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Molecular Evolution 
and 

Comparative Genomics

--- the phylogenetic HMM model

10-810, CMB lecture 5---Eric Xing

Some important dates in history
(billions of years ago)

Origin of the universe 15 ±4

Formation of the solar system 4.6

First self-replicating system 3.5 ±0.5

Prokaryotic-eukaryotic divergence 1.8 ±0.3

Plant-animal divergence 1.0

Invertebrate-vertebrate divergence 0.5

Mammalian radiation beginning 0.1

86 CSH Doolittle et al.
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The three kingdoms

Two important early observations

Different proteins evolve at different rates, and this seems    
more or less independent of the host organism, including its 
generation time.

It is necessary to adjust the observed percent difference 
between two homologous proteins to get a distance more or  
less linearly related to the time since their common ancestor.  
( Later we offer a rational basis for doing this.)

An striking early version of these observations is next. 
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Rates of macromolecular evolution

Evolution of
the globins
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How does sequence variation arise?

• Mutation: (a) Inherent: DNA replication errors are not 
always corrected. (b) External: exposure to chemicals 
and radiation. 

• Selection: Deleterious mutations are removed 
quickly. Neutral and rarely, advantageous mutations, 
are tolerated and stick around.

• Fixation: It takes time for a new variant to be 
established (having a stable frequency) in a 
population. 
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Modeling DNA base substitution

Standard assumptions  (sometimes weakened)

1. Site independence.
2. Site homogeneity.
3. Markovian: given current base, future substitutions 

independent of past.
4. Temporal homogeneity: stationary Markov chain.

Strictly speaking, only applicable to regions undergoing 
little selection.

Some terminology

In evolution, homology (here of proteins), means similarity due to 
common ancestry.

A common mode of protein evolution is by duplication. Depending on the 
relations between  duplication and speciation dates, we have two
different types of homologous proteins. Loosely,

Orthologues:  the “same” gene in different organisms;common ancestry 
goes back to a speciation event.
Paralogues: different genes in the same organism; common ancestry 
goes back to a gene duplication.

Lateral gene transfer gives another form of homology.
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Beta-globins (orthologues)

10 20 30 40

M V H L T P E E K S A V T A L W G K V N V D E V G G E A L G R L L V V Y P W T Q BG-human
- . . . . . . . . N . . . T . . . . . . . . . . . . . . . . . . . . . . . . . . BG-macaque
- - M . . A . . . A . . . . F . . . . K . . . . . . . . . . . . . . . . . . . . BG-bovine
- . . . S G G . . . . . . N . . . . . . I N . L . . . . . . . . . . . . . . . . BG-platypus
. . . W . A . . . Q L I . G . . . . . . . A . C . A . . . A . . . I . . . . . . BG-chicken
- . . W S E V . L H E I . T T . K S I D K H S L . A K . . A . M F I . . . . . T BG-shark

50 60 70 80

R F F E S F G D L S T P D A V M G N P K V K A H G K K V L G A F S D G L A H L D BG-human
. . . . . . . . . . S . . . . . . . . . . . . . . . . . . . . . . . . . N . . . BG-macaque
. . . . . . . . . . . A . . . . N . . . . . . . . . . . . D S . . N . M K . . . BG-bovine
. . . . A . . . . . S A G . . . . . . . . . . . . A . . . T S . G . A . K N . . BG-platypus
. . . A . . . N . . S . T . I L . . . M . R . . . . . . . T S . G . A V K N . . BG-chicken
. Y . G N L K E F T A C S Y G - - - - - . . E . A . . . T . . L G V A V T . . G BG-shark

90 100 110 120

N L K G T F A T L S E L H C D K L H V D P E N F R L L G N V L V C V L A H H F G BG-human
. . . . . . . Q . . . . . . . . . . . . . . . . K . . . . . . . . . . . . . . . BG-macaque
D . . . . . . A . . . . . . . . . . . . . . . . K . . . . . . . V . . . R N . . BG-bovine
D . . . . . . K . . . . . . . . . . . . . . . . N R . . . . . I V . . . R . . S BG-platypus
. I . N . . S Q . . . . . . . . . . . . . . . . . . . . D I . I I . . . A . . S BG-chicken
D V . S Q . T D . . K K . A E E . . . . V . S . K . . A K C F . V E . G I L L K BG-shark

