10-810: Advanced Algorithms and Models for Computational Biology

Normalization
Gene Expression Analysis

- **Computational**
 - Information fusion
 - Clustering, classification
 - Normalization, miss. value estimation
 - Array design, number of repeats

- **Biological**
 - Regulatory networks
 - Functional assignment, response programs
 - Diff. expressed genes
 - Experiment selection
Typical experiment: replicates

healthy

cancer

Technical replicates: same sample using multiple arrays
Dye swap: reverse the color code between arrays
Clinical replicates: samples from different individuals

Many experiments have all three kinds of replicates
Data analysis

• Normalization
• Combining results from replicates
• Identifying differentially expressed genes
• Dealing with missing values
• Static vs. time series
Data analysis

• Normalization
• Combining results from replicates
• Identifying differentially expressed genes
• Dealing with missing values
• Static vs. time series
Normalizing across arrays

- Consider the following two sets of values:
Let's put them together ...
Normalizing between arrays

The first step in the analysis of microarray data in a given experiment is to normalize between the different arrays.

- Simple assumption: mRNA quantity is the same for all arrays

\[
M_j^j = \frac{1}{n} \sum_{i=1}^{n} y_i^j \quad M = \frac{1}{T} \sum_{j=1}^{T} M_j^j
\]

- Where \(n \) and \(T \) are the total number of genes and arrays, respectfully. \(M_j^j \) is known as the \textit{sample} mean

- Next we transform each value to make all arrays have the same mean:

\[
\hat{y}_i^j = y_i^j - M_j^j + M
\]
Normalizing the mean
Variance normalization

• In many cases normalizing the mean is not enough.
• We may further assume that the variance should be the same for each array.
• Implicitly we assume that the expression distribution is the same for all arrays (though different genes may change in each of the arrays).

\[
V^j = \frac{1}{n} \sum_{i=1}^{n} (y_i^j - M^j)^2 \quad V = \frac{1}{T} \sum_{j=1}^{T} V^j
\]

• Here \(V^j \) is the sample variance.
• Next, we transform each value as follows:

\[
\hat{y}_i^j = \frac{(y_i^j - M^j + M)\sqrt{V}}{\sqrt{V^j}}
\]

Normalizing mean and variance
Typical experiment: ratios

• In many experiments we are interested in the ratio between two samples

• For example
 - Cancer vs. healthy
 - Progression of disease (ratio to time point 0)
Transformation

- While ratios are useful, they are not symmetric.
- If $R = 2 \cdot G$ then $R/G = 2$ while $G/R = \frac{1}{2}$
- This makes it hard to visualize the different changes
- Instead, we use a log transform, and focus on the log ratio:

$$y_i = \log \frac{R_i}{G_i} = \log R_i - \log G_i$$

- Empirical studies have also shown that in microarray experiments the log ratio of (most) genes tends to be normally distributed
Normalizing between array: Locally weighted linear regression

- Normalizing the mean and the variance works well if the variance is independent of the measured value.
- However, this is not the case in gene expression.
- For microarrays it turns out that the variance is value dependent.
Locally weighted linear regression

- Instead of computing a single mean and variance for each array, we can compute different means and variances for different expression values.
- Given two arrays, R and G we plot on the x axis the (log) of their intensity and on the y axis their ratio.
- We are interested in normalizing the average (log) expression ratio for the different intensity values.
Computing local mean and variance

• Setting

\[m(x) = \frac{1}{k} \sum_{x_i = x} y_i \quad v(x) = \frac{1}{k} \sum_{x_i = x} (y_i - m(x))^2 \]

may work, however, it requires that many genes have the same x value, which is usually not the case

