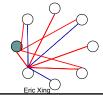
Advanced Machine Learning

Learning Graphical Models

Learning fully observed and partially observed BN

Eric Xing



Lecture 14, August 13, 2009

Reading:

© Eric Xing @ CMU, 2006-2009

Inference and Learning

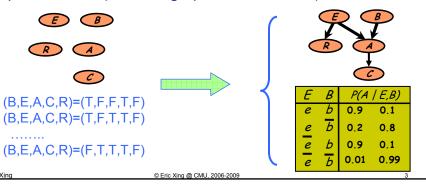
- A BN M describes a unique probability distribution P
- Typical tasks:
 - Task 1: How do we answer queries about P?
 - We use inference as a name for the process of computing answers to such queries
 - So far we have learned several algorithms for exact and approx. inference
 - Task 2: How do we estimate a plausible model M from data D?
 - i. We use **learning** as a name for the process of obtaining point estimate of M.
 - ii. But for *Bayesian*, they seek p(M|D), which is actually an **inference** problem.
 - iii. When not all variables are observable, even computing point estimate of M need to do inference to impute the missing data.

Eric Xing

Learning Graphical Models

The goal:

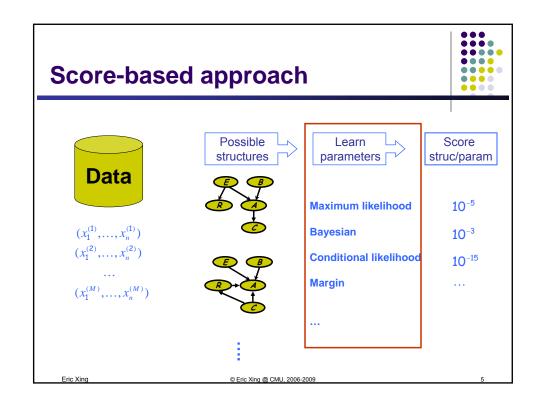
Given set of independent samples (**assignments** of random variables), find the **best** (the most likely?) graphical model (both the graph and the CPDs)

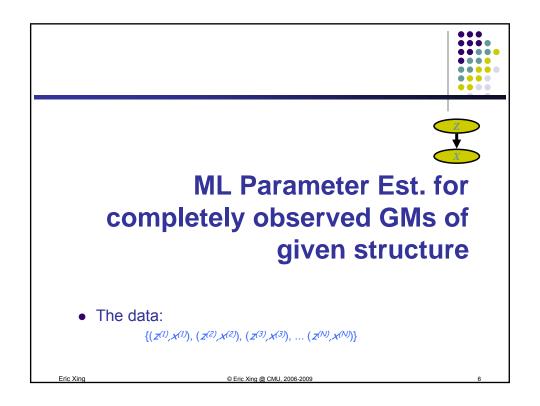


Learning Graphical Models

- Scenarios:
 - completely observed GMs
 - directed
 - undirected
 - partially observed GMs
 - directed
 - undirected (an open research topic)
- Estimation principles:
 - Maximal likelihood estimation (MLE)
 - Bayesian estimation
 - Maximal conditional likelihood
 - Maximal "Margin"
- We use **learning** as a name for the process of estimating the parameters, and in some cases, the topology of the network, from data.

Eric Xing





The basic idea underlying MLE

Likelihood
 (for now let's assume that the structure is given):

 $L(\mathbf{0} \mid X) = p(X \mid \mathbf{0}) = p(X_1 \mid \theta_1) p(X_2 \mid \theta_2) p(X_3 \mid X_3, X_3; \theta_3)$

• Log-Likelihood:

$$l(\mathbf{\theta} \mid X) = \log p(X \mid \mathbf{\theta}) = \log p(X_1 \mid \theta_1) + \log p(X_2 \mid \theta_2) + \log p(X_3 \mid X_3, X_3, \theta_3)$$

Data log-likelihood

$$\begin{split} & l(\mathbf{\theta} \mid DATA) = \log \prod_{n} p(X_{n} \mid \mathbf{\theta}) \\ & = \sum_{n} \log p(X_{n,1} \mid \theta_{1}) + \sum_{n} \log p(X_{n,2} \mid \theta_{2}) + \sum_{n} \log p(X_{n,3} \mid X_{n,1} X_{n,2}, \theta_{3}) \end{split}$$

MLE

$$\{\theta_1, \theta_2, \theta_3\}_{MLE} = \arg \max l(\mathbf{\theta} \mid DATA)$$

