10-708: Probabilistic Graphical Models 10-708, Spring 2014

23 : Kernel Graphic Models

Lecturer: Eric P. Xing Scribes: Xiang Li, Ran Chen

1 Review of Hilbert Space Embeddings

1.1 Reproducing Kernel Hilbert Space

A Hilbert Space is a complete vector space equipped with an inner product. It is basically a nice infinite
dimensional vector space where lots of things behave like the finite case.

A Reproducing Kernel Hilbert Space(RKHS) is basically a better infinite dimensional vector space where
even more things behave like the finite case. RKHS is constructed with a Mercer Kernel, which is a function
of two variables, such that:

/ / K(2,9)f(2)f(y)dady > 0 Vf

Consider holding one element of the kernel fixed. We get a function of one variable which can be called
Feature Function. And the collection of feature functions is called the Feature Map:

By this definition, the inner product can be defined as:
Now, we consider the set of functions that can be formed with linear combinations of these feature functions:
k
Fo=1« f(2): Zajqﬁxj (2),Vk € Ny and z; € X
j=1

And we define the RKHS F to the completion of Fy. In such space, we have a good property, which is
reproducing property. The inner product of a function f with ¢,, evaluates a function at point x can be:

2 23 : Kernel Graphic Models

(f, bu) = <Z aj¢rj,¢m>
= Zjaj<¢zj,¢z>
= iajK(xk,x)
~ 1w

1.2 Embedding Distribution with One Variable

With such good property, we now can think about how to embed the distribution with one variable, which
is called Mean Map:

px =Ex[ox]

The empirical estimate of such count defined as blow. However, this is not actually computable from data,
since the feature map is infinite. And the z,, here is data point.

N
MX:NZQS:L’TL

n=1

By this definition, we can prove that:

(fiux) = (f,Ex~pdx]) = Ex~p[f(2)]

1.3 Embedding Joint Distribution

Now, we can think about how to embed joint distribution of two variables. In vector space, we have operator
C, which is used to map a function in one Hilbert Space to another function in the same or another Hilbert
Space. Now we can define the uncentered cross-covariance operator Cy x implicitly such that:

We should know that f is in one Hilbert Space, and g is in another. The Cy x here is our embedding of the
joint distribution of X and Y. Intuitively, Cy x is a operator, just like P[X,Y] is a matrix.

Let ¢x € F and 9y € G, then the explicit form of cross-covariance operator is:

Cvx =Eyx Yy ® ¢x]

23 : Kernel Graphic Models 3

It can be proofed:

(9,Cvx [) = (9, By x [ty ® ¢x]f)
=Eyx[(g, ¥y ® ¢x]f)]
=Evx[(9, (¢x, /)vy)]

= Eyx[(g,%v){¢x, [)]

[f(X)g(Y)]

=Eyx

1.4 Embedding Conditional Distribution

By the previous definition, we can not define conditional embedding operator:

Cyx = CyxCx

And it has such property that:
Eyz[pv|z] = Cy|x ¢a

2 Why We like Hilbert Space Embeddings

The reason we like Hilbert Space is that we can have the same way to deal with operations just like in
probabilistic space. We can marginalize and use chain rule in Hilbert Space too.

2.1 Sum Rule and Chain Rule

We can have a simple comparison, Sum Rule:

P= [PLXYI= [PXIVIRY] <= ix = Caviy

Chain Rule:

PX, Y] =PX|Y|PY] = P[Y|X]P[Y] < Cyx =CyxCxx =Cx)yCry

We can see from this comparison that these two operations are almost in the same way in both space, which
means that we can do the same thing in either way.

2.2 Mean Map and Probability Density Function

P[X] = Ex[0x] <= px = Ex[0x]

4 23 : Kernel Graphic Models

3 Kernel Graphic Models

As we can embed marginal distribution, joint distribution and conditional distribution in RKHS space, we
can use these embeddings to replace the conditional probability tables we used before in graphic model to
build the kernel graphic model. We can also perform inference on kernel graphic model with the sum rule
and chain rule in RKHS.