• Instead, we can use a *weighted* sum where the weight is proportional to the distance of the point from x:

\[
\begin{align*}
m(x) &= \frac{1}{\sum_i w(x_i)} \sum_i w(x_i) y_i \\
v(x) &= \frac{1}{\sum_i w(x_i)} \sum_i (w(x_i) y_i - m(x))^2
\end{align*}
\]

\[
\hat{y}(x) = \frac{(y(x) - m(x) + M)\sqrt{V}}{\sqrt{v(x)}}
\]
Determining the weights

- There are a number of ways to determine the weights.
- Here we will use a Gaussian centered at x, such that

$$w(x_i) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x-x_i)^2}{2\sigma^2}}$$

σ^2 is a parameter that should be selected by the user.
Locally weighted regression: Results

Original values

normalized values
Other normalization methods

- If you are not comfortable with the equal mRNA assumption, there are other possible normalization methods:
- We can use genes known as ‘house keeping genes’. These genes are assumed to be expressed at similar levels regardless of the condition the cell is in.
- Alternatively, we can use ‘controls’. These are sequences that are manually inserted into the sample with known quantities (this is mainly useful for oligo arrays).
Using spike controls

- Suppose we have m raw measurements of spiked controls per chip and T chip experiments altogether.
- We need to construct a model over these observations that disentangles the experiment dependent scaling and the underlying (supposedly fixed) control levels.

\[
\begin{array}{cccc}
 x_1^1 & \ldots & \ldots & \ldots & x_1^T \\
 \vdots & \ddots & \ldots & \ldots & \vdots \\
 \vdots & \ldots & \ddots & \ldots & \vdots \\
 x_m^1 & \ldots & \ldots & \ldots & x_m^T \\
\end{array}
\]
Determining the underlying expression

We can try to learn the parameters of a model that attempts to disentangle the experiment dependent scaling and the underlying (fixed) control levels:

\[x_i^j = m_i r^j e_i^j \]

Here:
- \(x_i^j \) is the \(j^{th} \) measurement for control \(i \)
- \(m_i \) is the fixed control amount
- \(r^j \) is the unknown experiment dependent scaling
- \(e_i^j \) is random multiplicative noise
Log transform

Log-transform all the variables

\[\log x_i^l = \log m_i + \log r_i + \log e_i^l \]

\[y_i^l = \log x_i^l, \mu_i = \log m_i, \rho_i = \log r_i^l, \epsilon_i^l = \log e_i^l \]

After the transformation we can express the model in the simple form

Observation = Model + noise

\[y_i^l = \mu_i + \rho_i + \epsilon_i^l \]
Noise model

- We make some additional assumptions about the model
 \[y_i^1 = \mu_i + \rho^1 + \epsilon_i^1, \epsilon_i \sim \mathcal{N}(0, \sigma_i^2) \]

- Noise (\(\epsilon \)) is independent across controls / experiments
- The noise is Gaussian (original multiplicative noise is log-normal)
- The noise variance does not depend on the experiment but may depend on the specific spiked control
Maximum likelihood estimate

- Maximum likelihood estimate (MLE) is a general and powerful techniques for fitting parameters of a probabilistic model.
- Given a parametric model (for example, Gaussian noise) and observed data, we look for the set of parameters (in our case, mean and variance) that maximize the likelihood of the model.
- If we observe data D, then we look for parameters that will maximize $p(D | M)$ where M is the model we assume
Maximum likelihood estimate: Example

• Assume a uniform distribution model $X \sim U(0,N)$.
• For such a model we have 1 parameter to fit (N).
• We now observe the values:

\[
1.2, 0.5, 3.4, 2.4, 1.5, 0.8, 2.2, 3.2
\]

what value should we use for N?
• Recall that in a uniform model, $p(x) = 1/N$ for $0 < x < N$ and $p(x) = 0$ for $x > N$.
• The likelihood of the data given N is thus:

\[
\prod_{x < N} \frac{1}{N} \prod_{x > N} 0
\]
Maximum likelihood estimate:

