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Gene Regulatory Network -

e Aim : Identify Gene Regulatory Network of a cell from
gene expression (microarray) data

e Classic Approach : Learn Bayesian Network

e Problem : Many genes, very little data points (eg. S.
cerevisiac microarray data available for 2355 genes, and
173 arrays only)

e Bayesian Networks very noisy, edges not reliable

e Large Network usually very unstructured =>Edges are
hard to interpret, and visualize.
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Gene Regulatory Modules

\
e A cell's activity is organized as a network of interacting

modules.

e Hence, identify modules of correlated genes, and build a
network.

e Genes in same module share same parents and
conditional probability distribution.

e Reduces hypothesis space of networks, and parameter
space of CPTs, making learnt network more robust and
reliable.
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(a) Bayesian network (b) Module network

- o--- 11 (a) A simple Bayesian nefwork over stock price variables; the stock price of Intel (INTL)
15 annotated with a visualization of its CPD, described as a different multinomial dis-
tribution for each value of its influencing stock price Microsoft (MSFT). (b) A simple
module network; the boxes illustrate modules, where stock price variables share CPDs
and parameters. Note that in a module network, variables in the same module have the
same CPDs but may have different descendants.




THE MODULE NETWORK

A module network consists of :
e A Module Set C

e Cis the set of Module variables M,, M,, ..., M,
e A Module Network Template T for C

e A set of parents Pa,, for each module
e A CPD for each module P(M; | Pa,;)
e The network defined by T must be a DAG
e A Module Assignment Function A for C
e An assignment of each variable X; to a module M, i.e. A(X) = M,
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Learning the Module Network H

e Training Data = {x[1], x[2], ..., x[M]}
e Aim :Learn a module network structure T (composed
of structure S and parameters 6) and assignment A

e Data Likelihood decomposed over modules :
M

LM :D)=P(D|M)= HP || T,4)
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Bayesian Score

|
Model Score for a pair (5.4) defined as posterior

probability, integrating out parameter 6

P(S.A| D)< P(A)P(S | A)P(D|S.A)

We define an assignment prior P(4),
structure prior P(S | 4) and a parameter prior P(6 | S, 4)

P(D|$.7) = [ P(D|S,2,0)P(6 | $)d6.
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Learning Algorithm o

Input : Data, K (no. of modules)

e Pick an initial assignment A, of nodes X to modules
M (by clustering similar features together)

Loop t=1,2, ... till Convergence :

e S;= Pick best structure using A.;) and S,
e A, = Pick best assignments using A, and S;
Return M = (A, Sy
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e Yeast dataset
e 2355 genes, 173 arrays under different stress conditions.

e Used 466 candidate regulators (found from Yeast Proteome
Database)

e Regulator == Transcription Factor or Signaling Protein that may
have transcriptional impact.

e Automatically infer 50 modules

e Used a Regression Tree, with Gaussian Distribution on Leaf Nodes,
to represent P(M; | Pa,,)

e Experimental Validation done via (1) enrichment for cis-regulatory
binding site motifs and (2) enrichment for GO annotations.
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Table 1 Summary of module analysis and validation
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B Enrichment for motif known to participate in regulation by respective regulator Partial evidence
B Respective regulator known 1o have a role under the predicted condition B Partial evidence
Bl Respective regulator known to regulate module genes or their implied process Partial evidence

°Each module was assigned a name based on the largest one or two categories of genes in the module (combining
gene annotations from SGD and the literature). These concise names are used to facilitate the presentation and
may not convey the full content of some of the more heterogeneous modules (see modules and their significant
annotations in Fig. 4). "Number of genes in module. “Functional/biological coherence of each module, measured as
the percentage of genes in the module covered by significant gene annotations (P < 0.01). “Regulators predicted
to regulate each module, along with three scores for each regulator compiled from the literature (for a list of all
literature references used, see Supplementary Table 2 online). Some modules (21, 43, 49, 50) did not have
regulators, as none of the candidate regulators was predictive of the expression profile of their gene members