 $\theta_{1}^{*} = \arg\max \sum_{n} \log p(X_{n,1} \mid \theta_{1}), \quad \theta_{2}^{*} = \arg\max \sum_{n} \log p(X_{n,2} \mid \theta_{2}), \quad \theta_{3}^{*} = \arg\max \sum_{n} \log p(X_{n,3} \mid X_{n,1}X_{n,2}, \theta_{3})$

: Xing © Eric Xing @ CMU, 2006-2009

Example 1: conditional Gaussian

- The completely observed model:
 - Zis a class indicator vector

$$Z = \begin{bmatrix} Z^1 \\ Z^2 \\ \vdots \\ Z^M \end{bmatrix}, \quad \text{where } Z^m = [0,1], \text{ and } \sum Z^m = 1$$
 and a datum is in class i w.p. π_i

$$p(z^{i} = \mathbf{1} \mid \pi) = \pi_{i} = \pi_{1}^{z^{1}} \times \pi_{2}^{z^{2}} \times \ldots \times \pi_{M}^{z^{M}}$$
 All except one of these terms will be one
$$p(z) = \prod \pi_{m}^{z^{m}}$$

 $P(\mathcal{L}) = \prod_{m} n_m$

• Xis a conditional Gaussian variable with a class-specific mean

$$p(x \mid z^{m} = 1, \mu, \sigma) = \frac{1}{(2\pi\sigma^{2})^{1/2}} \exp\left\{\frac{1}{2\sigma^{2}}(x - \mu_{m})^{2}\right\}$$

 $p(x \mid z, \mu, \sigma) = \prod_{m} N(x \mid \mu_{m}, \sigma)^{z^{m}}$

: Xing © Eric Xing @ CMU, 2006-

Example 1: conditional Gaussian

Data log-likelihood

$$l(\boldsymbol{\theta} \mid D) \neq \log \prod_{n} p(z_{n}, x_{n}) = \log \prod_{n} p(z_{n} \mid \pi) p(x_{n} \mid z_{n}, \mu, \sigma)$$

$$= \sum_{n} \log p(z_{n} \mid \pi) + \sum_{n} \log p(x_{n} \mid z_{n}, \mu, \sigma)$$

$$= \sum_{n} \log \prod_{m} \pi_{m}^{z_{n}^{m}} + \sum_{n} \log \prod_{m} N(x_{n} \mid \mu_{m}, \sigma)^{z_{n}^{m}}$$

$$= \sum_{n} \sum_{m} \sum_{m} \log \pi_{m} - \sum_{n} \sum_{m} \sum_{m} \frac{1}{2\sigma^{2}} (x_{n} - \mu_{m})^{2} + C$$

MLE

$$\pi_m^* = \arg\max l(\mathbf{\theta} \mid D), \qquad \Rightarrow \frac{\partial}{\partial \tau_m} l(\mathbf{\theta} \mid D) = \mathbf{0}, \forall m, \quad \text{s.t. } \sum_{\mathbf{m}} \pi_m = \mathbf{1}$$

$$\Rightarrow \pi_m^* = \frac{\sum_{n} z_n^m}{N} = \frac{n_m}{N} \qquad \text{the fraction of samples of class } m$$

 $\mu_m^* = \arg\max l(\mathbf{\theta} \mid D), \qquad \Rightarrow \mu_m^* = \frac{\sum_n z_n^m x_n}{\sum_n z_n^m} = \frac{\sum_n z_n^m x_n}{n_m} \qquad \text{the average of samples of class } m$

Example 2: HMM: two scenarios

- Supervised learning: estimation when the "right answer" is known
 - **Examples:**

GIVEN: a genomic region x = x_1 ... $x_{1,000,000}$ where we have good (experimental) annotations of the CpG islands

GIVEN: the casino player allows us to observe him one evening, as he changes dice and produces 10,000 rolls

- Unsupervised learning: estimation when the "right answer" is unknown
 - **Examples:**

GIVEN: the porcupine genome; we don't know how frequent are the CpG islands there, neither do we know their composition

GIVEN: 10,000 rolls of the casino player, but we don't see when he changes dice

QUESTION: Update the parameters θ of the model to maximize $P(x|\theta)$ --- Maximal likelihood (ML) estimation

Recall definition of HMM

 Transition probabilities between any two states

$$y_1 \longrightarrow y_2 \longrightarrow y_3 \longrightarrow \cdots \longrightarrow y_T$$
 $x_1 \longrightarrow x_2 \longrightarrow x_3 \longrightarrow x_T$

$$p(y_t^j = 1 | y_{t-1}^i = 1) = a_{i,j},$$

or $p(y_i \mid y_{i-1}^i = 1) \sim \text{Multinomial}(a_{i,1}, a_{i,2}, \dots, a_{i,M}), \forall i \in I.$

