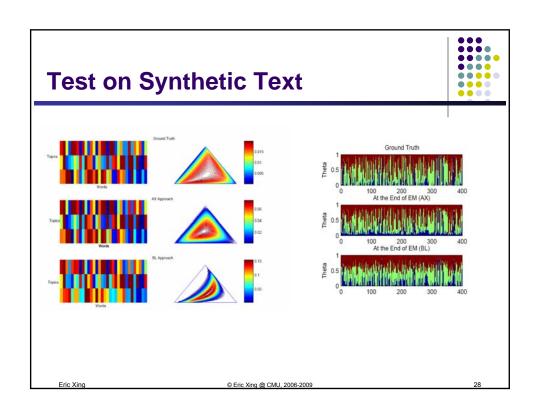
- Variational Inference
 - Mean field approximation (Blei et al)
 - Expectation propagation (Minka et al)
 - Variational 2nd-order Taylor approximation (Xing)
- Markov Chain Monte Carlo
 - Gibbs sampling (Griffiths et al)

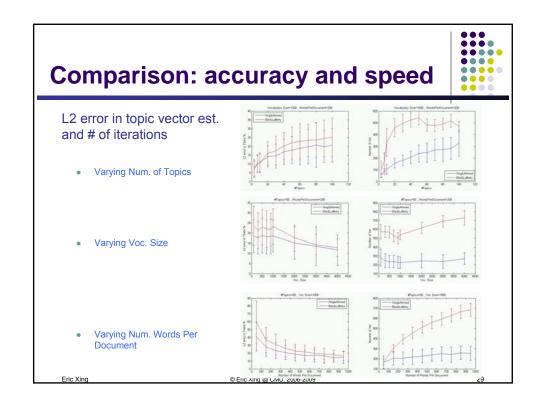
Eric Xing

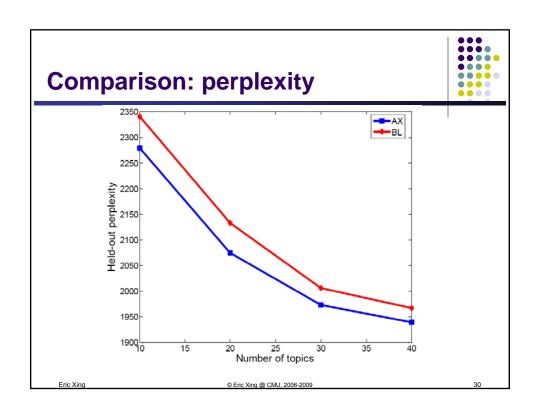
© Eric Xing @ CMU, 2006-2009









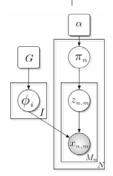


Collapsed Gibbs sampling

(Tom Griffiths & Mark Steyvers)

- Collapsed Gibbs sampling
 - Integrate out π

For variables $\mathbf{z} = z_1, z_2, ..., z_n$ Draw $z_i^{(t+1)}$ from $P(z_i | \mathbf{z}_{-i}, \mathbf{w})$ $\mathbf{z}_{-i} = z_1^{(t+1)}, z_2^{(t+1)}, ..., z_{i-1}^{(t+1)}, z_{i+1}^{(t)}, ..., z_n^{(t)}$



Eric Xing

© Eric Xing @ CMU, 2006-200

...