Darker boxes indicate biological experiments supporting the prediction; lighter boxes indicate indirect or

partial evidence. M, enrichment for a motif known to participate in regulation by the respective regulator in

upstream regions of genes in the module; C, experimental evidence for contribution of the respective

regulator to the transcriptional response under the predicted conditions; G, direct experimental evidence

showing that at least one of the genes in the module, or a process significantly overrepresented in the

module genes, is regulated by the respective regulator. TF, transcription factor. 12
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e Proposed Notion of Module Networks

e Module N/ws restrict space of dependency structure,
increase parameter sharing, and allow more robust
models to be learnt.

e Modules may have biological meaning associated with
them

e Limitations :
1. Objective Function is not convex, learnt model is local maxima.
2. Each Gene can be part of only 1 module !
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Coregulated Overlapping
Process Model (COPR)

\
e A single gene may participate in multiple modules, due

to overlapping biological processes.

e Shifts from a Bayesian Network Perspective to a
Probabilistic Relational Model (PRM)

e Models the assignment of genes to multiple
overlapping processes, and the regulatory program
associated with each process.

e The process is the equivalent of a module, except that
a gene can belong to multiple processes.

e Makes the assumption that regulation is done at
process level.
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Gene Expression Model '
e Asetofngenes (G = {gl, e 8n}
e Asetof karray objects A — lay, ..., a;}

e A set of expression values of each gene, at each array :

E={e11,...,enk} |
e Allow a gene to participate in multiple processes, define
a sct of binary process membership attributes g.My, ..., g.M;
e Expression Level e.level for gene g, at array a is the sum of

g’s expression levels in all processes it participates, with
Gaussian Noise added.

J
P(elevel | gM,a.C) =N (Z gM,-a.Cp; (rﬂz)
p=I

© Eric Xing @ CMU, 2005-2009 16




Regulatory Model

!
e The activity level of process pin array ai.e. a.C,is a
function of some regulatory program.

e Maintain t candidate regulators,having expression a.R,
in array a.

e For each process p, we have d parent regulators, so that
a.C,=f(R,, Ryo - Ry

e Like Module Networks, again use regression tree for the

same.
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Instantiation of the Previous COPR
for 2 Genes and 2 Arrays
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COPR Model Summary

Prior on gene g in

] process p
P(GM,A.C.AR ELevel) = [| [ P(s-M))
p=1geG

: ]_[ P(a.Cy|a.Ri,...,a.R;,)P(a.R

€A

i

. H P(e.Level | e.Gene M, e.Array.C).

Activity of a Process ¢cE

given its regulators

Expression level of gene g in array a, given
which processes it belongs to
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Learning the COPR Model

\
e Expression levels for each gene, for each array known.

e Assignment of genes to processes unknown, activity
levels a.C, unknown.

e Use structural EM (SEM) to learn the model

e In the E step, find a completion of the values to the
hidden variables, given the model.

e In the M step, re-estimate the model structure and
parameters, given the hidden variables (the current
completion of the values).
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OP Experiments

e The OP Model : no regulatory programs learnt for the
processes.

e Yeast data : 173 yeast microarrays, 1010 genes, that
had significant changes in gene expression.

e Learnt 30 processes.

e 24 genes predicted to be in no process, 552 in one
process, 257 in two, and 119 in three, and 58 in four or
more processes.

e Compare to Plaid Model (where a gene can belong to
more than 1 cluster) and hierarchical clustering.
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FIG. 3. Comparison of OP model to other approaches. (a) Scatter plot of the log p-value of different GO and KEGG
nnotations for layers in Plaid on the one hand (X axis) and OP model processes on the other (Y axis). (b) Scatter
plot of the log p-value of different GO and KEGG annotations for clusters from Pearson clustering on the one hand

COPR Experiments

e The COPR Model : regulatory programs learnt for the

processes.

e Yeast data : 173 yeast microarrays, 2034 genes.

e Learnt 50 processes.

e 1384 genes predicted to be in one process, 308 in two,
287 in three, and 40 in four or more processes.

e Compare to OP Model
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FIG. 5. Comparsson of the smuple OP and the COPR models on yeast stress data. Each graph shows a scatter plot
of the negative log p-value for the enrichment of processes for different biological properties, comparing processes i
the OP model (Y axis) and processes in the COPR model (X axis). (a) GO annotations; (b) presence of known motifs;
(¢) known transcription factor targets.