Start probabilities

$$p(y_1) \sim \text{Multinomial}(\pi_1, \pi_2, \dots, \pi_M).$$

• Emission probabilities associated with each state

$$p(x_t \mid y_t^i = 1) \sim \text{Multinomial}(b_{i,1}, b_{i,2}, \dots, b_{i,K}), \forall i \in I.$$

or in general:

$$p(x_t | y_t^i = 1) \sim f(\cdot | \theta_i), \forall i \in I.$$

Eric Xing

© Eric Xing @ CMU, 2006-20

Supervised ML estimation

- Given $x = x_1...x_N$ for which the true state path $y = y_1...y_N$ is known,
 - Define:

 A_{ij} = # times state transition $i \rightarrow j$ occurs in y B_{ik} = # times state i in y emits k in x

• We can show that the maximum likelihood parameters θ are:

$$a_{ij}^{ML} = \frac{\#(i \to j)}{\#(i \to \bullet)} = \frac{\sum_{n} \sum_{t=2}^{T} y_{n,t-1}^{i} y_{n,t}^{j}}{\sum_{n} \sum_{t=2}^{T} y_{n,t-1}^{i}} = \frac{A_{ij}}{\sum_{j} A_{ij}}$$

 $b_{ik}^{ML} = \frac{\#(i \to k)}{\#(i \to \bullet)} = \frac{\sum_{n} \sum_{t=1}^{T} y_{n,t}^{i} x_{n,t}^{k}}{\sum_{n} \sum_{t=1}^{T} y_{n,t}^{i}} = \frac{B_{ik}}{\sum_{k} B_{ik}}$

• What if x is continuous? We can treat $\{(x_{n,t},y_{n,t}): t=1:T, n=1:N\}$ as $\mathbb{N} \setminus \mathbb{T}$ observations of, e.g., a Gaussian, and apply learning rules for Gaussian ...

Eric Xino

© Eric Xing @ CMU, 2006-2009

Supervised ML estimation, ctd.

- Intuition:
 - When we know the underlying states, the best estimate of θ is the average frequency of transitions & emissions that occur in the training data
- Drawback:
 - Given little data, there may be overfitting:
 - $P(x|\theta)$ is maximized, but θ is unreasonable

```
0 probabilities - VERY BAD
```

- Example:
 - Given 10 casino rolls, we observe

Eric Xing

© Eric Xing @ CMU, 2006-2009

Pseudocounts

- Solution for small training sets:
 - Add pseudocounts

```
A_{ij} = # times state transition i \rightarrow j occurs in \mathbf{y} + R_{ij}

B_{ik} = # times state i in \mathbf{y} emits k in \mathbf{x} + S_{ik}
```

- R_{ii} S_{ii} are pseudocounts representing our prior belief
- Total pseudocounts: $R_i = \sum_j R_{ij}$, $S_i = \sum_k S_{ik}$,
 - --- "strength" of prior belief,
 - --- total number of imaginary instances in the prior
- Larger total pseudocounts ⇒ strong prior belief
- Small total pseudocounts: just to avoid 0 probabilities --- smoothing
- This is equivalent to Bayesian est. under a uniform prior with "parameter strength" equals to the pseudocounts

Eric Xing

© Eric Xing @ CMU, 2006-2009

MLE for general BN parameters

 If we assume the parameters for each CPD are globally independent, and all nodes are fully observed, then the loglikelihood function decomposes into a sum of local terms, one per node:

$$\ell(\theta; D) = \log p(D \mid \theta) = \log \prod_{X_2} \left(\prod_i p(x_{n,i} \mid \mathbf{X}_{n,\pi_i}, \theta_i) \right) = \sum_i \left(\sum_n \log p(x_{n,i} \mid \mathbf{X}_{n,\pi_i}, \theta_i) \right)$$

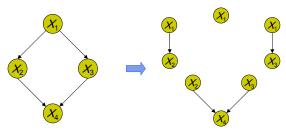
$$x_1 = \sum_{i=1}^{N_1} \left(\sum_{x_i \in \mathcal{X}_{n,\pi_i}} |\mathbf{X}_{n,\pi_i}, \theta_i | \mathbf{X}_{n,\pi_i} |\mathbf{X}_{n,\pi_i} | \mathbf{X}_{n,\pi_i} |\mathbf{X}_{n,\pi_i} | \mathbf{X}_{n,\pi_i} | \mathbf{X}_{n,\pi$$

Example: decomposable likelihood of a directed model

• Consider the distribution defined by the directed acyclic GM:

$$p(x \mid \theta) = p(x_1 \mid \theta_1) p(x_2 \mid x_1, \theta_1) p(x_3 \mid x_1, \theta_3) p(x_4 \mid x_2, x_3, \theta_1)$$

• This is exactly like learning four separate small BNs, each of which consists of a node and its parents.



