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Gene Regulatory Network

Aim : Identify Gene Regulatory Network of a cell from 
gene expression (microarray) data
Classic Approach : Learn Bayesian Network
Problem : Many genes, very little data points (eg.  S. 
cerevisiac microarray data available for 2355 genes, and 
173 arrays only)
Bayesian Networks very noisy, edges not reliable
Large Network usually very unstructured =>Edges are 
hard to interpret, and visualize.



2

© Eric Xing @ CMU, 2005-2009 3

Gene Regulatory Modules

A cell’s activity is organized as a network of interacting 
modules.
Hence, identify modules of correlated genes, and build a 
network.
Genes in same module share same parents and 
conditional probability distribution.
Reduces hypothesis space of networks, and parameter 
space of CPTs, making learnt network more robust and 
reliable.
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Example Of Module Network
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THE MODULE NETWORK 

A module network consists of :
A Module Set C

C is the set of Module variables M1, M2, …, Mk

A Module Network Template T  for C
A set of parents PaMj for each module
A CPD for each module P(Mj | PaMj)
The network defined by T must be a DAG

A Module Assignment Function A for C
An assignment of each variable Xi to a module Mj, i.e. A(Xi) = Mj
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Learning the Module Network

Training Data = {x[1], x[2], …,x[M]}
Aim : Learn a module network structure T (composed 
of structure S and parameters θ) and assignment A
Data Likelihood decomposed over modules : 
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Bayesian Score

Model Score for a pair             defined as posterior 
probability, integrating out parameter θ
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Learning Algorithm

Input : Data, K (no. of modules) 
Pick an initial assignment  A0  of nodes X to modules
M (by clustering similar features together)
Loop t=1,2, … till Convergence :

St = Pick best structure using A(t-1) and S(t-1)

At = Pick best assignments using A(t-1) and St

Return M = (At, St)
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The Module Networks Algorithm.
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Experiments
Yeast dataset
2355 genes, 173 arrays under different stress conditions.
Used 466 candidate regulators (found from Yeast Proteome 
Database)
Regulator == Transcription Factor or Signaling Protein that may 
have transcriptional impact.
Automatically infer  50 modules
Used a Regression Tree, with Gaussian Distribution on Leaf Nodes, 
to represent P(Mj | PaMj)
Experimental Validation done via (1) enrichment for cis-regulatory 
binding site motifs and (2) enrichment for GO annotations.
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So Far

Proposed Notion of Module Networks
Module N/ws restrict space of dependency structure, 
increase parameter sharing, and allow more robust 
models to be learnt.
Modules may have biological meaning associated with 
them
Limitations :

1. Objective Function is not convex, learnt model is local maxima.
2. Each Gene can be part of only 1 module !
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Coregulated Overlapping 
Process Model (COPR)

A single gene may participate in multiple modules, due 
to overlapping biological processes.
Shifts from a Bayesian Network Perspective to a 
Probabilistic Relational Model (PRM)
Models the assignment of genes to multiple 
overlapping processes, and the regulatory program 
associated with each process.
The process is the equivalent of a module, except that 
a gene can belong to multiple processes.
Makes the assumption that regulation is done at 
process level.
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Gene Expression Model
A set of n genes
A set of k array objects
A set of expression values of each gene, at each array :  

Allow a gene to participate in multiple processes, define

Expression Level e.level for gene g, at array a is the sum of
g’s expression levels in all processes it participates, with 
Gaussian Noise added.
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Regulatory Model

The activity level of process p in array a i.e. a.Cp is a 
function of some regulatory program.
Maintain t candidate regulators,having expression a.Rr
in array a.
For each process p, we have d parent regulators, so that 
a.Cp = f(Rp,1, Rp,2, …, Rp,d)
Like Module Networks, again use regression tree for the 
same.
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A Sample Regression 
Tree for a process with 
2 regulators

A Sample COPR with 2 
processes (C1, C2), and 3 
regulators (R1, R2, R3).
M1 and M2 denote whether 
gene g participates in 
processes 1 and 2 resp.
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Instantiation of the Previous COPR 
for 2 Genes and 2 Arrays
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COPR Model Summary
Prior on gene g in 
process p

Expression level of gene g in array a, given 
which processes it belongs to

Activity of a Process 
given its regulators

Regulators Expression
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Learning the COPR Model