Gibbs sampling

- Need full conditional distributions for variables
- Since we only sample z we need

 $P(z_i = j | \mathbf{z}_{-i}, \mathbf{w}) \propto P(w_i | z_i = j, \mathbf{z}_{-i}, \mathbf{w}_{-i}) P(z_i = j | \mathbf{z}_{-i})$ $= \frac{n_{-i,j}^{(w_i)} + \beta}{n_{-i,j}^{(\cdot)} + W\beta} \frac{n_{-i,j}^{(d_i)} + \alpha}{n_{-i,\cdot}^{(d_i)} + T\alpha}$

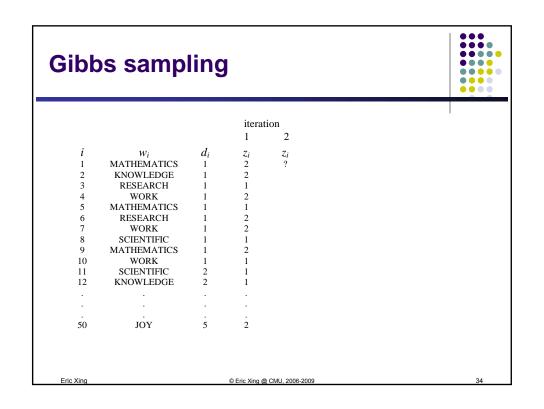
 $n_j^{(w)}$ number of times word w assigned to topic j

 $n_i^{(d)}$ number of times topic j used in document d

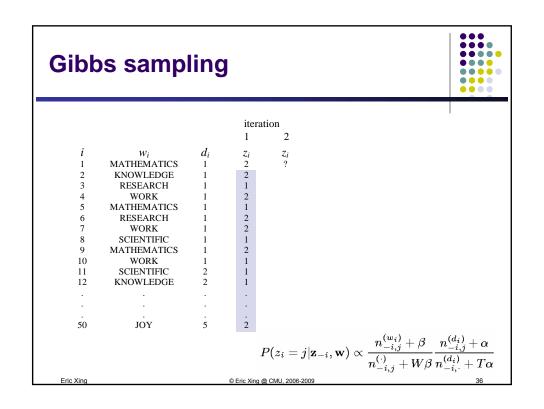
Eric Xing

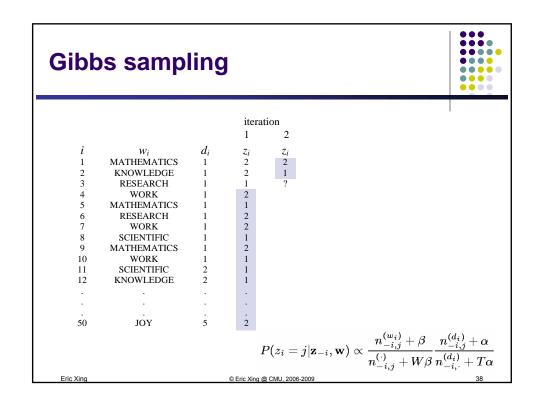
© Eric Xing @ CMU, 2006-2009

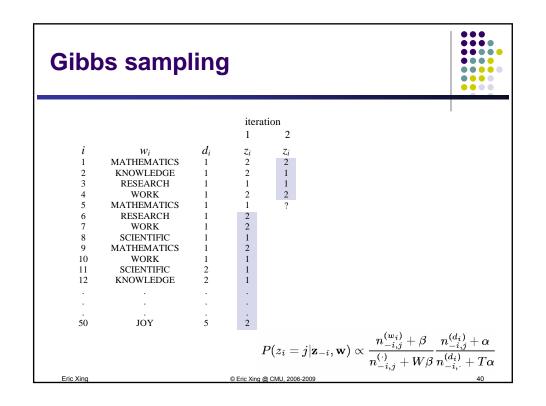
```
Gibbs sampling
                                iteration
                                1
          MATHEMATICS
          KNOWLEDGE
           RESEARCH
             WORK
          MATHEMATICS
           RESEARCH
             WORK
     8
           SCIENTIFIC
          MATHEMATICS
    10
             WORK
           SCIENTIFIC
    11
          KNOWLEDGE
    12
                                2
              JOY
    50
                              © Eric Xing @ CMU, 2006-2009
```