3.1 Inference on Kernel Graphic Models

A B C D

Figure 1: A simple graphic model

Consider a simple graphic model shown in Figure 1. If the variables in this model are discrete, we can
parameterize the model using probability vector P[A] and conditional probability matrix P[B|A], P[C|B]
and P[D|C]. Then, we can do inference based on these matrix.

For example, if we want to compute P[D = d], we can firstly compute the marginal probability vector P[D]
by

P[D] = P[AIP[B|A]"P[C|B]" P[DIC]"

Then, we can get P[D = d] = §1P[D], where d, is the evidence vector for d and all elements in d, is 0 except
the element corresponding to d.

Similarly, we can also compute the joint distribution of two variables, such like P[A = a, D = d]. To do this,
we need to compute the joint distribution matrix P[A, D]. However, if we directly use matrix multiplication,
A would be integrated out so we can only get P[D]. To solve this problem, we convert P[A] to a diagonal
matrix P[@A]. Then, P[A, D] could ba calculated using

P[A, D] = P[oA|P|B|A]TP[C|B|* P|D|C]*

And we can finnally get P[A = a, D = d] = 61 P[A, D]dq.

If the variables in this model are continues, we can embed them in RKHS using operators p4/Cax, Cp|a,
Ccip and Cpc, which can be viewed as infinite dimensional vector or matrix. Then, P[D = d] can be
calculated accoding to its mean map pup by

HD = MAC£|ACg\BCg|C
P[D = d] o ¢y j1p

Similarly, we can compute P[A = a, D = d] like we did before by computing the cross covariance operator

23 : Kernel Graphic Models 5

Cap first. In specific, we can use the following equations:

Cap = CaaChACE5ChHI0
P[A=a,D =d] < ¢ Capda

These examples show that inference on kernel graphic model is similar to inference on regular graphic
model. Therefore, we can apply the inference algorithm on regular graphic model, such like message passing
algorithm to kernel graphic model by replacing the sum-product operations with tensor operations.

3.2 Relationship with Kernel Density Estimation

Now we have already shown that we can build kernel graphic model and perform inference on it. Here,
we would like to discuss what we really get with kernel graphic model and how it help us in complicated
problems.

Consider evaluating one random variable X at a particular evidence value z. For a RKHS with RBF kernel,
it could be evaluated by

—|IX — (I3

)]

< px, ¢z >=Ex[< ¢x,dx >] = Ex[exp(.

This is similar to the kernel density estimitor at point Z:

PLX = &) o Efexp(2 7l

So evaluating the mean map at a point could be viewed as an unnormalized kernel density estimate. Yet,
kernel density estimate doesn’t work well in high dimensional space. For example, in an O dimensional
space, kernel density estimation with RBF kernel is

_||Xo_j0‘|%

O
P[X1.0 = Z1.0] o B[]] exp()]

loa
o=1

This is similar to evaluating a huge covariance operator. Thus, it would suffer from curse of dimensionality
and could get inaccurate result.

Fortunately, we could solve this problem using kernel graphic model by taking advantages of the conditional
independencies embedded in the graph. In specific, we could factorize the huge covariance operator into
several smaller covariance operators or conditional embedding operators according to the graph, so that we
can estimate them more efficiently.

4 Learning with Kernel Trick

In this section, we will describe how to learn a kernel graphic model, and how to deal with the infinite
dimension problem in the learning procedure. Note that learning for a fully observed graphic model on
discrete variables is easy: we just need to count the number of different configurations and fill the conditional
distribution table. However, conditional embedding operators could be viewed as infinite dimensional tables,
so they cannot be learned directly. To solve this problem, we need to use the kernel trick. More details are
shown below.

