

Lecture 2. Hierarchical Bayesian Method

Lecturer: Eric P. Xing

Scribes: Kyung-Ah Sohn

Example 1 *Hierarchical Bayesian Method*

$$\begin{aligned} X &\sim f(\cdot | \theta) = \text{Binomial}(n, \theta) \\ \theta &\sim \text{Beta}(\cdot | m, m) \\ m &\sim \pi(m) \end{aligned}$$

$$\begin{aligned} P(x) &= \sum_m \int p(x | n, \theta) p(\theta | m, m) p(m) d\theta \\ &= \sum_m \int \binom{n}{x} \theta^x (1-\theta)^{n-x} \frac{\Gamma(2m)}{\Gamma(m)\Gamma(m)} \theta^{m-1} (1-\theta)^{m-1} \pi(m) d\theta \\ &= \sum_m \int \binom{n}{x} \frac{\Gamma(2m)}{\Gamma(m)\Gamma(m)} \theta^{m+x-1} (1-\theta)^{n+m-x-1} \pi(m) d\theta \\ &= \sum_m \binom{n}{x} \frac{\Gamma(2m)}{\Gamma(m)\Gamma(m)} \pi(m) \end{aligned}$$

Empirical Bayes

The idea is to estimate hyper-parameter $\hat{\theta}$ from data, and apply $\pi(\cdot | \hat{\theta})$ to new data and for inference.

Example 2 $X \sim B(X | 5, \theta)$

What is the probability $P(0 < \theta_{17} < \epsilon | X_{17} = 3)$? What empirical Bayes does is:

- Estimate α and β from $P(X_1, \dots, X_{16} | \alpha, \beta)$ s.t.

$$\alpha, \beta = \text{argmax } m(X)$$

- Then this estimation is used for the posterior inference

$$P(\theta | X) = \frac{P(X | \theta) P(\theta | \hat{\alpha}, \hat{\beta})}{m(X)}$$

Note: As N goes to infinity, $\delta^{\pi(\hat{\alpha})}(X) \rightarrow \delta^{\pi}(X)$.

Empirical Bayes estimator:

$$\hat{\theta} = \operatorname{argmin}_{\hat{\theta}} \max_{\theta} L(\hat{\theta}, \theta)$$

Example 3. James-Stein Estimator

$$X \sim N_p(\theta, I)$$

The least square estimators which minimizes $\sum(\theta - \hat{\theta})^2$ would result in $\hat{\theta}_{LS} = X$. Under the following priors

$$\theta \sim N(0, \tau^2 I)$$

$$\tau^2 \sim \pi$$

the James-Stein estimator is given by

$$\delta_{JS} = \left(1 - \frac{p-2}{\sum X_i^2}\right) \bar{X}, \quad P \geq 3$$

Example 4.

$$\begin{aligned} X &\sim N(\theta, I) \\ \theta &\sim N(0, \tau^2 I) \\ \Rightarrow \delta_{\theta} &= \left(1 - \frac{1}{1 + \tau^2}\right) (\bar{X}) \end{aligned}$$

where $1 + \tau^2$ is unknown. Here, we can use Empirical Bayes to get this τ .

$$\begin{aligned} X_i &\sim N(0, (1 + \tau^2) I) \\ T &= \frac{\sum_{i=1}^N X_i^2}{1 + \tau^2} \sim \chi_p^2 \end{aligned} \tag{1}$$

Hence,

$$E(T) = \frac{1}{p-2}$$

We can apply this to (1), which induces:

$$1 + \tau^2 = \frac{p-2}{\sum X_i^2}$$

Admixture model

Admixture model is also known as mixed membership model, or Latent Dirichlet Allocation (LDA).

Mixture model

$$\begin{aligned} P(X_i | Z_i) &= N(X_i | \mu_{Z_i}, \Sigma_{Z_i}) \\ Z_i &\sim P(\pi_i) \end{aligned}$$

$$\begin{aligned} P(X_i) &= \sum_{Z_i} P(X_i | Z_i) P(Z_i) \\ &= P(Z_i = 1) N(X_i | \mu_1, \Sigma_1) + (1 - P(Z_i = 1)) N(X_i | \mu_2, \Sigma_2) \quad \text{if } Z_i \text{ binary} \end{aligned}$$

Bayesian mixture model

$$\begin{aligned}\mu &\sim N(\mu_0, \alpha_\mu \Sigma^{-1}) \\ \Sigma^{-1} &\sim \text{Wishart}(\alpha_T, T) = \frac{1}{e} \exp \left(\text{tr}(T\Sigma^{-1}) + \log(\alpha + \mu - 1) \right) \\ P(\mu, \Sigma^{-1} \mid X, \dots) &= N(\nu', \Sigma^{-1}) W(\alpha', T')\end{aligned}$$

- LDA
- Genetics

These models will be discussed more next time.