Expression levels for each gene, for each array known.
Assignment of genes to processes unknown, activity 
levels a.Cp unknown.
Use structural EM (SEM) to learn the model
In the E step, find a completion of the values to the 
hidden variables, given the model.
In the M step, re-estimate the model structure and 
parameters, given the hidden variables (the current 
completion of the values).
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OP Experiments 

The OP Model  : no regulatory programs learnt for the 
processes.
Yeast data : 173 yeast microarrays, 1010 genes, that 
had significant changes in gene expression. 
Learnt 30 processes.
24 genes predicted to be in no process, 552 in one 
process, 257 in two, and 119 in three, and 58 in four or 
more processes.
Compare to Plaid Model (where a gene can belong to 
more than 1 cluster) and hierarchical clustering.
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COPR Experiments 

The COPR Model  : regulatory programs learnt for the 
processes. 
Yeast data : 173 yeast microarrays, 2034 genes. 
Learnt 50 processes.
1384 genes predicted to be in one process, 308 in two,  
287 in three, and 40 in four or more processes.
Compare to OP Model
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Comparison With Module 
Networks

394 yeast microarrays from 4 different studies
Expression during cell cycle, various stress conditions, 
and in response to gene deletion mutations.
COPR Model over 5747 genes, 50 processes, and 464 
candidate regulators.
COPR much better than Module Networks, since it 
allows genes to belong to multiple processes, that may 
be active under different experimental conditions.
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Computational discovery of gene 
modules and regulatory networks
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Analysis of the rapamycin
transcriptional regulatory n/w
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Conditional activity of expression 
modules in cancer

Study 1975 microarrays across 22 tumor types, and 2849 
genes.
Activation of some modules is specific to particular types of 
tumor
Eg:  a growth-inhibitory module specifically repressed in acute 
lymphoblastic leukemias - may underlie the deregulated 
proliferation in these cancers. 
Other modules shared across a diverse set of clinical 
conditions, suggestive of common tumor progression 
mechanisms. 
Eg: the bone osteoblastic module
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Growth Inhibitory Module
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A Functional and Regulatory Map 
of Asthma
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More Related Work
Structure and evolution of transcriptional regulatory networks 
(Madan Babu et. al.) : studied the evolution of networks, via 
motifs and modules, and through extensive duplication of 
transcription factors and targets, with inheritance of regulatory 
interactions from the ancestral gene.
The Inferelator: an algorithm for learning parsimonious 
regulatory networks from systems-biology data sets de novo 
(Richard Bonneau et. al) : derive genome-wide transcriptional 
regulatory interactions, via regression and variable selection 
to identify transcriptional influences on genes based on the 
integration of genome annotation and expression data
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Conclusions

In this lecture, we looked at 
Representing sets of correlated genes together as a 
module, to form a module network.
A module has the same set of parents, and the same 
CPD for all genes belonging to it.
Learn a module via a greedy iterative algorithm.
Looked at COPRs which allow a gene to belong to 
multiple modules instead of a single module.
COPRs seem to be more capable of using multiple 
sources of data, measured under a variety of conditions.
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Additional Slides
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Conditions for Score 
Decomposibility

Globally Modular

Parameter Independence

Parameter Modularity

Structure & Assignment Modularity
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Learning Modular N/ws : Details

Pick Best Structure : 
Start with previous structure S(t-1)

Try using local operators (add an edge, delete an edge) to 
improve score
Stop when no local operator can improve score.

Pick Best Assignment : 
At each step, try to change the assignment of a single node i.e.
change A(Xi) to j from k.
If module network becomes cyclic, ignore the change. 
If score improves, accept the change, else reject
Stop when improvement in score not possible.
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Learning COPR Model : E-Step
Find most likely joint assignment to g.M, and a.C
Local Search Algorithm :

Fix g.M, find most likely a.C

Decomposes so that we can maximize over each 
gene independently (still exponential in no. of 
processes, and requires linear relaxation to solve).
Fix a.C, find most likely g.M

Reduces to minimize Least Squares, easy to optimize.
Repeat till Convergence
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Learning COPR Model : M-Step

Given g.M and a.C, find a good model.
Model includes 

structure of regulatory program for each process, and parameters
Variances of expression for array a
Probability qp of gene membership to process p

Learnt using Bayesian Score Maximization using a 
greedy search (like Modular Networks)