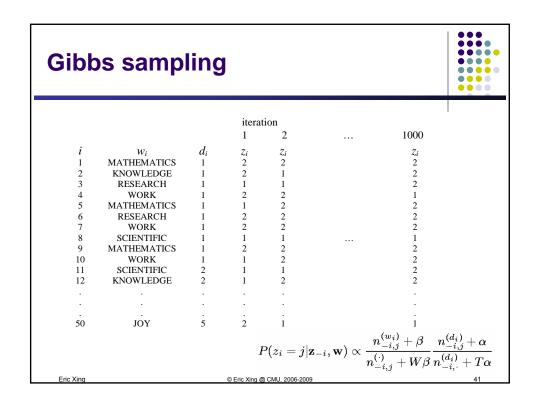


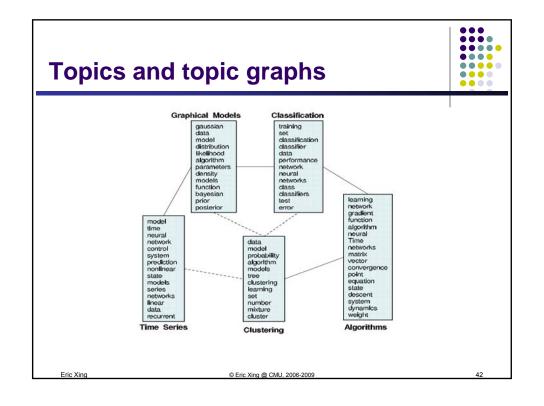
```
Gibbs sampling
                                                    iteration
                                                    1
                                                              \frac{z_i}{?}
                MATHEMATICS
                 KNOWLEDGE
                  RESEARCH
                     WORK
                MATHEMATICS
        5
6
7
8
9
                  RESEARCH
                     WORK
                  SCIENTIFIC
                MATHEMATICS
       10
                     WORK
                  SCIENTIFIC
       11
                 KNOWLEDGE
                      JOY
       50
                                                       P(z_i = j | \mathbf{z}_{-i}, \mathbf{w}) \propto rac{n_{-i,j}^{(w_i)} + eta}{n_{-i,j}^{(\cdot)} + Weta} rac{n_{-i,j}^{(d_i)} + lpha}{n_{-i,\cdot}^{(d_i)} + Tlpha}
                                                © Eric Xing @ CMU, 2006-2009
```











Result on PNAS collection

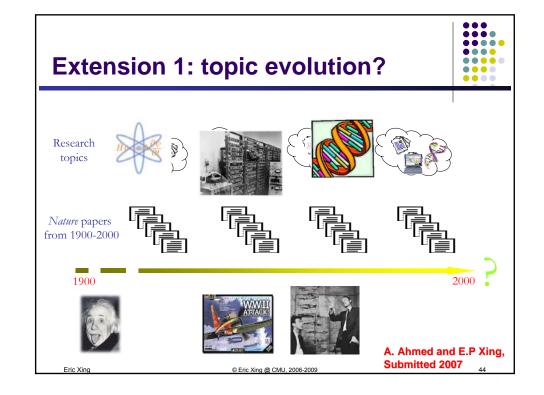
- PNAS abstracts from 1997-2002
 - 2500 documents
 - Average of 170 words per document
- Fitted 40-topics model using both approaches
- Use low dimensional representation to predict the abstract category
 - Use SVM classifier
 - 85% for training and 15% for testing

