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1 Nonparemetric regression and kernel smoothing

1.1 Parametric models: Linear Regression with non-linear basis functions

Although the linear regression with linear basis is widely used in different areas, it is not powerful enough for
lots of the real world cases as not all the models are linear in the real world. However, we can use non-linear
basis functions to deal with non-linear relationships. It is just a linear combination of some function of x,
ϕj(x).

y = θ0 +

m∑
j=1

θjϕj(x) (1)

where ϕj(x) are fixed basis functions and we define that ϕ0(x) = 1. There are many basis functions, e.g:

• Polynomial ϕj(x) = xj−1

• Radial basis functions ϕj(x) = exp(− (x−µj)
2

2s2 )

• Sigmoidal ϕj(x) = σ(
x−µj

s ), etc.

Note there will be dependent dimension in basis functions because we manually increase the dimensions. So
if in high dimension space, we need to reduce the redundant information. In parametric models, we will be
concerned with estimating the weights θ and choosing the model order m.

1.2 Non-parametric models: Locally weighted linear regression

The above linear regression based model treats all the training data equally. However, it will make more
sense if we weight the training data according to their distance between the query point, because the data
closed to the query point contains more useful information about the query point. The objective function

for linear regression model is J(θ) = 1
2

T∑
i=1

(xT
i θ−yi)

2 which treats each data equally. Instead, we can modify

the objective funtion to add a weight for each data point according to its distance to the query point:

J(θ) =
1

2

T∑
i=1

wi(x
T
i θ − yi)

2 (2)

1
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where wi = exp(− (xi−x)2

2τ2 ), x is the query point for which we’d like to know its corresponding y. The weight
function wi ensures that higher weight will be given to the data points that close to the query point and
lower weight to the data points that are far away to the query point. The weight function wi also requires
that we have to save all the training data points and use them when we estimate the corresponding y of
each query point x. This model is called locally weighted linear regression model. This model is actually a
non-parametric method, however (unweighted) linear regression is a parametric model. There is a similar
method kernel SVM which is also a non-parametric algorithm.

1.3 Parametric Algorithms vs. Non-parametric Algorithms

Parametric model assumes all data can be represented using a fixed, finite number of parameters (like the
θ in the linear regression model). Once we have fixed the parameter θ and stored them, we no longer need
the training data to make future predictions and we can just throw them away.

In contrast, the number of parameters in non-parametric models can grow with the training sample size. Like
in the weighted linear regression, we need to store all the training data and use them for future predictions.

1.4 Probabilistic Interpretation of Regression

Assume that each data point yk is generated using the following recipe:

yk = θTxk +N (0, σ2) (3)

This can lead us to P (yi|xi) ∼ N (θTxi, σ
2). Thus we can have that E(Y |X = x) = θTx is a function of X.

The estimator of y is just E(Y |X = x). Note that the estimation of θ is (XTX)−1XT y.

In the non-parametric regression model, we concern about the estimation of the regression function:

m(x) = E(Y |X = x) (4)

from a training set {(x(i), y(i)) : x(i) ∈ Rp, y(i) ∈ R, i = 1, ...n}. Note that the regression function m(x) is
the estimator of y corresponding to x.

1.5 Kernel Smoother and Linear Smoother

Kerner smoother is a kind of linear smoother. A popular non-parametric regression estimator is the
Nadaraya-Watson kernel estimator:

m̂(x) =

n∑
i=1

y(i)K( ||x−x(i)||
h )

n∑
i=1

K( ||x−x(i)||
h )

(5)

where K(·) is the smoothing kernel function and h is the bandwidth. The smoothing kernel function should
statisfy the following properties.
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1.
∫
K(x)dx = 1

2.
∫
xK(x)dx = 0

3. σ2
K ≡

∫
x2K(x)dx > 0

Note that the choice of bandwidth h is more important than the type of kernel function K(·). Small h leads
to the rough estimates and large h leads to the smoother estimates.

Linear smoothers are defined as

m̂(x) =
n∑

i=1

ℓi(x)y
(i) = ℓ(x)Ty (6)

where

ℓi(x) =
K( ||x−x(i)||

h )
n∑

i=1

K( ||x−x(i)||
h )

(7)

where ℓ(x) is a vector with each element ℓi(x) and y ∈ Rn. For each query point x, the estimator (ŷ) is
a linear combination of y(i) and the weights are functions of x. In linear regression, we have ŷ = θx =
((XTX)−1y)Tx. It can also be represented using the linear smothers. We have that ℓ(x) = (XTX)−1x.