Example

1.2, 0.5, 3.4, 2.4, 1.5, 0.8, 2.2, 3.2

- Recall that in a uniform model, \(p(x) = 1/N \) for \(0 < x < N \) and \(p(x) = 0 \) for \(x > N \)
- The likelihood of the data given \(N \) is thus:

\[
\prod_{x \leq N} \frac{1}{N} \prod_{x > N} 0
\]

- It is easy to see that to maximize this value we must pick an \(N \) that is at least as large as the maximum value we observed.
- On the other hand, the larger \(N \) the smaller \(1/N \)
- Thus, the value that maximizes the likelihood is \(N = 3.4 \), the largest value we observed.
Back to our model

- We want to fit our model to the (log transformed) raw data
- We first write log likelihood term for the observed expression values:

\[
L(Y) = \sum_{i=1}^{n} \sum_{j} p(y_i^j \mid \mu_i, \rho^j, \sigma_i^2)
\]

\[
= \sum_{i} \sum_{j} - \frac{(y_i^j - \mu_i - \rho^j)^2}{2\sigma_i^2} - 0.5 \log(2\pi\sigma_i^2)
\]
Iterative solution

\[\mu_i = \frac{1}{n} \sum_{j=1}^{n} (y_i^j - \rho^j) \]

\[\sigma_i^2 = \frac{1}{n} \sum_{j=1}^{n} (y_i^j - \mu_i - \rho^j)^2 \]

\[\rho^j = \sum_{i=1}^{M} \frac{(\sigma_i^2)^{-1}(y_i^j - \mu_i)}{\sum_{i=1}^{m}(\sigma_i^2)^{-1}} \]

We iterate until convergence
Normalizing using the estimated parameters

• Once we obtain the estimate for the scaling parameter ρ^j, we rescale each measured value as follows:

$$\hat{y}^j_i = y^j_i - \rho^j$$

so that all genes in all arrays will have a scaling factor of 1 (log scaling of 0)
Some additional notes

- The maximum likelihood estimates of the noise variances may become too small; would need MAP or Bayesian estimates for the variances in practice.
- The simple log-normal noise model may not be adequate

\[
\sigma_i^2 = \frac{1}{n} \sum_{j=1}^{n} (y_i^j - \mu_i - \rho^j)^2
\]
Oligo arrays: Negative values

• In many cases oligo array can return values that are less than 0 (Why?)
• There are a number of ways to handle these values
• The most common is to threshold at a certain positive value
• A more sophisticated way is to use the negative values to learn something about the variance of the specific gene
Data analysis

- Normalization
- Combining results from replicates
- Identifying differentially expressed genes
- Dealing with missing values
- Static vs. time series
Motivation

• In many cases, this is the goal of the experiment.

• Such genes can be key to understanding what goes wrong / or get fixed under certain condition (cancer, stress etc.).

• In other cases, these genes can be used as ‘features’ for a classifier.

• These genes can also serve as a starting point for a model for the system being studied (e.g. cell cycle, phermone response etc.).
Problems

• As mentioned in the previous lecture, differences in expression values can result from many different noise sources.

• Our goal is to identify the ‘real’ differences, that is, differences that can be explained by the various errors introduced during the experimental phase.

• Need to understand both the experimental protocol and take into account the underlying biology / chemistry
The ‘wrong’ way

• During the early days (though some continue to do this today) the common method was to select genes based on their fold change between experiments.

• The common value was 2 (or absolute log of 1).

• Obviously this method is not perfect …
Significance bands for Affy arrays
Value dependent variance

Value Specific Variance

Variance

Log fold change
Typical experiment: replicates

- **healthy**
- **cancer**

 Technical replicates: same sample using multiple arrays
 Dye swap: reverse the color code between arrays
 Clinical replicates: samples from different individuals

Many experiments have all three kinds of replicates
What you should know

• The different noise factors that influence microarray results
• The two major normalization methods:
 - Assuming the same mRNA quantity
 - Using spike controls or house keeping genes
• Maximum likelihood estimation (MLE) principal