Eric Xir

E.g.: MLE for BNs with tabular CPDs

Assume each CPD is represented as a table (multinomial)
 where

 $\theta_{ijk} \stackrel{\text{def}}{=} p(X_i = j \mid X_{\pi_i} = k)$

- Note that in case of multiple parents, \mathbf{X}_{x_j} will have a composite state, and the CPD will be a high-dimensional table
- The sufficient statistics are counts of family configurations

$$n_{ijk} \stackrel{\text{def}}{=} \sum_{n} x_{n,i}^{j} x_{n,\pi_{i}}^{k}$$

- The log-likelihood is $\ell(\theta; D) = \log \prod_{i,j,k} \theta_{ijk}^{n_{ijk}} = \sum_{i,j,k} n_{ijk} \log \theta_{ijk}$
- Using a Lagrange multiplier to enforce $\sum_{j} \theta_{ijk} = 1$, we get:

$$heta_{ijk}^{ML} = rac{n_{ijk}}{\displaystyle\sum_{i,j',k} n_{ij'k}}$$

Eric Xing

© Eric Xing @ CMU, 2006-2009

Learning partially observed GMs

• The data:

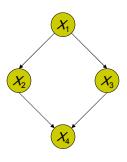
$$\{(x^{(1)}),\,(x^{(2)}),\,(x^{(3)}),\,\dots\,(x^{(N)})\}$$

Eric Xin

What if some nodes are not observed?

• Consider the distribution defined by the directed acyclic GM:

$$p(x \mid \theta) = p(x_1 \mid \theta_1) p(x_2 \mid x_1, \theta_1) p(x_3 \mid x_1, \theta_3) p(x_4 \mid x_2, x_3, \theta_1)$$



• Need to compute $p(x_H|x_V) \rightarrow inference$

Eric Xino

© Eric Xing @ CMU, 2006-200

10

Recall: EM Algorithm

- A way of maximizing likelihood function for latent variable models.
 Finds MLE of parameters when the original (hard) problem can be broken up into two (easy) pieces:
 - 1. Estimate some "missing" or "unobserved" data from observed data and current parameters.
 - 2. Using this "complete" data, find the maximum likelihood parameter estimates.
- Alternate between filling in the latent variables using the best guess (posterior) and updating the parameters based on this guess:
 - E-step: $q^{t+1} = \arg \max_{q} F(q, \theta^{t})$ • M-step: $\theta^{t+1} = \arg \max_{q} F(q^{t+1}, \theta^{t})$
- In the M-step we optimize a lower bound on the likelihood. In the E-step we close the gap, making bound=likelihood.

Eric Xing

© Eric Xing @ CMU, 2006-2009

EM for general BNs


```
while not converged % E-step for each node i ESS_i = 0 % reset expected sufficient statistics for each data sample n do inference with X_{n,H} for each node i ESS_i + = \left\langle SS_i(X_{n,i}, X_{n,\pi_i}) \right\rangle_{p(X_{n,H}|X_{n,-H})} % M-step for each node i \theta_i := \text{MLE}(ESS_i)
```

Example: HMM

<u>Supervised learning</u>: estimation when the "right answer" is known

© Eric Xing @ CMU, 2006-2009

Examples:

GIVEN: a genomic region $x = x_1...x_{1.000,000}$ where we have good (experimental) annotations of the CpG islands

GIVEN: the casino player allows us to observe him one evening, as he changes dice and produces 10,000 rolls

- <u>Unsupervised learning</u>: estimation when the "right answer" is unknown
 - Examples:

GIVEN:

the porcupine genome; we don't know how frequent are the CpG islands there, neither do we know their composition 10,000 rolls of the casino player, but we don't see when he

• **QUESTION:** Update the parameters θ of the model to maximize $P(x|\theta)$ -

-- Maximal likelihood (ML) estimation

Eric Xing

© Eric Xing @ CMU, 2006-2009

The Baum Welch algorithm

• The complete log likelihood

$$\ell_{c}(\theta; \mathbf{x}, \mathbf{y}) = \log p(\mathbf{x}, \mathbf{y}) = \log \prod_{n} \left(p(y_{n,1}) \prod_{t=2}^{T} p(y_{n,t} \mid y_{n,t-1}) \prod_{t=1}^{T} p(x_{n,t} \mid x_{n,t}) \right)$$

