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--- the phylogenetic HMM model
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10-810, CMB lecture 5---Eric Xing

Some important dates in history

(billions of years ago) ‘-'3

Origin of the universe 15+4
Formation of the solar system 4.6

First self-replicating system 3.5%0.5
Prokaryotic-eukaryotic divergence 1.8+0.3
Plant-animal divergence 1.0
Invertebrate -vertebrate divergence 0.5
Mammalian radiation beginning 0.1

86 CSH Doolittle et al.




The three kingdoms <
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Two important early observations o]

Different proteins evolve at different rates, and this seems
more or less independent of the host organism, including its
generation time.

It is necessary to adjust the observed percent difference
between two homologous proteins to get a distance more or
less linearly related to the time since their common ancestor.
( Later we offer a rational basis for doing this.)

An striking early version of these observations is next.




Rates of macromolecular evolution
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Millions of years since divergence

After Dickerson (1971)

How does sequence variation arise?

I

* Mutation: (a) Inherent: DNA replication errors are not
always corrected. (b) External: exposure to chemicals

and radiation.

» Selection: Deleterious mutations are removed
quickly. Neutral and rarely, advantageous mutations,

are tolerated and stick around.

* Fixation: It takes time for a new variant to be
established (having a stable frequency) in a

population.




Modeling DNA base substitution o)

Standard assumptions (sometimes weakened)

1. Site independence.
Site homogeneity.

3. Markovian: given current base, future substitutions
independent of past.

4. Temporal homogeneity: stationary Markov chain.

N

Strictly speaking, only applicable to regions undergoing
little selection.

Some terminology o

In evolution, homology (here of proteins), means similarity due to
common ancestry.

A common mode of protein evolution is by duplication. Depending on the
relations between duplication and speciation dates, we have two
different types of homologous proteins. Loosely,

Orthologues the “same” gene in different organisms;common ancestry
goes back to a speciation event.

Paralogues: different genes in the same organism; common ancestry
goes back to a gene duplication.

Lateral gene transfer gives another form of homology.




Beta-globins (orthologues) W

10 20 30 40

1 1 1 1
BG-human MVHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQ
BG-macaque - . N . ST .

BG-bovi ne - -M. AL LD AL SF Lo LKL A e
BG-pl atypus - .. SGG. L DN L N L - L
BG-chi cken Lo WL AL QLI . G. . . .. .A. C.A. . A o
BG-shark - . WSEV.LHEI . TT. KSI DKHSL. AK . A. MFI T
50 60 70 80
1 1 1 1
BG-human RFFESFGDLSTPDAVMGNPKVKAHGKKVLGAF SDGLAHLD
BG-macaque .o .o . S Lo Lo P . N
BG-bovi ne - L Lo AL SN - . ... DS. . N. MK .
BG-pl at ypus .o AL .. . SAG. Lo .. A, .. TS. G. A. KN. .
BG-chi cken .. AL .. N .S. T.1L...M.R. .. ... TS. G. AVKN. .
BG-shark Y. GNLKEFTACSYG- - - - - . EL. AL LT LGVAVT. G
90 100 110 120
1 1 1 h
BG-human NLKGTFATLSELHCDKLHVDPENFRLLGNVLVCVLAHHEFG
BG-macaque . Q . K P L -
BG-bovi ne D. . Lo AL - R - K V. . RN. .
BGplatypus D . . P . P L ONR. L 1 Vv. . R. .S
BG-chi cken I N. . SQ. .. - e - - .. DI I . A .S
BG-shark DV.SQ. TD. . KK. AEE. . . V. S. K . AKCF. VE Gl LLK
130 140
h N
BG-human KEFTPPVQAAYQKVVAGVANALAHKYH . means same as reference
BG-macaque . Q L
BG-bovi ne . . VL. DF. . . . . ... R sequence
BG-pl at ypus D. S. E. . LW, . L.S...H..G.. . .
BG-chi cken D...EC...W..L.RV..H...R... - means deletion
BG-shark DK. A. QT .l WE. YFGV. VD. I SKE. .

