SNPs and Haplotype Inference

Polymorphism

- Alleles: Alternative DNA sequences at a locus
- Technical definition: most common variant (allele) occurs with less than 99% frequency in the population
- Also used as a general term for variation
- Many types of DNA polymorphisms, including RFLPs, VNTRs, microsatellites
- ‘Highly polymorphic’ = many variants
Type of polymorphisms

- Single base mutation (SNP)
 - Restriction fragment length (RFLP)
 - Creating restriction sites via PCR primer
 - Direct sequencing
- Insertion/deletion of a section of DNA
 - Minisatellites: repeated base patterns (several hundred base pairs)
 - Microsatellites: 2-4 nucleotides repeated
 - Presence or absence of Alu segments

Frequency of SNPs greater than that of any other type of polymorphism

Single Nucleotide Polymorphism (SNP)

- “Binary” nt-substitutions at a single locus on a chromosome
 - each variant is called an “allele”
Single Nucleotide Polymorphism (SNP)

- More than 5 million common SNPs each with frequency 10-50% account for the bulk of human DNA sequence difference
- About 1 in every 600 base pairs
- It is estimated that ~60,000 SNPs occur within exons; 85% of exons within 5 kb of nearest SNP

Why SNPs?

- The majority of human sequence variation is due to substitutions that have occurred once in the history of mankind at individual base pairs, SNPs (Patil et al. 2001).
- Markers for pinpointing a disease
- Association study: check for differences in SNP patterns between cases and controls
- There can be big differences between populations!
- http://snp.cshl.org/about/introduction.shtml
Linkage disequilibrium

- Relationship between alleles at different loci.
- Alleles at locus A: frequencies p_1, \ldots, p_m
- Alleles at locus B: frequencies q_1, \ldots, q_n
- Haplotype frequency for A_iB_j equilibrium value $= h_{ij}$
- Linkage disequilibrium is an allelic association measure (difference between the actual haplotype frequency and the equilibrium value)
- More precisely: gametic association

Use of Polymorphism in Gene Mapping

- 1980s – RFLP marker maps
- 1990s – microsatellite marker maps
Advantages of SNPs in genetic analysis of complex traits

- Abundance: high frequency on the genome
- Position: throughout the genome (level of influence of type of SNP, e.g. coding region, promoter site, on phenotypic expression?)
- Haplotypic patterns (see later)
- Ease of genotyping
- Less mutable than other forms or polymorphisms
- Allele frequency drift (different populations)

Haplotype

--- a more discriminative state of a chromosomal region

- Consider J binary markers in a genomic region
- There are 2^J possible haplotypes
 - but in fact, far fewer are seen in human population
- Good genetic marker for population, evolution and hereditary diseases …
Haplotype analyses

• Linkage disequilibrium assessment
• Disease-gene discovery
• Genetic demography
• Chromosomal evolution studies

Why Haplotypes

• Haplotypes are more powerful discriminators between cases and controls in disease association studies
• Use of haplotypes in disease association studies reduces the number of tests to be carried out.
• With haplotypes we can conduct evolutionary studies
• Haplotypes are necessary for linkage analysis
Phase ambiguity

--- haplotype reconstruction for individuals

Heterozygous diploid individual

Genotype g pairs of alleles with association of alleles to chromosomes unknown

This is a mixture modeling problem!

Inferring Haplotypes

- Genotype: AT//AA//CG
 - Maternal genotype: TA//AA//CC
 - Paternal genotype: TT//AA//CG
 - Then the haplotype is AAC/TAG.

- Genotype: AT//AA//CG
 - Maternal genotype: AT//AA//CG
 - Paternal genotype: AT//AA//CG
 - Cannot determine unique haplotype

- **Problem:** determine Haplotypes without parental genotypes
Identifiability

Genotypes of 14 individual

0/0 → 0
1/1 → 1
0/1 → 2

Genotype representations

<table>
<thead>
<tr>
<th>Genotype</th>
<th>0/0</th>
<th>0/1</th>
<th>1/1</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Identifiability

Parsimonious solution
Three Problems

1. Frequency estimation of all possible haplotypes
2. Haplotype reconstruction for individuals
3. How many out of all possible haplotypes are plausible in a population

given a random sample of multilocus genotypes at a set of SNPs

Haplotype reconstruction: Clark (1990)