6 23 : Kernel Graphic Models

Caa Cpa C¢ip

Figure 2: A simpler graphic model

4.1 Learning on Kernel Graphic Models

Consider a simple graphic model shown in Figure 2. To learn this model, we need to estimate operators
Caa, Cpja and Cgp.

To estimate an auto covariance operator like Cx x, since Cx x = Ex[¢px ® ¢x], we can estimate it empirically
using Cxx = Zﬁle ox ® ox = +Px ® X, where Ox = [¢y,, duy, ..., b, is @ matrix with N columns
and infinite rows.

To estimate an conditional embedding operator like Cy|x, we can firstly estimate Cxx and Cyx, then use
the equation Cy|x = Cyx C)_(ﬁ(. We have already shown how to estimate Cx x. For Cy x, since we kown that

Cyx == Ex[¢y ® ¢x], an empirical estimitor would be Cy x = + 25:1 oy ® px = Py ® ®%. Then, we

can get that Cy |y = +®x ® ®%(+®y ® ®% + AI)~!. Note that we add a regularizer term here to make
the matrix invertible.

Finally, we can estimate Caa, Cp|a, Cc|p as follows:

R 1
Can = W(I)A ® &L
Cpja = Cp(@L 4+ ANI) 0%
Coip = @c(@L®p + ANI) 0]

Note that ®x is a matrix with infinite rows, and CAY‘ x 18 a matrix with infinite columns and rows. Therefore,
these equations cannot be directly used for calculation, and we need to use kernel trick to solve this problem.

REFERENCES 7

4.2 Why Kernel Trick Works

In the previous equations, we need to use the infinite dimensional matrix ®x in two ways: to calculate
CIﬂ);(I)X and to calculate @Xq)? It can be shown that <I>§<I>X = Kxx, where

< ¢117¢$1 > A < d)fbl?(bIN >
kXX = ..
< ¢(EN7¢I1 > < (Z)IN?(b:DN >

So that ®% @y is a finite matrix. For ®x®%, it is an infinite dimensional matrix. However, since ®x only
have finite columns, the rank of ®x®% is finite, so that we can deal with it using kernel in the inference
step, and do not need to write it out explicitly.

4.3 Using Kernel Trick

Kernel trick tell us that although Caa, Cpja, Co|p can not be explicitly written out, we can calculate their
inner product in the inference step. For example, if we want to calculate Cac, we can use

Cac = CanClaClp

1
— N%«pgm(@ﬁm + AN oLop(dhop + ANIT) DL

1
- NQAKAA(KAA +ANI)'Kpp(Kpp + ANI)"'oL

Then, to evaluate its value for A = a and C' = ¢, we can use

A 1
¢LCache = N¢a(I)AKAA(KAA +ANI) 'Kpp(Kpp + ANI) ' 0k,

1
= NKAA(l i N,a)Kan(Kaa +ANI) ' Kpp(Kpp + ANI) ' Koco(1: N,c)

where

K(x1,x)
KX)((].ZN,LU): .
K(zn,x)

It can be seen that all ® and C disappear in this final equation. So that qbaTé Ac®e can be evaluated from the
data.

References

[1] Alex Smola et al. “A Hilbert space embedding for distributions”. In: Algorithmic Learning Theory.
Springer. 2007, pp. 13-31.

[2] Le Song, Arthur Gretton, and Carlos Guestrin. “Nonparametric tree graphical models”. In: International
Conference on Artificial Intelligence and Statistics. 2010, pp. 765-772.

REFERENCES

Le Song et al. “Hilbert space embeddings of conditional distributions with applications to dynamical
systems”. In: Proceedings of the 26th Annual International Conference on Machine Learning. ACM.
2009, pp. 961-968.

Le Song et al. “Kernel belief propagation”. In: arXiv preprint arXiv:1105.5592 (2011).
Le Song et al. “Learning via Hilbert space embedding of distributions”. In: (2007).