Beta-globins: uncorrected pairwise -
distances e

DISTANCES between protein sequences, calculated over: 1 to 147
Below diagonal: observed number of differences
Above diagonal: number of differences per 100 amino acids

hum mac bov pla chi sha
hum - 5 16 23 31 65
mac 7 - 17 23 30 62
bov 23 24 - 27 37 65
pla 34 34 39 - 29 64
chi 45 44 52 42 -—-- 61

sha 91 88 91 90 87 -




Beta-globins: corrected pairwise

distances

5

DISTANCES between protein sequences, calculated over 1 to 147.
: observed number of differences

Below diagonal

Above diagonal: estimated number of substitutions per 100 amino acids
Correction method: Jukes-Cantor

hum
mac
bov
pla
chi

sha

hum mac bov pla chi

- 5 17 27 37

7 ---- 18 27 36

23 24 - 32 46

34 34 39 - 34
45 44 52 42 ----
91 88 91 90 87

sha

108

102

110

106

98

Human globins (paralogues)

10 20 30
1 1 1
al pha-human - VLSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTT
bet a- human VH. T. EE. SA. T. L. . --NVD. V. G...G. LLVVY. W.
del t a-human VH. T. EE. A. N. L. --NVDAV. G G. LLVVY. W.
epsilon-human VHFTAEE. AA. TSL. S. M--NVE. A. G. .. G. LLVVY. W.
ganmma- human GHFTEE. . ATI TSL. --NVEDA. G. T. G. LLVVY. W.
my o- hunan - G. . DGEWQL LNV. .. E.DIPGH. Q. V. I .L KGH E.
40 50 60 70
1 1 1 1

al pha-human KTYFPHF DLSHGSA- - - - - QVKGHGKKVADALTNAVAHV
bet a- human QRF. ES. G TPD. VMGNPK AL .LG. FSDGL. L
del t a-human QRF. ES. G. . SPD. VMGNPK A LG. FSDGL. L
epsilon-human QR F DS. GN. S P . I LGNPK A LTSFGD. | KNM
ganmma- human QRF. DS. GN. SA. . 1 MGNPK AL .. .. LTS GD. I K L
my o- hunan LEK. DK. KH. KSEDEMKASEDL. K AT LT GGl L KKK

80 90 100 110

| 1 1 1
al pha-human DDMPNALSALSDLHAHKLRVDPVNFKLLSHCLLVTLAAHL
bet a- human NLKGTFAT. E. CD. . H. . E. R. . GNV. VCV . H F
del t a-human NLKGTF Q. E. CD. . H. . E. R. . GNV. VCV . RNF
epsilon-human . NL KP. FAK E. CD. . H. . E. .GNVMVI I . T.F
ganmma- human . LKGTFAQ. E. CD. . H. . E. ... GNV. VTV o F
my o- hunan GHHEAEI KP. AQS . T.HKIPVKYLEFI . E. I I QV QS KH

120 130 140

1 1 1
al pha-human PAEFTPAVHASLDKFLASVSTVLTSKYR- - - - - -
bet a- human G K ... P.Q.AYQ. VV. G. ANA. AH. . H.
del ta-human G K .QMQ.AYQ.VV. G. ANA. AH. . H.
epsilon-human G K ... E. Q. AWQ. LVSA. Al A. AH. . H.
gamma- human G K .. . E Q. wQ MVTA. ASA. S R. H. Lo .
my o- hunan GD. GADAQGAMN. A. ELFRKDMA. N. KELGF QG




Human globins: corrected pairwise .
distances *-'.;'__ -.