- Choose individuals that are homozygous at every locus (e.g. TT//AA//CC)
 - Haplotype: TAC
- Choose individuals that are heterozygous at just one locus (e.g. TT//AA//CG)
 - Haplotypes: TAC or TAG
- Tally the resulting known haplotypes.
- For each known haplotype, look at all remaining unresolved cases: is there a combination to make this haplotype?
 - Known haplotype: TAC
 - Unresolved pattern: AT//AA//CG
 - Inferred haplotype: TAC/AAG. Add to list.
 - Known haplotype: TAC and TAG
 - Unresolved pattern: AT//AA//CG
 - Inferred haplotypes: TAC and TAG. Add both to list.
- Continue until all haplotypes have been recovered or no new haplotypes can be found this way.
Problems: Clark (1990)

- No homozygotes or single SNP heterozygotes in the sample
- Many unresolved haplotypes at the end
- Error in haplotype inference if a crossover of two actual haplotypes is identical to another true haplotype
- Frequency of these problems depend on avg. heterozygosity of the SNPs, number of loci, recombination rate, sample size.
- Clark (1990): algorithm "performs well" even with small sample sizes.

Finite mixture model

The probability of a genotype g:

$$p(g) = \sum_{h_1, h_2 \in \mathcal{H}} p(h_1, h_2) p(g | h_1, h_2)$$

Standard settings:

- $p(g | h_1, h_2) = 1(h_1 \oplus h_2 = g)$: noiseless genotyping
- $p(h_1, h_2) = p(h_1)p(h_2) = f_1f_2$: Hardy-Weinberg equilibrium, multinomial
- $|\mathcal{H}| = K$: fixed-sized population haplotype pool

$$p(g) = \sum_{h_1, h_2 \in \mathcal{H}} f_1f_2$$

$$\sum_{h_1, h_2 \in \mathcal{H}} f_1f_2$$
EM algorithm:
Excoffier and Slatkin (1995)

Numerical method of finding maximum likelihood estimates for parameters given incomplete data.

1. **Initial parameter values:** Haplotype frequencies: \(f_1, \ldots, f_n \)
2. **Expectation step:** compute expected values of missing data based on initial data
3. **Maximization step:** compute MLE for parameters from the complete data
4. Repeat with new set of parameters until changes in the parameter estimates are negligible.

Beware: local maxima.

EM algorithm efficiency

- Heavy computational burden with large number of loci? (\(2^L \) possible haplotypes for L SNPs)
- Accuracy and departures from HWE?
- Error between EM-based frequency estimates and their true frequencies
- Sampling error vs. error from EM estimation process
Bayesian Haplotype reconstruction

- Bayesian model to approximate the posterior distribution of haplotype configurations for each phase-unknown genotype.
- $G = (G_1, \ldots, G_n)$ observed multilocus genotype frequencies
- $H = (H_1, \ldots, H_n)$ corresponding unknown haplotype pairs
- $F = (F_1, \ldots, F_M)$ unknown population haplotype frequencies
- EM algorithm: Find F that maximizes $P(G|F)$. Choose H that maximizes $P(H|F^{EM}, G)$.

Gibbs sampler

Initial haplotype reconstruction $H^{(0)}$.

- Choose an individual i, uniformly and at random from all ambiguous individuals.
- Sample $H_i^{(t+1)}$ from $P(H_i|G, H_{-i}^{(t)})$, where H_{-i} is the set of haplotypes excluding individual i.
- Set $H_j^{(t+1)} = H_j^{(t)}$ for $j=1, \ldots, i-1, i+1, \ldots, n$.
HAPLOTYPER:
Bayesian Haplotype Inference (Niu et al.2002)

- Bayesian model to approximate the posterior distribution of haplotype configurations for each phase-unknown genotype.
- Dirichlet priors $\beta=(\beta_1, \ldots, \beta_M)$ for the haplotype frequencies $F=(f_1, \ldots, f_M)$.
- Multinomial model (as in EM algorithm) for individual haplotypes:
 - product over n individuals,
 - and multilocus genotype probabilities are sums of products of pairs of haplotype probabilities.

Gibbs sampler

- Haplotypes H are “missing:"

$$P(G, H \mid F) \sim \prod_{i=1}^{n} f_{h_{i1}} f_{h_{i2}} \prod_{j=1}^{n} f_{j}^{\beta_{j}}$$

- Sample h_{i1} and h_{i2} for individual i:

$$P(h_{i1} = g, h_{i2} = h \mid F, G_i) = \frac{f_{g} f_{h}}{\sum_{g, h \in G_i} f_{g} f_{h}}$$

- Sample H given $H^{updated}$ Improving efficiency (Niu et al.)
Gibbs sampler

- **Predictive updating (Gibbs sampling):**
 - \((N(H) = \text{vector of haplotype counts})\)

 \[
P(G,H) \sim \frac{G(\beta+N(H))}{G(\beta+N(H))}
\]

 - Pick an individual \(i\), update haplotype \(h_i\):

 \[
P(h_i = (g,h)|H_{-i},G) \sim (n_g + \beta_g)(n_h + \beta_h)
 \]

 \((n_g = \text{count of } g \text{ in } H_i)\)

- **Prior Annealing:**
 - use high pseudo counts at the beginning of the iteration and progressively reduce them at a fixed rate as the sampler continues.