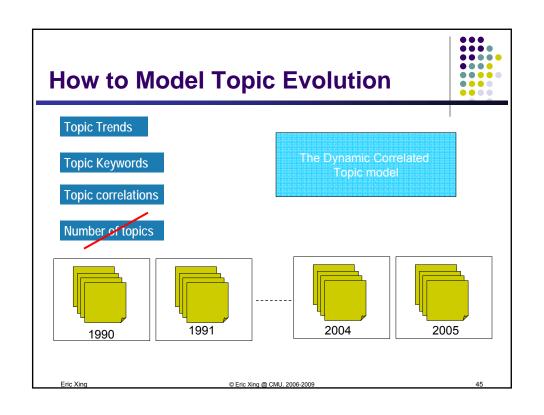
Classification Accuracy

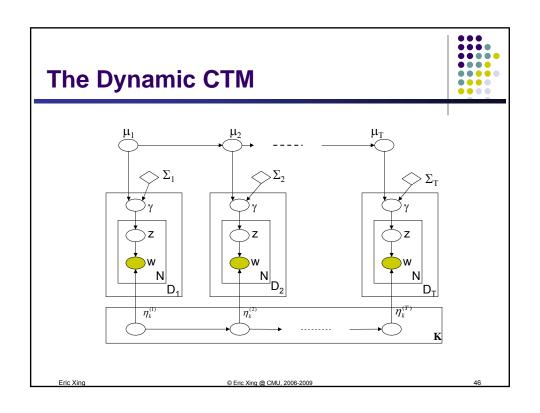
Category Genetics	Doc 21	BL 61.9	AX 61.9		-Notable -Examine represen
Biochemistry Immunology	86 24	65.1 70.8	77.9 66.6		
Biophysics Total	15 146	53.3 64.3	66.6 72.6		

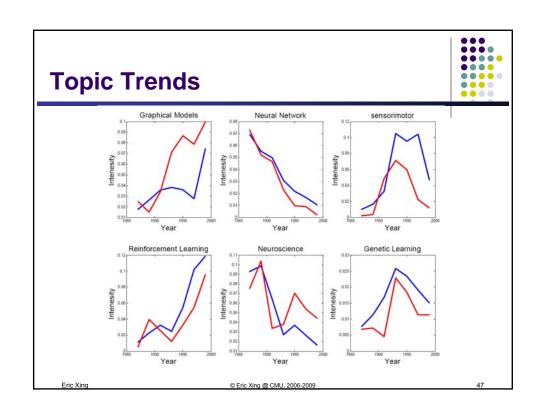
-Notable Difference -Examine the low dimensional representations below