DISTANCES between protein sequences, calculated over 1 to 141.
Below diagonal: observed number of differences

Above diagonal: estimated number of substitutions per 100 amino acids
Correction method: Jukes-Cantor

alpha beta delta epsil gamma myo

alpha - 281 281 281 313 208
beta 82 - 7 30 31 1000
delta 82 10 - 34 33 470
epsil 89 35 39 21 402
gamma 85 39 42 29 ---- 470

myo 116 117 116 119 118 ---

Correcting distances between DNA |
and protein sequences *5' 1

Why it is necessary to adjust observed percent differences to get a
distance measure which scales linearly with time?

This is because we can have multiple and back substitutions at a given
position along a lineage.

All of the correction methods (with names like Jukes-Cantor, 2-
parameter Kimura, etc) are justified by simple probabilistic arguments
involving Markov chains whose basis is worth mastering.

The same molecular evolutionary models can be used in scoring
sequence alignments.




Markov chain o)

State space = {A,C,G,T}.

p(i,j) = pr(next state S; | current state S;)

Markov assumption:

p(next state S; | current state S;& any configuration of
states before this) = p(i,)

Only the present state, not previous states, affects the
probs of moving to next states.

The multiplication rule o
pr(state is S, | current state is S;)
=7, pr(state is S,, is S | current state is S;) [addition rule]

=7, pr(next state is S| current state is S)) x pr(state after nextis S, | current
state is S;, next state is S) [multiplication rule]
= ?j Pij X Pjk [Markov assumption]

= (i,k)-element of P2, where P=(p, ).

More generally,

pr(state t steps from now is S, | current state is S;) =i,k element of P!




Continuous-time version o

For any (s, 1),

let py(t) = pr(S; at time t+s | S; at time s) denote the stationary (time-
homogeneous)

Let P(t) = (p;(t)) denote the matrix of pj(t)'s.
Then for any (t, u): P(t+u) = P(t) P(u).
It follows that P(t) = exp(Qt), where Q = P’(0) ( the derivative of P(t) att=10).

Q is called the of P(t), and satisfies

P(t) = QP() = P()Q.

Interpretation of Q v

Roughly, gj is the of transitions of i to j, while g; = - S;,; g, so each row
sum is 0.

Now we have the short-time approximation:
Pi:j (t+h) = g; h + o(h), and pii (t+h) = 1+q; h + o(h),

Now consider the Chapman-Kolmogorov relation:
(assuming we have a continuous -time Markov chain, and let p,(t) = pr(S at time t))

pj(t+h) =S;pr(S; at t, S; at t+h)
= S pr(S; at )pr(S; at t+h | S;att)
= p(tx(1+hay) + Suipi(t)x hg;
i.e., hip(t+h) - pt)] = pi(tag; + Si;j Pit)a;, which becomes P'=QP ash ~ 0.

Important approximation: when tis small, P(t) » | + Qt.




Probabilistic models
for DNA changes

Orc: ACAGTGACGCCCCAAACGT
EIf: ACAGTGACGCTACAAACGT
Dwarf: CCTGTGACGTAACAAACGA
Hobbit: CCTGTGACGTAGCAAACGA
Human: CCTGTGACGTAGCAAACGA
The Jukes-Cantor model (1969) W

Substitution rate:
H 3 H
Chmz 8D
A 4

T

w3
W3 W3

w3

'“Cf ) w3 ] b u

the simplest sysmmetrical model for DNA evolution




Jukes-Cantor (cont.)

|
Prob transition matrix:
A C G T
A(r® s® st s)
S®= c | st) r® st) s
G | st s r(t) s(t)
T | st) s s(t)  r(Y)
Where we can derive:
rit) =% (1 + 3 ey
s(t) = Ya (1 — e
Jukes-Cantor (cont.) o]

Fraction of sites differences

difference per site

11



Kimura's K2P model (1980) 3

Substitution rate:
-a-2b C\ a /) -a-2b
A < > G
o T
b b

b

Y

-a-2b CE : a : b -a-2b

which allows for different rates of transition and transversions.
Transitions (rate a) are much more likely than transversions (rate b).