• The expected complete log likelihood

$$\left\langle \ell_{c}(\boldsymbol{\theta}; \mathbf{x}, \mathbf{y}) \right\rangle = \sum_{n} \left(\left\langle \boldsymbol{y}_{n,1}^{i} \right\rangle_{\rho(y_{n,1}|\mathbf{x}_{n})} \log \pi_{i} \right) + \sum_{n} \sum_{\tau=2}^{T} \left(\left\langle \boldsymbol{y}_{n,\tau-1}^{i} \boldsymbol{y}_{n,t}^{j} \right\rangle_{\rho(y_{n,\tau-1},y_{n,t}|\mathbf{x}_{n})} \log \boldsymbol{a}_{i,j} \right) + \sum_{n} \sum_{\tau=1}^{T} \left(\boldsymbol{x}_{n,\tau}^{k} \left\langle \boldsymbol{y}_{n,\tau}^{i} \right\rangle_{\rho(y_{n,\tau}|\mathbf{x}_{n})} \log \boldsymbol{b}_{i,k} \right)$$

- EM
 - The E step

$$\begin{aligned} & \boldsymbol{\gamma}_{n,t}^{i} = \left\langle \boldsymbol{y}_{n,t}^{i} \right\rangle = \boldsymbol{p}(\boldsymbol{y}_{n,t}^{i} = 1 \mid \boldsymbol{x}_{n}) \\ & \boldsymbol{\xi}_{n,t}^{i,j} = \left\langle \boldsymbol{y}_{n,t-1}^{i} \boldsymbol{y}_{n,t}^{j} \right\rangle = \boldsymbol{p}(\boldsymbol{y}_{n,t-1}^{i} = 1, \boldsymbol{y}_{n,t}^{j} = 1 \mid \boldsymbol{x}_{n}) \end{aligned}$$

• The M step ("symbolically" identical to MLE)

$$\pi_i^{\mathit{ML}} = \frac{\sum_n \gamma_{n,1}^i}{N}$$

$$a_{ij}^{ML} = \frac{\sum_{n} \sum_{t=2}^{T} \xi_{n,t}^{i,j}}{\sum_{n} \sum_{t=1}^{T-1} \gamma_{n,t}^{i}}$$

$$\pi_{i}^{\mathit{ML}} = \frac{\sum_{n} \gamma_{n,1}^{i}}{\mathsf{N}} \qquad \qquad a_{ij}^{\mathit{ML}} = \frac{\sum_{n} \sum_{t=2}^{T} \xi_{n,t}^{i,j}}{\sum_{n} \sum_{t=1}^{T-1} \gamma_{n,t}^{i}} \qquad \qquad b_{ik}^{\mathit{ML}} = \frac{\sum_{n} \sum_{t=1}^{T} \gamma_{n,t}^{i} X_{n,t}^{k}}{\sum_{n} \sum_{t=1}^{T-1} \gamma_{n,t}^{i}}$$

Unsupervised ML estimation

- Given $x = x_1...x_N$ for which the true state path $y = y_1...y_N$ is unknown,
 - **EXPECTATION MAXIMIZATION**
 - o. Starting with our best guess of a model M, parameters θ .
 - 1. Estimate A_{ij} , B_{ik} in the training data

 How? $A_{ij} = \sum_{n,t} \langle y_{n,t-1}^i y_{n,t}^j \rangle$ $B_{ik} = \sum_{n,t} \langle y_{n,t}^i \rangle x_{n,t}^k$,
 - 2. Update θ according to A_{ij} , B_{ik}
 - Now a "supervised learning" problem
 - 3. Repeat 1 & 2, until convergence

This is called the Baum-Welch Algorithm

We can get to a provably more (or equally) likely parameter set θ each iteration

ML Structural Learning for completely observed GMs

 $(x_1^{(1)}, \dots, x_n^{(1)})$ $(x_1^{(2)}, \dots, x_n^{(2)})$ \dots $(x_1^{(M)}, \dots, x_n^{(M)})$