130 140

K E F T P P V Q A A Y Q K V V A G V A N A L A H K Y HBG-human
. . . . . Q . . . . . . . . . . . . . . . . . . . . .BG-macaque
. . . . . V L . . D F . . . . . . . . . . . . . R . .BG-bovine
. D . S . E . . . . W . . L . S . . . H . . G . . . .BG-platypus
. D . . . E C . . . W . . L . R V . . H . . . R . . .BG-chicken
D K . A . Q T . . I W E . Y F G V . V D . I S K E . . BG-shark

.  means same as reference 
sequence

- means deletion

Beta-globins: uncorrected pairwise
distances

hum     mac bov pla chi       sha

hum ---- 5         16        23       31        65

mac 7        ---- 17       23        30        62

bov 23         24         ---- 27        37        65

pla 34         34 39        ---- 29        64

chi 45         44         52        42       ---- 61

sha 91         88         91        90       87       ----

DISTANCES between protein sequences, calculated over: 1 to 147

Below diagonal: observed number of differences

Above diagonal: number of differences per 100 amino acids
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Beta-globins: corrected pairwise
distances

DISTANCES between protein sequences, calculated over 1 to 147.
Below diagonal: observed number of differences
Above diagonal: estimated number of substitutions per 100 amino acids
Correction method: Jukes-Cantor

hum     mac bov pla chi       sha

hum ---- 5          17       27       37      108

mac 7        ---- 18       27       36       102 

bov 23         24         ---- 32       46       110

pla 34         34 39        ---- 34       106

chi 45         44         52        42       ---- 98

sha 91         88         91        90       87      ----

Human globins (paralogues)

10 20 30

- V L S P A D K T N V K A A W G K V G A H A G E Y G A E A L E R M F L S F P T T alpha-human
V H . T . E E . S A . T . L . . . . - - N V D . V . G . . . G . L L V V Y . W . beta-human
V H . T . E E . . A . N . L . . . . - - N V D A V . G . . . G . L L V V Y . W . delta-human
V H F T A E E . A A . T S L . S . M - - N V E . A . G . . . G . L L V V Y . W . epsilon-human
G H F T E E . . A T I T S L . . . . - - N V E D A . G . T . G . L L V V Y . W . gamma-human
- G . . D G E W Q L . L N V . . . . E . D I P G H . Q . V . I . L . K G H . E . myo-human

40 50 60 70

K T Y F P H F - D L S H G S A - - - - - Q V K G H G K K V A D A L T N A V A H V alpha-human
Q R F . E S . G . . . T P D . V M G N P K . . A . . . . . L G . F S D G L . . L beta-human
Q R F . E S . G . . . S P D . V M G N P K . . A . . . . . L G . F S D G L . . L delta-human
Q R F . D S . G N . . S P . . I L G N P K . . A . . . . . L T S F G D . I K N M epsilon-human
Q R F . D S . G N . . S A . . I M G N P K . . A . . . . . L T S . G D . I K . L gamma-human
L E K . D K . K H . K S E D E M K A S E D L . K . . A T . L T . . G G I L K K K myo-human

80 90 100 110

D D M P N A L S A L S D L H A H K L R V D P V N F K L L S H C L L V T L A A H L alpha-human
. N L K G T F A T . . E . . C D . . H . . . E . . R . . G N V . V C V . . H . F beta-human
. N L K G T F . Q . . E . . C D . . H . . . E . . R . . G N V . V C V . . R N F delta-human
. N L K P . F A K . . E . . C D . . H . . . E . . . . . G N V M V I I . . T . F epsilon-human
. . L K G T F A Q . . E . . C D . . H . . . E . . . . . G N V . V T V . . I . F gamma-human
G H H E A E I K P . A Q S . . T . H K I P V K Y L E F I . E . I I Q V . Q S K H myo-human

120 130 140

P A E F T P A V H A S L D K F L A S V S T V L T S K Y R - - - - - -alpha-human
G K . . . . P . Q . A Y Q . V V . G . A N A . A H . . H . . . . . .                        beta-human
G K . . . . Q M Q . A Y Q . V V . G . A N A . A H . . H . . . . . .                        delta-human
G K . . . . E . Q . A W Q . L V S A . A I A . A H . . H . . . . . .                        epsilon-human
G K . . . . E . Q . . W Q . M V T A . A S A . S . R . H . . . . . .                        gamma-human
. G D . G A D A Q G A M N . A . E L F R K D M A . N . K E L G F Q G             myo-human