Kimura (cont.) o)

Prob transition matrix:

M s u® s
S = s( r®  s() u(®)
u® s M s
s( u@® s @

Where S(t) = Ya (1 — e4bY)
u(t) = ¥ (1 + e-4bt— g-2(a+h)y)
rt) =1-2s(t) - u()

By proper choice of and one can achieve the overall rate of change and
Ts=Tn ratio R you want (warning: terminological tangle).

12



Kimura (cont.) .

Transitions, transversions expected under different R:

Total differences = _

Transitions

Transversions

05 10 15 20
Time (branch length)

g
=

Tots difleeences .-~

Trarmsorsions

10 15 20

Time {bran ch | engih)

The general time-reversible model

e

It maintains "detailed balance" so that the probability of
starting at (say) A and ending at (say) T in evolution is the
same as the probability of starting at T and ending at A:

A C G T
Al > ap. Bps ?p;
C ap A ? d pG epT
G Bp A d pC ? 7pT
T 70, € 7P 7

And there is of course the general 12-parameter model which has
arbitrary rates for each of the 12 possible changes (from each of the 4
nucleotides to each of the 3 others). (Neither of these has formulas for
the transition probabilities, but those can be done numerically.)

13



Relation between models o)

General 12-parameter model  (12)

General time—Teversible model (9)

Tamura-Nei (6)

FA

HKY (5) F84 (5)

Sy

Kimura K2P (2)

Jukes—Cantor (1)

Phylogenetic trees

14



A pair of homologous bases =
ancestor
T years
’ Q, Qn
A C
Typically, the ancestor is unknown.
More assumptions =

* Q,=s,Qand Q,=s_Q, for some positive s, s

and a rate matrix Q.

» The ancestor is sampled from the stationary
distribution p of Q.

 Qisreversible: fora, b,t3 0
p(a)P(t,a,b) = P(t,b,a)p(b),

(detailed balance).

m?

15



The stationary distribution o

A probability distribution p on {A,C,G,T} is a stationary distribution of
the Markov chain with transition probability matrix P = P(i,j), if for all j,

a; p(i) P(i.j) = p()-

Exercise. Given any initial distribution, the distribution at time t of a
chain with transition matrix P convergesto past® ¥. Thus, pis also
called an equilibrium distribution.

Exercise. For the Jukes-Cantor and Kimura models, the uniform
distribution is stationary. (Hint: diagonalize their infinitesimal rate
matrices.)

We often assume that the ancestor sequence is i.i.d p.

New picture o]

ancestor ~p

s,T PAMs Q

m
A PAMs

16



Phylogeny o)

The shaded nodes represent the observed nucleotides at a given sitefor a
set of organisms

The unshaded nodes represent putative ancestral nucleotides

Transitions between nodes capture the dynamic of evolution

Phylogeny methods =

Basic principles:

Degree of sequence difference is proportional to length of
independent sequence evolution

Only use positions where alignment is pretty certain —
avoid areas with (too many) gaps

Major methods:

Parsimony phylogeny methods
Likelihood methods

17



Likelihood methods o)

A tree, with branch lengths, and the data at a single site.

angabey

CAGTGACGCCCCAAACGT
CAGTGACGCTACAAACGT
CTGTGACGTAACAAACGA
CTGTGACGTAGCAAACGA
CTGTGACGTAGCAAACGA

Since the sites evolve independently on the same tree,

L:P(D|T)='.r7n P(MD" |T)

i=1

Likelihood at one site on a tree o
We can compute this by summing over 5 -
all assignments of states x, y, zand w

to the interior nodes:

PO |T)=?? ?2? P(AACCCXy,zW|T) %
Xy z w
t
n 6

Due to the Markov property of the tree, we cal
factorize the complete likelihood according to the
tree topology:

Banoba

P(A/AC,CCxXx,y,zw|T)=
P(x) P(yIxt) P(Alyt)P(Cly.t,)
P(zIxt) P(Cly.t;)
Pw|zt,)P(Cly,t,)P(Cly.t5)

Summing this up, there are 256 terms in this case!