Eric Ying

Eric Xing @ CMU, 2006-200

25

Information Theoretic Interpretation of ML

$$\begin{split} \boldsymbol{\ell}(\theta_{G},G;D) &= \log p(D \mid \theta_{G},G) \\ &= \log \prod_{n} \left(\prod_{i} p(\boldsymbol{x}_{n,i} \mid \mathbf{x}_{n,\pi_{i}(G)}, \theta_{i\mid \pi_{i}(G)}) \right) \\ &= \sum_{i} \left(\sum_{n} \log p(\boldsymbol{x}_{n,i} \mid \mathbf{x}_{n,\pi_{i}(G)}, \theta_{i\mid \pi_{i}(G)}) \right) \\ &= M \sum_{i} \left(\sum_{\boldsymbol{x}_{i},\mathbf{x}_{\pi_{i}(G)}} \frac{count(\boldsymbol{x}_{i},\mathbf{x}_{\pi_{i}(G)})}{M} \log p(\boldsymbol{x}_{i} \mid \mathbf{x}_{\pi_{i}(G)}, \theta_{i\mid \pi_{i}(G)}) \right) \\ &= M \sum_{i} \left(\sum_{\boldsymbol{x}_{i},\mathbf{x}_{\pi_{i}(G)}} \hat{p}(\boldsymbol{x}_{i},\mathbf{x}_{\pi_{i}(G)}) \log p(\boldsymbol{x}_{i} \mid \mathbf{x}_{\pi_{i}(G)}, \theta_{i\mid \pi_{i}(G)}) \right) \end{split}$$

From sum over data points to sum over count of variable states

Eric Xing

Information Theoretic Interpretation of ML (con'd)

$$\begin{split} \boldsymbol{\ell}(\theta_{G},G;D) &= \log \hat{p}(D \mid \theta_{G},G) \\ &= M \sum_{i} \left(\sum_{x_{i},\mathbf{x}_{\pi_{i}(G)}} \hat{p}(x_{i},\mathbf{x}_{\pi_{i}(G)}) \log \hat{p}(x_{i} \mid \mathbf{x}_{\pi_{i}(G)},\theta_{i\mid\pi_{i}(G)}) \right) \\ &= M \sum_{i} \left(\sum_{x_{i},\mathbf{x}_{\pi_{i}(G)}} \hat{p}(x_{i},\mathbf{x}_{\pi_{i}(G)}) \log \frac{\hat{p}(x_{i},\mathbf{x}_{\pi_{i}(G)},\theta_{i\mid\pi_{i}(G)})}{\hat{p}(\mathbf{x}_{\pi_{i}(G)})} \frac{\hat{p}(x_{i})}{\hat{p}(x_{i})} \right) \\ &= M \sum_{i} \left(\sum_{x_{i},\mathbf{x}_{\pi_{i}(G)}} \hat{p}(x_{i},\mathbf{x}_{\pi_{i}(G)}) \log \frac{\hat{p}(x_{i},\mathbf{x}_{\pi_{i}(G)},\theta_{i\mid\pi_{i}(G)})}{\hat{p}(\mathbf{x}_{\pi_{i}(G)},\theta_{i\mid\pi_{i}(G)})} \right) - M \sum_{i} \left(\sum_{x_{i}} \hat{p}(x_{i}) \log p(x_{i}) \right) \\ &= M \sum_{i} \hat{I}(x_{i},\mathbf{x}_{\pi_{i}(G)}) - M \sum_{i} \hat{H}(x_{i}) \end{split}$$

Decomposable score and a function of the graph structure

Eric Xing

© Eric Xing @ CMU, 2006-200

27

Structural Search

- How many graphs over n nodes? $O(2^{n^2})$
- How many trees over n nodes? O(n!)
- But it turns out that we can find exact solution of an optimal tree (under MLE)!
 - Trick: in a tree each node has only one parent!
 - Chow-liu algorithm

Eric Xing

© Eric Xing @ CMU, 2006-2009

Chow-Liu tree learning algorithm

• Objection function:

$$\ell(\theta_G, G; D) = \log \hat{p}(D \mid \theta_G, G)$$

$$= M \sum_{i} \hat{I}(x_i, \mathbf{x}_{\pi_i(G)}) - M \sum_{i} \hat{H}(x_i) \qquad \Longrightarrow \qquad \boxed{C(G) = M \sum_{i} \hat{I}(x_i, \mathbf{x}_{\pi_i(G)})}$$

- Chow-Liu:
 - For each pair of variable x_i and x_i
 - Compute empirical distribution: $\hat{p}(X_i, X_j) = \frac{count(x_i, x_j)}{M}$
 - $\qquad \text{Compute mutual information:} \qquad \hat{I}(X_i, X_j) = \sum_{x_i, x_j} \hat{p}(x_i, x_j) \log \frac{\hat{p}(x_i, x_j)}{\hat{p}(x_i) \hat{p}(x_j)}$
 - Define a graph with node $x_p, ..., x_n$
 - Edge (I,j) gets weight $\hat{I}(X_i, X_j)$

Eric Xing

© Eric Xing @ CMU, 2006-2009

20

Chow-Liu algorithm (con'd)