7

Human globins: corrected pairwise
distances

DISTANCES between protein sequences, calculated over 1 to 141.
Below diagonal: observed number of differences
Above diagonal: estimated number of substitutions per 100 amino acids
Correction method: Jukes-Cantor

alpha     beta    delta   epsil gamma   myo

alpha ---- 281       281 281 313     208

beta 82      ---- 7       30        31     1000

delta 82       10       ---- 34        33      470

epsil 89       35        39       ---- 21      402

gamma 85       39        42       29       ---- 470

myo 116     117      116     119      118      ----

Correcting distances between DNA 
and protein sequences

Why it is necessary to adjust observed percent differences to get a 
distance measure which scales linearly with time? 

This is because we can have multiple and back substitutions at a given 
position along a lineage. 

All of the correction methods (with names like Jukes-Cantor, 2-
parameter Kimura, etc) are justified by simple probabilistic arguments 
involving Markov chains whose basis is worth mastering. 

The same molecular evolutionary models can be used in scoring
sequence alignments.
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Markov chain

State space = {A,C,G,T}.  

p(i,j) = pr(next state Sj | current state S i)

Markov  assumption:

p(next state Sj | current state S i & any configuration of 
states before this) = p(i,j) 

Only the present state, not previous states, affects the 
probs of moving to next states.

The multiplication rule

pr(state after next is Sk | current state is Si)

= ? j pr(state after next is Sk, next state is Sj | current state is Si) 

= ? j pr(next state is Sj| current state is Si) x pr(state after next is Sk | current    

state is Si, next state is Sj) 

= ? j pi,j x pj,k

= (i,k)-element of P2, where P=(pi,j).

More generally,

pr(state t steps from now is Sk | current state is Si)   = i,k element of Pt

[addition rule]

[multiplication rule]

[Markov assumption]
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Continuous-time version

For any (s, t), 

let pij(t) = pr(Sj at time t+s | Si at time s) denote the stationary (time-
homogeneous) transition probabilities.

Let P(t) = (pij(t)) denote the matrix of pij(t)’s.

Then for any (t, u): P(t+u) = P(t) P(u).

It follows that P(t) = exp(Qt), where Q = P’(0) ( the derivative of P(t) at t = 0 ).

Q is called the infinitesimal matrix (transition rate matrix) of P(t ), and satisfies 

P’(t) = QP(t) = P(t)Q.

Interpretation of Q

Roughly, qij is the rate of transitions of i to j, while qii = − Σj  i qij, so each row 
sum is 0. 

Now we have the short-time approximation:

pi  j (t+h) = qij h + o(h),  and pii (t+h) = 1+qii h + o(h),

Now consider the Chapman-Kolmogorov relation: 
(assuming we have a continuous -time Markov chain, and let pj(t) = pr(Sj at time t))

pj(t+h) =Σi pr(S i at t, Sj at t+h)

= Σi pr(S i at t)pr(S j at t+h | Si at t)

= pj(t)x(1+hqjj) + Σi jpi(t)x hqij

i.e., h-1[pj(t+h) - pj(t)] = pj(t)qjj + Σi  j pi(t)qij, which becomes P’ = QP as h ↓ 0.

Important approximation: when t is small, P(t) ≈ I + Qt.

≠

≠

≠

≠
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Probabilistic models 
for DNA changes

Orc: ACAGTGACGCCCCAAACGT
Elf: ACAGTGACGCTACAAACGT
Dwarf: CCTGTGACGTAACAAACGA
Hobbit: CCTGTGACGTAGCAAACGA
Human: CCTGTGACGTAGCAAACGA

The Jukes-Cantor model (1969)

Substitution rate:

A

C

G

T

µ/3 µ/3

µ/3

µ/3

µ/3

µ/3

the simplest sysmmetrical model for DNA evolution

-µ -µ

-µ-µ
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Jukes-Cantor (cont.)

r(t) s(t) s(t) s(t)
S(t) = s(t) r(t) s(t) s(t)

s(t) s(t) r(t) s(t)
s(t) s(t) s(t) r(t)

Where we can derive:

r(t) = ¼ (1 + 3 e-4αt)
s(t) = ¼ (1 – e-4αt)

Prob transition matrix:

A
C
G
T

A C G T

Jukes-Cantor (cont.)