18



Getting a recursive algorithm s

when we move the summation signs
as far right as possible:

POOT)=??? ?P(AACCCXY zZwW|T)=

Xy z w

?PX)

X

( 2Py Ixts) PAlY.L)PCIvL)

y

( ?P@z|xt) P(Clzt,)

(? PW | 2t,)P(C [w,t,)P(C |W,t5)))

Felsenstein’s Pruning Algorithm '

To calculate P(Xq, X5, ..., Xy | T, 1)

Initialization:
Setk=2N-1

Recursion: Compute P(L, |a)forallal S
If kis a leaf node:
Set P(L | @) =1(a=xy)
If k is not a leaf node:
1. Compute P(L; | b), P(L; | b) for all b, for daughter nodes i,

2.SetP(L,| a) = Sb, PO | a, t)P(L; | b) Pc | a t) P(L | c)

Termination:

Likelihood at this column = P(x;, Xy, ..., X| T, t) = SaP(LZN_1 | a)P(a)

19



Finding the ML tree .

So far | have just talked about the computation of the
likelihood for one tree with branch lengths known.

To find a ML tree, we must search the space of tree
topologies, and for each one examined, we need to
optimize the branch lengths to maximize the likelihood.

Phylogenetic HMM

20



Modeling rate variation among sites .

Haten 100 & ® W—=N & & = &
# !
axf
% 29 e—a' @ IIII|lI & =
evolution \

03 o 5 % & Wen-a's

* There are a finite number of rates (denote rate i asr,).

* There are probabilities p; of a site having rate i.

» A process not visible to us ("hidden") assigns rates to sites.

* The probability of our seeing some data are to be obtained by summing
over all possible combinations of rates, weighting approproately by their
probabilities of occurrence.

Rocall the HMM -

« The shaded nodes represent the observed nucleotides at particular
sites of an organism's genome

» For discrete Y;, widely used in computational biology to represent
segments of sequences
= gene finders and motif finders
= profile models of protein domains
= models of secondary structure

21



Definition (of HMM) o

Definition: A hidden Markov model (HMM)

* Observation alphabet S={ by, b, ..., by}

e Set of hidden states Q={1, ..., K}
e Transition probabilities between any two states

a;; = P(y=jly=i)
at..+ax=1, forallstatesi=1...K

» Start probabilities ag

ant+... tak=1
Emission probabilities associated with each state

ep=P(x=b|y=k)
€p1t .- ey =1, forallstatesi=1...K

Hidden Markov Phylogeny o

This yields a gene finder that exploits evolutionary constraints

Based on sequence data from 12-15 primate species, McAuliffe et al
(2003) obtained sensitivity of 100%, with a specificity of 89%.

— Genscan (state-of-the-art gene finder) yield a sensitivity of 45%, with a
specificity of 34%.

22



The Forward Algorithm

=

We can compute f(t) for all k, t, using dynamic programming!
Initialization:

f(0) =1
f(0) = 0, for allk > 0

Iteration:
fitt) = e(Xy) Sy f(t-1) a (ay is a vector of initial probability)

Termination:

P(x) = S fi(T)

The Backward Algorithm

I

We can compute b,(t) for all k, t, using dynamic programming

Initialization:

b (T) =1, for all k
Iteration:

b(t) = S e(X11) ag by(t+1)
Termination:

P(X) = S, ag €(X;) b(2)

23



Open questions (philosophical) o)

Observation:

* Finding a good phylogeny will help in finding the genes.

» Finding the genes will help to find biologically meaningful
phylogenetic trees

Which came first, the chicken or the egg?

Open questions (technical) o]

* How to learn a phylogeny (topology and transition prob.)?

» Should different site use the same phylogeny? Function-
specific phylogeny?

» Other evolutionary events: duplication, rearrangement,
lateral transfer, etc.

24