• Objection function:

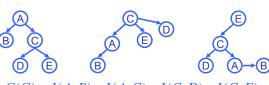
$$\ell(\theta_{G}, G; D) = \log \hat{p}(D \mid \theta_{G}, G)$$

$$= M \sum_{i} \hat{I}(x_{i}, \mathbf{x}_{\pi_{i}(G)}) - M \sum_{i} \hat{H}(x_{i})$$
 \Rightarrow
$$C(G) = M \sum_{i} \hat{I}(x_{i}, \mathbf{x}_{\pi_{i}(G)})$$

• Chow-Liu:

Optimal tree BN

- Compute maximum weight spanning tree
- Direction in BN: pick any node as root, do breadth-first-search to define directions
- I-equivalence:



Eric Xino

C(G) = I(A,B) + I(A,C) + I(C,D) + I(C,E)

Structure Learning for general graphs

- Theorem:
 - The problem of learning a BN structure with at most *d* parents is NP-hard for any (fixed) *d*≥2
- Most structure learning approaches use heuristics
 - Exploit score decomposition
 - Two heuristics that exploit decomposition in different ways
 - Greedy search through space of node-orders
 - Local search of graph structures

Xing © Eric Xing @ CMU, 20

Gene Expression Profiling by Microarrays

Receptor A

Receptor A

Receptor B

Gene G

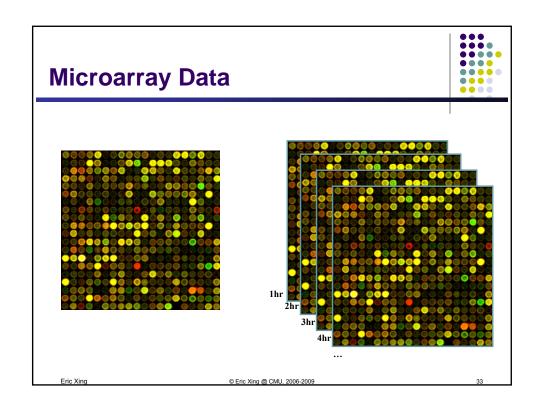
Gene G

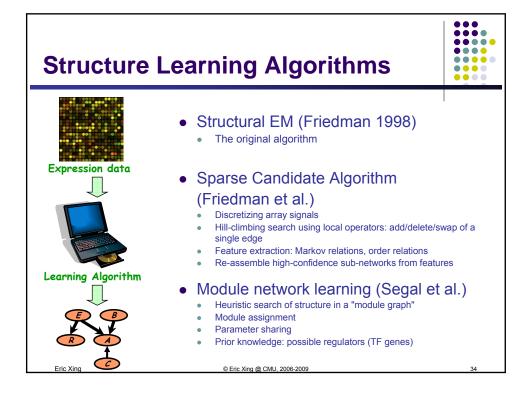
Gene G

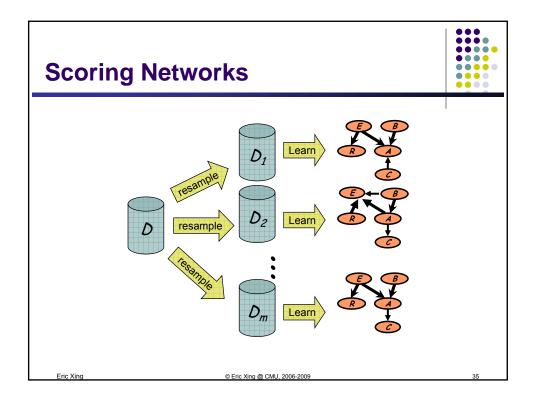
Gene Expression Profiling by Minare B

Receptor B

Receptor

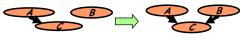






Learning GM structure

- Learning of best CPDs given DAG is easy
 - collect statistics of values of each node given specific assignment to its parents
- Learning of the graph topology (structure) is NP-hard
 - heuristic search must be applied, generally leads to a locally optimal network
- Overfitting
 - It turns out, that richer structures give higher likelihood P(D|G) to the data (adding an edge is always preferable)



 $P(C \mid A) \leq P(C \mid A, B)$

- more parameters to fit => more freedom => always exist more "optimal" CPD(C)
- We prefer simpler (more explanatory) networks
 - Practical scores regularize the likelihood improvement complex networks.

