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Example 1 Hierarchical Bayesian Method

X ∼ f(· | θ) = Binomial(n, θ)

θ ∼ Beta(· | m,m)

m ∼ π(m)

P (x) =
∑
m

∫
p(x | n, θ)p(θ | m,m)p(m)dθ

=
∑
m

∫ (
n
x

)
θx(1− θ)n−x Γ(2m)

Γ(m)Γ(m)
θm−1(1− θ)m−1π(m)dθ

=
∑
m

∫ (
n
x

)
Γ(2m)

Γ(m)Γ(m)
θm+x−1(1− θ)n+m−x−1π(m)dθ

=
∑
m

(
n
x

)
Γ(2m)

Γ(m)Γ(m)
π(m)

Empirical Bayes

The idea is to estimate hyper-parameter θ̂ from data, and apply π(· | θ̂) to new data and for inference.

Example 2 X ∼ B(X | 5, θ)
What is the probability P (0 < θ17 < ε | X17 = 3)? What empirical Bayes does is:

• Estimate α and β from P (X1, . . . , X16 | α, β) s.t.

α, β = argmax m(X)

• Then this estimation is used for the posterior inference

P (θ | X) =
P (X | θ)P (θ | α̂, β̂)

m(X)

Note: As N goes to infinity, δπ(α̂)(X) → δπ(X).
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Empirical Bayes estimator:
θ̂ = argminθ̂ maxθL(θ̂, θ)

Example 3. James-Stein Estimator

X ∼ Np(θ, I)

The least square estimators which minimizes
∑

(θ− θ̂)2 would result in θ̂LS = X. Under the following priors

θ ∼ N(0, τ2I)

τ2 ∼ π

the James-Stein estimator is given by

δJS =
(

1− p− 2∑
X2

i

)
(X), P ≥ 3

Example 4.
X ∼ N(θ, I)

θ ∼ N(0, τ2I)

⇒ δθ =
(

1− 1
1 + τ2

)
(X)

where 1 + τ2 is unknown. Here, we can use Empirical Bayes to get this τ .

Xi ∼ N(0, (1 + τ2)I)

T =
∑N

i=1 X2
i

1 + τ2
∼ χ2

p (1)

Hence,

E(T ) =
1

p− 2
We can apply this to (1), which induces:

1 + τ2 =
p− 2∑

X2
i

Admixture model

Admixture model is also known as mixed membership model, or Latent Dirichlet Allocation (LDA).

Mixture model

P (Xi | Zi) = N(Xi | µZi
,ΣZi

)

Zi ∼ P (πi)

P (Xi) =
∑
Zi

P (Xi | Zi)P (Zi)

= P (Zi = 1)N(Xi | µ1,Σ1) + (1− P (Zi = 1)) N(Xi | µ2,Σ2) if Zi binary
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Bayesian mixture model

µ ∼ N(µ0, αµΣ−1)

Σ−1 ∼ Wishart(αT , T ) =
1
e

exp
(
tr(TΣ−1) + log(α + µ− 1)

)
P (µ,Σ−1 | X, . . .) = N(ν′,Σ−1)W (α′, T ′)

• LDA

• Genetics

These models will be discussed more next time.