An alternative view of the linear smoother is:

ŷ = Sy (8)

where ŷ is defined as (m̂(x(1)), ..., m̂(x(n))) be the fitted values of the training examples. S ∈ Rn×n is called
the smoother matrix with Sij = ℓj(x

(i)). The fitted values are the smoother version of the original values.
Compare this with the population setting (population setting basically means the asymtoptic region where
N →∞.), we have the regression function m(X) = E(Y |X) as:

m(X) = PY (9)

where P = E(·|X) is the conditional expectation operator that projects a random variable (it is Y here) onto
the linear space of X. S can be viewed as a non-parametric version of P .

2 Additive models

In high dimension case, the data easily become very sparse, and the linear smoothers suffers the curse of
dimensionality. Hastie & Tibshirani(1990) proposed the addtive model:

m(X1, ..., Xp) = α+

p∑
j=1

fj(Xj) (10)
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where each fj is a smooth one-dimensional component function. j is the dimension index. p is the number
of dimensions. Xj is a vector of values of jth dimension of all data. We can assume that E[fj(Xj)] = 0 for
each j (because we can normalize the data the 0 mean). The problem can be solved by backfitting algorithm,
which is a coordinate descent type of algorithm.

The optimization problem in the population setting is

J(α, f1, ..fp) = 1
2E[(Y − α−

p∑
j=1

fj(Xj))
2]

= 1
2E[Y

2 + α2 + (
p∑

j=1

fj(Xj))
2 − 2Y α− 2Y

p∑
j=1

fj(Xj) + 2α
p∑

j=1

fj(Xj)]
(11)

Thus we have

∂
∂αJ(α, f1, ..fp) = ∂

∂α
1
2E[Y

2 + α2 + (
p∑

j=1

fj(Xj))
2 − 2Y α− 2Y

p∑
j=1

fj(Xj) + 2α
p∑

j=1

fj(Xj)]

= α− E[Y ] + E[
p∑

j=1

fj(Xj)]

= α− E[Y ] + 0
= 0

(12)

Then we have α̂ = E[Y ].

∂
∂fj

J(α, f1, ..fp) = ∂
∂fj

1
2E[Y

2 + α2 + (
p∑

j=1

fj(Xj))
2 − 2Y α− 2Y

p∑
j=1

fj(Xj) + 2α
p∑

j=1

fj(Xj)]

= ∂
∂fj

1
2E[(

p∑
j=1

fj(Xj))
2]− E[Y ] + E[α]

= ∂
∂fj

1
2E[(

∑
k ̸=j

fk(Xk) + fj(Xj))
2]− E[Y ] + E[α]

= ∂
∂fj

1
2E[(

∑
k ̸=j

fk(Xk))
2 + 2fj(Xj)

∑
k ̸=j

fk(Xk) + fj(Xj)
2]− E[Y ] + E[α]

= E[fj(Xj) +
∑
k ̸=j

fk(Xk)]− E[Y ] + E[α]

= 0

(13)

Then we have fj = E[(Y − α −
∑
k ̸=j

fk)|Xj ] := PjRj , where Pj = E[·|Xj ] is the conditional expectation

operator onto jth input space, Rj = Y − α−
∑
k ̸=j

fk is the partial residual.

Replace conditional operator Pj by smoother matrix Sj results in the backfitting algorithm.

Backfitting Algorithm

1. Initialize: α̂ =
n∑

i=1

y(i)/n, f̂j = 0, j = 1, ...p

2. Cycle: for j = 1, ..., p, 1...p.... (until J(·) doesn’t change)
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f̂j ← Sj(y − α̂−
∑
k ̸=j

f̂k)

Centering:f̂j ← f̂j − 1
n

n∑
i=1

f̂j(x
(i)
j )

(14)

3 Sparse additive models (SpAM)

The additive model works up to certain dimension. But if the data dimension is much larger than the dataset
size p >> n, we will need to penalize fj similar to the way we penalize βj coefficients in the lasso to restrict
the dimensionality of the regressions. This leads to the Sparse Additive Model (SpAM) formulation, which
encourage functional sparsity. The optimization problem in the population setting is shown in (15). Note
that the data is centered data.

1

2
E[(Y −

p∑
j=1

fj(Xj))
2] + λ

∑
j=1

p
√
E[fj(Xj)2] (15)

∑
j=1

p
√
E[fj(Xj)2] behaves like an l1 ball across different componets to encourage functional sparsity. Note

that if each component function fj(Xj) is constrained to have the linear form, the formulation reduces to
standard lasso problem.