Eric Xin

© Eric Xing @ CMU, 2006-2009

Learning (sparse) GGM

Multivariate Gaussian over all continuous expressions

$$p([x_1,...,x_n]) = \frac{1}{(2\pi)^{\frac{n}{2}} |\Sigma|^{\frac{1}{2}}} \exp\{-\frac{1}{2}(\vec{x} - \mu)^T \Sigma^{-1}(\vec{x} - \mu)\}$$

• The precision matrix $K=\Sigma^{-1}$ reveals the topology of the (undirected) network

$$E(x_i \mid x_{-i}) = \sum_i (\mathbf{K}_{ij} / \mathbf{K}_{ii}) x_j$$

- Edge ~ |K_{ii}| > 0
- · Learning Algorithm: Covariance selection
 - Want a sparse matrix
 - Regression for each node with degree constraint (Dobra et al.)
 - · Regression for each node with hierarchical Bayesian prior (Li, et al)
 - Graphical Lasso (we will describe it shortly)

Eric Xing

© Eric Xing @ CMU, 2006-2009

. . .

Learning Ising Model (i.e. pairwise MRF)

 Assuming the nodes are discrete, and edges are weighted, then for a sample x_d, we have

$$P(\mathbf{x}_d|\Theta) = \exp\left(\sum_{i \in V} \theta_{ii}^t x_{d,i} + \sum_{(i,j) \in E} \theta_{ij} x_{d,i} x_{d,j} - A(\Theta)\right)$$

- Graph lasso has been used to obtain a sparse estimate of E
 with continuous X
- We can use graphical L_1 regularized logistic regression to obtain a sparse estimate of with discrete X

Eric Xin

© Eric Xing @ CMU, 2006-2009

Recall lasso

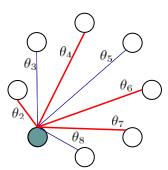
$$\hat{\theta}_i = \arg\min_{\theta_i} l(\theta_i) + \lambda_1 || \theta_i ||_1$$

where
$$l(\theta_i) = \log P(y_i|\mathbf{x}_i, \theta_i)$$
.

Eric Xing

Eric Xing @ CMU, 2006-200

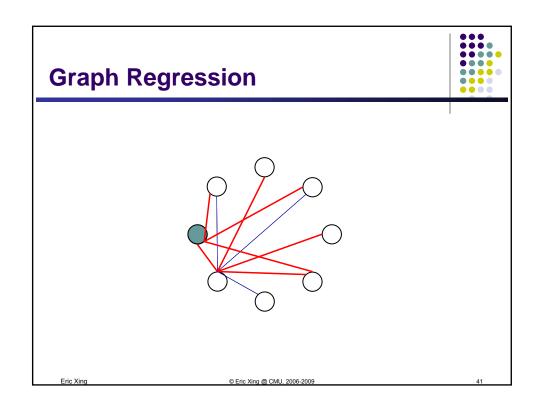
Graph Regression

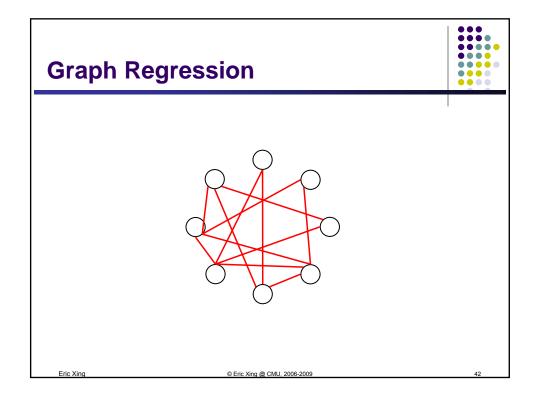


Lasso:

$$\hat{\theta} = \arg\min_{\theta} \sum_{t=1}^{T} l(\theta) + \lambda_1 \| \theta \|_1$$

Eric Xin





Consistency

• **Theorem**: for the graphical regression algorithm, under certain verifiable conditions (omitted here for simplicity):

$$\mathbb{P}\left[\hat{G}(\lambda_n) \neq G\right] = \mathcal{O}\left(\exp\left(-Cn^{\epsilon}\right)\right) \to 0$$

Note the from this theorem one should see that the regularizer is not actually used to introduce an "artificial" sparsity bias, but a devise to ensure consistency under finite data and high dimension condition.

Eric Xin

© Eric Xing @ CMU, 2006-2009

..

Learning GM

- Learning of best CPDs given DAG is easy
 - collect statistics of values of each node given specific assignment to its parents
- Learning of the graph topology (structure) is NP-hard
 - heuristic search must be applied, generally leads to a locally optimal network
- We prefer simpler (more explanatory) networks
 - Regularized graph regression

Eric Xing

© Eric Xing @ CMU, 2006-2009