Example 1 \textit{Hierarchical Bayesian Method}

\[X \sim f(\cdot \mid \theta) = \text{Binomial}(n, \theta) \]
\[\theta \sim \text{Beta}(\cdot \mid m, m) \]
\[m \sim \pi(m) \]

\[P(x) = \sum_m \int p(x \mid n, \theta)p(\theta \mid m, m)p(m)d\theta \]
\[= \sum_m \int \left(\binom{n}{x} \theta^x (1-\theta)^{n-x} \frac{\Gamma(2m)}{\Gamma(m)\Gamma(m)} \theta^{m-1}(1-\theta)^{m-1}\pi(m) \right)d\theta \]
\[= \sum_m \int \left(\binom{n}{x} \frac{\Gamma(2m)}{\Gamma(m)\Gamma(m)} \theta^{m+x-1}(1-\theta)^{n+m-x-1}\pi(m) \right)d\theta \]
\[= \sum_m \left(\binom{n}{x} \frac{\Gamma(2m)}{\Gamma(m)\Gamma(m)} \pi(m) \right) \]

\textbf{Empirical Bayes}

The idea is to estimate hyper-parameter \(\hat{\theta} \) from data, and apply \(\pi(\cdot \mid \hat{\theta}) \) to new data and for inference.

Example 2 \(X \sim B(X \mid 5, \theta) \)
What is the probability \(P(0 < \theta_{17} < \epsilon \mid X_{17} = 3) \)? What empirical Bayes does is:

\begin{itemize}
 \item \textit{Estimate} \(\alpha \) and \(\beta \) from \(P(X_1, \ldots, X_{16} \mid \alpha, \beta) \) s.t.
 \[\alpha, \beta = \arg \max m(X) \]
 \item \textit{Then this estimation is used for the posterior inference}
 \[P(\theta \mid X) = \frac{P(X \mid \theta)P(\theta \mid \hat{\alpha}, \hat{\beta})}{m(X)} \]
\end{itemize}

Note: As \(N \) goes to infinity, \(\delta_{\pi(\hat{\alpha})}(X) \rightarrow \delta_{\pi}(X) \).
Empirical Bayes estimator:
\[\hat{\theta} = \arg\min_\theta \max_\theta L(\hat{\theta}, \theta) \]

Example 3. James-Stein Estimator

\[X \sim N_p(\theta, I) \]

The least square estimators which minimizes \(\sum (\theta - \hat{\theta})^2 \) would result in \(\hat{\theta}_{LS} = X \). Under the following priors
\[
\theta \sim N(0, \tau^2 I) \\
\tau^2 \sim \pi
\]

the James-Stein estimator is given by
\[
\delta_{JS} = \left(1 - \frac{p - 2}{\sum X_i^2}\right) \bar{X}, \quad P \geq 3
\]

Example 4.

\[X \sim N(\theta, I) \]
\[\theta \sim N(0, \tau^2 I) \]
\[\Rightarrow \delta_\theta = \left(1 - \frac{1}{1 + \tau^2}\right) \bar{X} \]

where \(1 + \tau^2 \) is unknown. Here, we can use Empirical Bayes to get this \(\tau \).

\[X_i \sim N(0, (1 + \tau^2)I) \]
\[T = \frac{\sum_{i=1}^{N} X_i^2}{1 + \tau^2} \sim \chi^2_p \]

Hence,
\[E(T) = \frac{1}{p - 2} \]

We can apply this to (1), which induces:
\[1 + \tau^2 = \frac{p - 2}{\sum X_i^2} \]

Admixture model

Admixture model is also known as mixed membership model, or Latent Dirichlet Allocation (LDA).

Mixture model

\[
P(X_i \mid Z_i) = N(X_i \mid \mu_{Z_i}, \Sigma_{Z_i}) \\
Z_i \sim P(\pi_i)
\]

\[
P(X_i) = \sum_{Z_i} P(X_i \mid Z_i)P(Z_i) = P(Z_i = 1)N(X_i \mid \mu_1, \Sigma_1) + (1 - P(Z_i = 1))N(X_i \mid \mu_2, \Sigma_2) \quad \text{if } Z_i \text{ binary}
\]
Bayesian mixture model

\[\mu \sim N(\mu_0, \alpha \mu \Sigma^{-1}) \]
\[\Sigma^{-1} \sim \text{Wishart}(\alpha_T, T) = \frac{1}{e} \exp \left(tr(T \Sigma^{-1}) + \log(\alpha + \mu - 1) \right) \]
\[P(\mu, \Sigma^{-1} | X, \ldots) = N(\nu', \Sigma^{-1}) W(\alpha', T') \]

- LDA
- Genetics

These models will be discussed more next time.