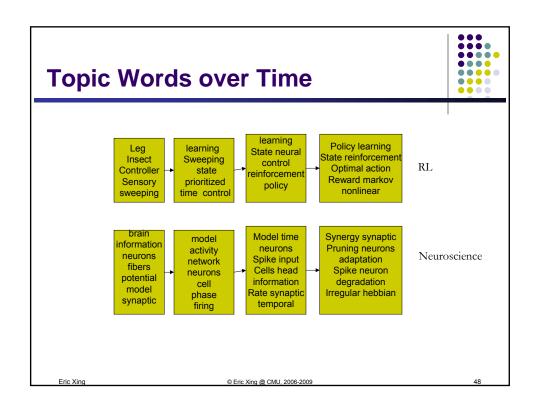
Eric Xing

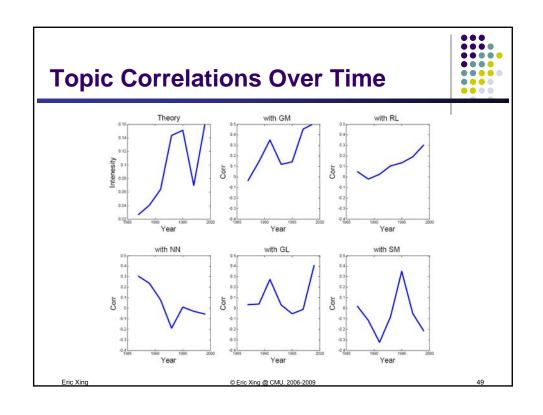


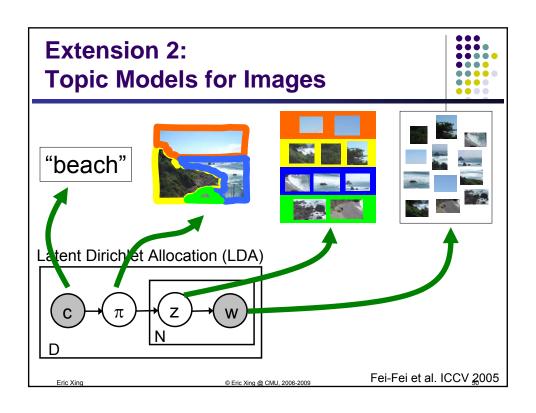


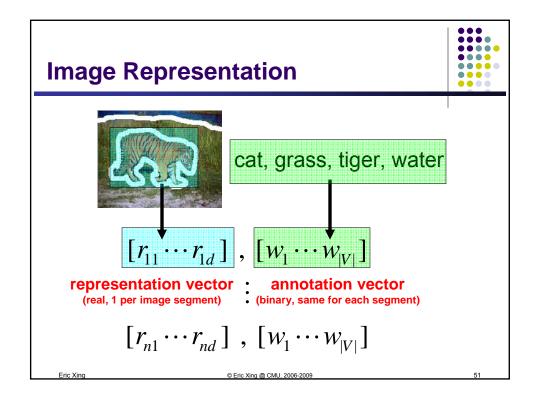


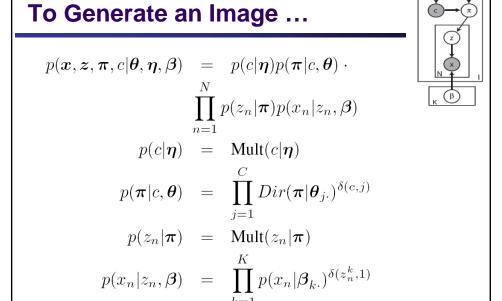


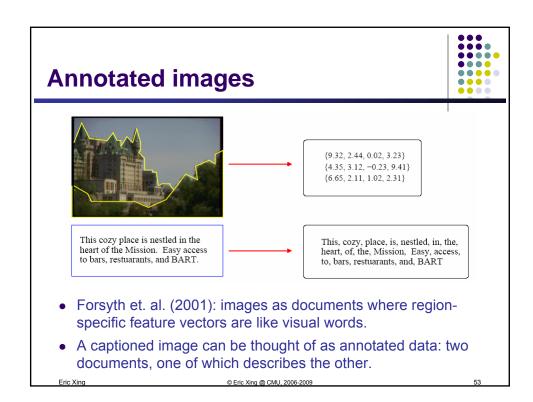


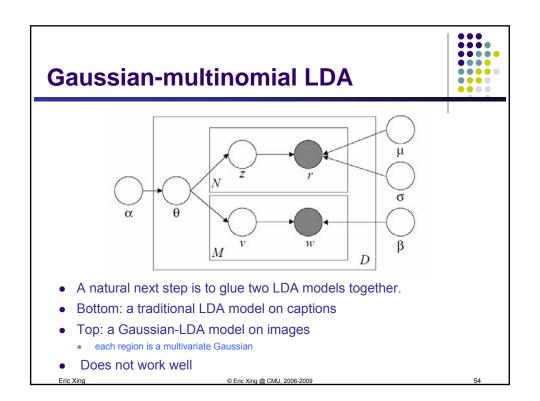












Automatic annotation

True caption
birds tree
Corr-LDA
birds nest leaves branch tree

GM-LDA water birds nest tree sky

GM-Mixture tree ocean fungus mushrooms coral

True caption
fish reefs water
Corr-LDA
fish water ocean tree coral

GM-LDA water sky vegetables tree people

GM-Mixture fungus mushrooms tree flowers leaves

c Xing © Eric Xing @ CMU, 2006-2009

55

Conclusion

- GM-based topic models are cool
 - Flexible
 - Modular
 - Interactive
- Efficient Inference/learning algorithms
 - GMF, with Laplace approx. for non-conjugate dist.
 - MCMC
- Many applications

 - Word-sense disambiguation
 - Word-net
 - Network inference

Eric Xing

© Eric Xing @ CMU, 2006-2009