Comparison With Module
Networks o

e 394 yeast microarrays from 4 different studies

e Expression during cell cycle, various stress conditions,
and in response to gene deletion mutations.

e COPR Model over 5747 genes, 50 processes, and 464
candidate regulators.

e COPR much better than Module Networks, since it
allows genes to belong to multiple processes, that may
be active under different experimental conditions.
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FIG. 6. Comparison of the module network model of Segal et al. to our COPR maodel on the yeast compendium data.
Each graph shows a scatter plot of the negative log p-value for the emrichment of processes for different biological
properties, comparing processes in the module network model (Y axis) and processes in the COPR model (X axis).
(a) GO annotations; (b) presence of known motifs; (c) known transcription factor targefs.
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modules in cancer :

e Study 1975 microarrays across 22 tumor types, and 2849
genes.

e Activation of some modules is specific to particular types of
tumor

e Eg: a growth-inhibitory module specifically repressed in acute
lymphoblastic leukemias - may underlie the deregulated
proliferation in these cancers.

e Other modules shared across a diverse set of clinical
conditions, suggestive of common tumor progression
mechanisms.

e EQ: the bone osteoblastic module
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e Structure and evolution of transcriptional regulatory networks
(Madan Babu et. al.) : studied the evolution of networks, via
motifs and modules, and through extensive duplication of

transcription factors and targets, with inheritance of regulatory

interactions from the ancestral gene.

e The Inferelator: an algorithm for learning parsimonious
regulatory networks from systems-biology data sets de novo
(Richard Bonneau et. al) : derive genome-wide transcriptional
regulatory interactions, via regression and variable selection
to identify transcriptional influences on genes based on the
integration of genome annotation and expression data
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Conclusions

In this lecture, we looked at

Representing sets of correlated genes together as a
module, to form a module network.

A module has the same set of parents, and the same
CPD for all genes belonging to it.

Learn a module via a greedy iterative algorithm.

Looked at COPRs which allow a gene to belong to
multiple modules instead of a single module.

COPRs seem to be more capable of using multiple
sources of data, measured under a variety of conditions.
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Additional Slides

© Eric Xing @ CMU, 2005-2009

37

Conditions for Score
Decomposibility

e Globally Modular P(O]S5.A)=PO|S)

P(5,A) o< p(S5)k(A)C(A4,S5)
e Parameter Independence
K
Po]S)=]]~( O, [Payy, | < S)

j=1
e Parameter Modularity

P (9)-1J-|Panj. | S1) = P(6y JIPayr, | $52)

e Structure & Assignment Modularity

S)=[Ip,($). «)=]]xi(a)
j J
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Learning Modular N/ws : Details

e Pick Best Structure :
e Start with previous structure S,

e Try using local operators (add an edge, delete an edge) to
improve score

e Stop when no local operator can improve score.
e Pick Best Assignment :

e At each step, try to change the assignment of a single node i.e.

change A(X) to j from k.
e If module network becomes cyclic, ignore the change.
e If score improves, accept the change, else reject
e Stop when improvement in score not possible.
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Learning COPR Model : E-Step

e Find most likely joint assignment to g.M, and a.C
e Local Search Algorithm :

e Fix g.M, find most likely a.C
argmaxg ny P(G.M | M) P(E.Level | G.M, A.C, M)

Decomposes so that we can maximize over each
gene independently (still exponential in no. of
processes, and requires linear relaxation to solve).

e Fix a.C, find most likely g.M
argmax, ~P(A.C

AR M)P(E.Level | GM, A.C, M)

Reduces to minimize Least Squares, easy to optimize.

e Repeat till Convergence

© Eric Xing @ CMU, 2005-2009
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Learning COPR Model : M-Step

e Given g.M and a.C, find a good model.

e Model includes
e structure of regulatory program for each process, and parameters
e Variances of expression for array a
e Probability g, of gene membership to process p

e Learnt using Bayesian Score Maximization using a
greedy search (like Modular Networks)
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