The optimum is achieved by soft-thresholding step:

fj = [1− λ√
E[(PjRj)2]

]PjRj , j = 1, ..., p (16)

where Rj = Y −
∑
k ̸=j

fk is the partial residual. [·]+ is the positive part, which indicates that fj = 0 if only

if
√
E[(PjRj)2] ≤ λ. As in standard additive models, replace Pj by Sj , the backfitting algorithm for SpAM is:

f̂j ← [1− λ

ŝj
]+Sj(y −

∑
k ̸=j

f̂k), j = 1, ..., p (17)

where ŝj =
√
mean(Sj(y −

∑
k ̸=j

f̂k)) is the empirical estimate of
√
E[(PjRj)2] today is good

4 Structured sparse additive models (GroupSpAM)

SpAM imposes sparsity on single function and it does not utilize group structure information between
covariates, which could be viewed as priori knowledge in many applications. In the parametric setting, it
has been shown that if such a group structure exists and is consistent with true sparsity among covariates,
the estimator accuracy could be increased by treating the whole group of covariates as a single unit. The
GroupSpam achieves functional sparsity at group level by combining the spirit of GroupLasso (Yuan & Lin,
2006) and SpAM. In this sense, GroupSpAM could be viewed as a nonparametric extension of generalized
GroupLasso (Friedman et al., 2010).
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Assuming G is a partition of {1, ..., p} and the group in G do not overlap. The optimization problem of
GroupSpAM is formulated as:

minf :fj∈HjL(f) + λΩgroup(f) (18)

where L(f) is expected square error:

L(f) =
1

2
E[(Y −

p∑
j=1

fj(Xj))
2] (19)

and Ωgroup(f) is the regularization functional penalty defined as:

Ωgroup(f) =
∑

g∈G

√
dg∥fg∥

=
∑

g∈G

√
dg
√∑

j∈g E[f2
j (Xj)]

(20)

(Yin et. al, 2012) proved the following necessary and sufficient thresholding condition at the group level:√∑
j∈g

E[(PjRg)2] ≤ λ
√
dg (21)

where the Rg = Y −
∑

g′ ̸=g

∑
j′∈g′ fj′ (Xj′ ) is the partial residual after removing all functions from group g.

Learning functional fj could be achieved through Block Coordinate Descent algorithm and its building block
is thresholding. The Thresholding algorithm and Block Coordinate Descent algorithm are as follows:

4.1 Algorithm 1 Thresholding

1: Input: Partial residual R̂g, smoother matrics {Sj : j ∈ g}, and tuning parameter λ.

2: Output: f̂g = {f̂j : j ∈ g}.

3: Estimate PjRg by smoothing: P̂j = SjR̂g, ∀j ∈ g.

4: Estimate
√∑

j∈g E[(PjR2
g)] by

ω̂g =

√
1

n

∑
j∈g

∥P̂j∥2 (22)

5: if ω̂g ≤ λ
√
dg then 6: Set f̂j = 0, ∀j ∈ g 7: else 8: Estimate f̂g by iterating the following fixed point

equation over t until convergence

f̂g
(t+1)

= (Ĵ +
λ
√
dg

∥f̂g
(t)
∥/
√
n
I)−1Q̂R̂g (23)

9: end if 10 Center each f̂j by subtracting its mean.

4.2 Algorithm 2 Block Coordinate Descent

1: Input: Data X ∈ Rn×p, y ∈ Rn, a partition G of {1, ..., p}, and tuning parameter λ.
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2: Output: Fitted functions f̂ = {f̂j : j = 1, ..., p}.

3: Initialize f̂j = 0∀j;, pre-compute smoother matrices Sj ,∀j.

4: Cycle though group g ∈ G until convergence:

(1) Compute the partial residual Rg = Y −
∑

g′ ̸=g

∑
j′∈g′ fj′ (X

j′ )

(2) f̂g ← Thresholding( ̂Rg, {Sj}j∈g, λ)

In the previous GroupSpAM, it assumes there is no overlap between group partitions. Like structured spare
regression, allowing overlap among groups gives more flexibility but optimization could not be decoupled
simply. The idea is to decompose each original component function to be a sum of a set of latent functions
and then apply the functional group penalty to the decomposed:

minimize
1

2
E[(Y −

p∑
j=1

fj(Xj))
2] + λ

∑
g∈G

√
|g|∥hg∥ (24)

subjectto
∑
g:j∈g

hg
j = fj , j = 1, ..., p (25)

5 Closing Comments

By relaxing parametric assumption in LASSO, GroupLASSO, Structured Sparse Regression to a non-
parametric form, we come up with SparseAM, GroupSpAM and GroupSpAM with overlap. Among all
the algorithm explored above, instead of representing a probability distribution, graph structure serves as
a carrier of prior knowledge. Here we are being freqeuntists, and hence we do not see latent variables and
latent structures which served a center role in Bayesian learning.