Fraction of sites differences

di
ffe

re
nc

e 
pe

r s
ite

time
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Kimura's K2P model (1980)

Substitution rate:

A

C

G

T

β β

α

α

β

β

which allows for different rates of transition and transversions.
Transitions (rate α) are much more likely than transversions (rate β).

-α-2β -α-2β

-α-2β -α-2β

Kimura (cont.)

r(t) s(t) u(t) s(t)
S(t) = s(t) r(t) s(t) u(t)

u(t) s(t) r(t) s(t)
s(t) u(t) s(t) r(t)

Where s(t) = ¼ (1 – e-4β t)
u(t) = ¼ (1 + e-4β t – e-2(α+β)t)
r(t)  = 1 – 2s(t) – u(t)

Prob transition matrix:

By proper choice of  and  one can achieve the overall rate of change and 
Ts=Tn ratio R you want (warning: terminological tangle).
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Kimura (cont.)

Transitions, transversions expected under different R:

The general time-reversible model

It maintains "detailed balance" so that the probability of 
starting at (say) A and ending at (say) T in evolution is the 
same as the probability of starting at T and ending at A:

? s(t) s(t) s(t)
s(t) ? s(t) s(t)
s(t) s(t) ? s(t)
s(t) s(t) s(t) ?

A
C
G
T

A C G T

Cap Gßp T?p
Aap Gdp Tep
Aßp Cdp T?p
A?p Cep G?p

And there is of course the general 12-parameter model which has 
arbitrary rates for each of the 12 possible changes (from each of the 4 
nucleotides to each of the 3 others). (Neither of these has formulas for 
the transition probabilities, but those can be done numerically.)
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Relation between models

Phylogenetic trees
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A pair of homologous bases

Typically, the ancestor is unknown.

ancestor

A C

Qh
Qm

T years

More assumptions

• Qh = shQ and Qm = smQ, for some positive sh, sm, 
and a rate matrix Q. 

• The ancestor is sampled from the stationary 
distribution π of Q.

• Q is reversible: for a, b, t ≥ 0

π(a)P(t,a,b) = P(t,b,a)π(b),    

(detailed balance).
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The stationary distribution

A probability distribution π on {A,C,G,T} is a stationary distribution of 
the Markov chain with transition probability matrix P = P(i,j), if for all j, 

∑i π(i) P(i,j) = π(j).

Exercise .  Given any initial distribution, the distribution at time t of a 
chain with transition matrix P converges to π as t → ∞. Thus, π is also 
called an equilibrium distribution. 

Exercise . For the Jukes-Cantor and Kimura models, the uniform 
distribution is stationary. (Hint: diagonalize their infinitesimal rate 
matrices.)

We often assume that the ancestor sequence is i.i.d π.

New picture

ancestor ~ π

A

C

Q
Q

shT PAMs

smT
PAMs
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Phylogeny

• The shaded nodes represent the observed nucleotides at a given site for a 
set of organisms

• The unshaded nodes represent putative ancestral nucleotides

• Transitions between nodes capture the dynamic of evolution

Phylogeny methods

Major methods:

• Parsimony phylogeny methods 
• Likelihood methods

Basic principles:

• Degree of sequence difference is proportional to length of 
independent sequence evolution

• Only use positions where alignment is pretty certain –
avoid areas with (too many) gaps
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Likelihood methods

ACAGTGACGCCCCAAACGT
ACAGTGACGCTACAAACGT
CCTGTGACGTAACAAACGA
CCTGTGACGTAGCAAACGA
CCTGTGACGTAGCAAACGAt1

t2

t3

t4

t5

t6

t8

t7

A tree, with branch lengths, and the data at a single site.

Since the sites evolve independently on the same tree,

?
1=

)( )|(=)|(=
m

i

i TDPTDPL

Likelihood at one site on a tree

t1

t2

t3

t4

t5

t6

t8

t7

x

y

z
w

We can compute this by summing over 
all assignments of states x, y, z and w 
to the interior nodes:

? ? ? ? )|,,,,,,,,(=)|( )(

x y z w

i TwzyxCCCAAPTDP

Due to the Markov property of the tree, we can 
factorize the complete likelihood according to the 
tree topology:   

=)|,,,,,,,,( TwzyxCCCAAP

),|( ),|(),|()( 216 tyCPtyAPtxyPxP

),|(),|( 38 tyCPtxzP
),|( ),|( ),|( 547 tyCPtyCPtzwP

Summing this up, there are 256 terms in this case!
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Getting a recursive algorithm

when we move the summation signs 
as far right as possible:

=)|,,,,,,,,(=)|( )( ? ? ? ?
x y z w

i TwzyxCCCAAPTDP

?
x

xP )(

? ),|(),|( 38
z

tzCPtxzP

?
w

twCPtwCPtzwP ),|(),|(),|( 547

),|( ),|(),|( 216?
y

tyCPtyAPtxyP( )
(

( ))

Felsenstein’s Pruning Algorithm

To calculate P(x1, x2, …, xN | T, t)

Initialization:
Set k = 2N – 1

Recursion: Compute P(Lk | a) for all a ∈ Σ
If k is a leaf node:

Set P(Lk | a) = 1(a = xk)
If k is not a leaf node:

1. Compute P(Li | b), P(Lj | b) for all b, for daughter nodes i, j

2. Set P(Lk | a) = Σb, cP(b | a, ti)P(Li | b) P(c | a, tj) P(Lj | c)

Termination:

Likelihood at this column = P(x1, x2, …, xN | T, t) = ΣaP(L2N-1 | a)P(a)



20

Finding the ML tree

So far I have just talked about the computation of the 
likelihood for one tree with branch lengths known.

To find a ML tree, we must search the space of tree 
topologies, and for each one examined, we need to 
optimize the branch lengths to maximize the likelihood.

Phylogenetic HMM

AG
AG

AC

AA
AA

AG

AA
AT

AG

...
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Modeling rate variation among sites

• There are a finite number of rates (denote rate i as ri).
• There are probabilities p i of a site having rate i.

• A process not visible to us ("hidden") assigns rates to sites. 

• The probability of our seeing some data are to be obtained by summing 
over all possible combinations of rates, weighting approproately by their 
probabilities of occurrence.

Rocall the HMM

A A A AAA A A A A A A A A A A AC G T AGA A A A G A G T C A A T

i i i iii e1 e2 e3 e4 e5 e6 e7 e8 i i i

...Y1 Y2 Y3 YT

X1 X2 X3 XT...
• The shaded nodes represent the observed nucleotides at particular 

sites of an organism's genome

• For discrete Yi, widely used in computational biology to represent 
segments of sequences

§ gene finders and motif finders

§ profile models of protein domains

§ models of secondary structure 
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Definition (of HMM)

Definition: A hidden Markov model (HMM)

• Observation alphabet Σ = { b1, b2, …, bM }
• Set of hidden states Q = { 1, ..., K }
• Transition probabilities between any two states

aij = P(y=j|y=i)
ai1 + … + aiK = 1,   for all states i = 1…K

• Start probabilities a0i

a01 + … + a0K = 1

• Emission probabilities associated with each state

eib = P( xi = b | yi = k)
ei,b1 + … + ei,bM = 1,   for all states i = 1…K

K

1

…

2

Hidden Markov Phylogeny

AG

AG

AC

AA

AA

AG

AA

AT

AG

...

• This yields a gene finder that exploits evolutionary constraints

• Based on sequence data from 12-15 primate species, McAuliffe et al 
(2003) obtained sensitivity of 100%, with a specificity of 89%. 

– Genscan (state-of-the-art gene finder) yield a sensitivity of 45%, with a 
specificity of 34%.  
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The Forward Algorithm

We can compute fk(t) for all k, t, using dynamic programming!

Initialization:

f0(0) = 1
fk(0) = 0, for all k > 0

Iteration:

fl(t) = el(xt) Σk fk(t-1) akl (a0k is a vector of initial probability)

Termination:

P(x) = Σk fk(T)

The Backward Algorithm

We can compute bk(t) for all k, t, using dynamic programming

Initialization:

bk(T) = 1, for all k

Iteration:

bk(t) = Σl el(xt+1) akl bl(t+1)

Termination:

P(x) = Σl a0l el(x1) bl(1)
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Observation:

• Finding a good phylogeny will help in finding the genes.

• Finding the genes will help to find biologically meaningful 
phylogenetic trees

Open questions (philosophical)

Which came first, the chicken or the egg?

Open questions (technical)

• How to learn a phylogeny (topology and transition prob.)?

• Should different site use the same phylogeny? Function-
specific phylogeny?

• Other evolutionary events: duplication, rearrangement, 
lateral transfer, etc.


