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1 Lagrangian Duality

1.1 Primal and Dual Problems

The optimization problem (primal form) in the standard form is

minimize f0(x), x ∈ D ⊆ Rn

s.t. fi(x) ≤ 0, i ∈ {1, 2, · · · ,m}
gi(x) = 0, i ∈ {1, 2, · · · , p}

The Lagrangian is defined for the optimization problem, which has the following form

L(x, λ, ν) = f0(x) +
m∑

i=1

λifi(x) +
p∑

i=1

νigi(x)

where λi, νi are the Lagrange multipliers.

The Lagrange dual function can be defined over the Lagrangian as

g(λ, ν) = inf
x∈D

L(x, λ, ν)

g is a concave function regardless of the convexity of the original optimization problem.

The optimal solutions of the primal and dual problems are

p∗ = min
x

max
λ,ν

L(x, λ, ν) (primal)

d∗ = max
λ,ν

min
x

L(x, λ, ν) (dual)

1.2 Weak and Strong Duality

Weak Duality: The optimal value of the Lagrange dual problem d∗ is the best lower bound on the optimal
value of the primal problem p∗, i.e., d∗ ≤ p∗.

Strong Duality: the optimal values of the primal problem and dual problem agrees, i.e. d∗ = p∗. Strong
duality holds when

1. The primal problem is convex, or

2. Slater’s condition holds: ∃x ∈ relint D, fi(x) < 0, i ∈ {1, 2, · · · ,m}, Ax = b (equality constraints)
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1.3 Karush-Kuhn-Tucker (KKT) conditions

For nonconvex problems: for an optimization problem with differentiable objective and constraint func-
tions, if strong duality holds, the optimal primal and dual values satisfy

fi(x) ≤ 0, i ∈ {1, 2, · · · ,m}
gi(x) = 0, i ∈ {1, 2, · · · , p}

λi ≥ 0, i ∈ {1, 2, · · · ,m}
λifi(x) = 0, i ∈ {1, 2, · · · ,m}

∇f0(x) +
m∑

i=1

λi∇fi(x) +
p∑

i=1

νi∇gi(x) = 0,

For convex problems: for an optimization problem with differentiable objective and constraint functions,
if the primal problem is convex and x, λ, ν satisfy the KKT conditions, then x and (λ, ν) are primal and dual
optimal with the property of p∗ = d∗.

2 Support Vector Machines

For the linearly separable case, the SVM aims at finding a hyperplane that maximizes the margin between
the two opposite classes, which is equivalent to the following optimization problem

min 1
2‖w‖

2

s.t. yi(xi · w + b)− 1 ≥ 0 ∀ i

The Lagrangian in primal form for this problem is

LP =
1
2
‖w‖2 −

l∑
i=1

αiyi(xi · w + b) +
l∑

i=1

αi

Assuming the gradient of LP with respect to w and b vanish, we have the following intermediate results

w =
l∑

i=1

αiyixi

l∑
i=1

αiyi = 0

Plugging these two equations into the primal problem gives us the dual form

LD =
l∑

i=1

αi −
1
2

∑
i,j

αiαjyiyjxi · xj

The solution to the separating hyperplane is found by minimizing LP or maximizing LD.
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The KKT conditions for the primal problem are

∂LP

∂wv
= wv −

∑
i

αiyixiv = 0 v ∈ {1, · · · , d}
∂LP

∂b = −
∑
i

αiyi = 0

yi(xi · w + b)− 1 ≥ 0 i ∈ {1, · · · , l}
αi ≥ 0 i ∈ {1, · · · , l}

αi(yi(xi · w + b)− 1) = 0 i ∈ {1, · · · , l}

For the non-linearly separable case, we introduce a set of slack variables ξi, i ∈ {1, · · · , l} and define the
constraint functions in a similar manner.

yi(xi · w + b)− 1 + ξi ≥ 0, ξi ≥ 0 ∀i

The primal and dual problems in this case are

LP =
1
2
‖w‖2 + C

∑
i

ξi −
∑
i=1

αi{yi(xi · w + b)− 1 + ξi} −
∑
i=1

µiξi

LD =
∑

i

αi −
1
2

∑
i,j

αiαjyiyjxi · xj

The KKT conditions for the primal problem under the non-separable scenario are

∂LP

∂wv
= wv −

∑
i

αiyixiv = 0
∂LP

∂b = −
∑
i

αiyi = 0
∂LP

∂ξi
= C − αi − µi = 0

yi(xi · w + b)− 1 + ξi ≥ 0
ξi ≥ 0
αi ≥ 0
µi ≥ 0

αi{yi(xi · w + b)− 1 + ξi} = 0
µiξi = 0