HAPLOTYPER Discussions

- **Missing marker data:**
 - PCR dropouts -> absence of both alleles,
 - one allele is unscored
 - Gibbs sampler adapts nicely

- **Ligation**
 - Problem: large number of loci.
 - Partition \(L\) loci into blocks of 8 and carry out block level haplotype reconstruction.
 - Record the \(B\) most probable (partial) haplotypes for each block and join them

 - **Progressive ligation.**
 - **Hierarchical ligation.**

\[L=K \times 2^n\]
Phase
coalescence-based Bayesian Haplotype inference:
Stephens et al (2001)

• What is \(P(\text{H}_i | G, \text{H}_{-i}) \)?
• For a haplotype \(\text{H}_i=(h_{i1}, h_{i2}) \) consistent with genotypes \(G_i \): \(P(\text{H}_i | G, \text{H}_{-i}) \sim P(\text{H}_i | \text{H}_{-i}) \sim p(h_{i1} | \text{H}_{-i}) p(h_{i2} | h_{i1}, \text{H}_{-i}) \)
• \(p(.|\text{H}) \)=conditional distribution of a future sampled haplotype given previously sampled haplotypes \(\text{H} \).
• \(r=\)total number of haplotypes, \(r_a=\)number of haplotypes of type \(a \), \(\theta=\)mutation rate, then a choice for
\[
\pi(a | \text{H}) = (r_a + \theta \mu_a) / (r + \theta),
\]
where \(\mu_a=\)prob. of type \(a \).

PHASE, details

• This is not working when the number of possible values \(\text{H}_i \) is too large: \(2^{J-1}, J=\)number of loci at which individual \(i \) is heterozygous. Alternatively,
\[
\pi(h | \text{H}) = \sum_{\alpha \in E} \sum_{z=0}^{\infty} \frac{r^z}{r^z + \theta} \left(\frac{\theta}{r + \theta} \right)^z \frac{r}{r + \theta} (P^z)_{\alpha \alpha}
\]
where \(E=\)set of types for a general mutation model, \(P=\)reversible mutation matrix.
• I.e. future haplotype \(h \) is obtained by applying a random number of mutations, \(s \) (sampled from geometric distribution), to a randomly chosen existing haplotype, \(r_a \) (coalescent).
• Problems: estimation of \(\theta \), dimensionality of \(P \) (dim \(P = M \), the number of possible haplotypes).
PHASE Discussion

- Key: unresolved haplotypes are similar to known haplotypes
- HWE assumption, but robust to “moderate” levels of recombinations
- More accurate than EM, Clark’s and Haplotyper algorithms
- Provides estimates of the uncertainty associated with each phase call
- Problem (of both Bayesian model): dimensionality

Summary: Algorithms

Clark’s parsimony algorithm:
- simple, effective,
- depends on order of individuals in the data set,
- need sufficient number of homozygous individuals,
- Disadvantage: individuals may remain phase indeterminate, biased estimates of haplotype frequencies

EM algorithm:
- accurate in the inference of common haplotypes
- Allows for possible haplotype configurations that could contribute to a phase-unknown genotype.
- Cannot handle a large number of SNPs.
Summary: Algorithms

Haplotyper:
• Bayesian model to approximate the posterior distribution of haplotype configurations
• Prior annealing helps to escape from local maximum
• Partitions long haplotypes into small segments: block-by-block strategy
• Gibbs sampler to reconstruct haplotypes within each segment. Assembly of segments.
• [link](http://www.people.fas.harvard.edu/~junliu/index1.html#ComputationalBiology)

Summary: Algorithms

PHASE:
• Bayesian model to approximate the posterior distribution of haplotype configurations
• based on the coalescence theory to assign prior predictions about the distributions of haplotypes in natural populations,
• may depend on the order of the individuals,
• pseudo posterior probabilities (→ pseudo Gibbs sampler),
• lacks a measure of overall goodness.
• [link](http://www.hgmp.mrc.ac.uk/Registered/Option/phase.html)