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1 Stick Breaking Construction

Figure 1: Bayesian Mixture Model

For a Bayesian Mixture Model as shown in figure 1, as k →∞, we shall have G =
∑∞
c=1 πcδφc , where all the

φc are i.i.d. samples from G0, while the random sequence {πc}∞c=1 sum up to one, shall be constructed by
the “Stick Breaking” process [3].

Suppose there is a stick with length 1. Let βc ∼ Beta(1, α) for c = 1, 2, 3, . . . , and regard them as fractions
we take away from the remainder of the stick every time. Then πc can be calculated by the length we take
away each time.

π1 = β1, π2 = (1− β1)β2, . . . , πc = βc

c−1∏
j=1

(1− βj), . . . (1)

By this construction, we will have
∑∞
c=1 πc = 1. In this way, we get an explicit construction of G. βc ∼

1
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Beta(1, α), φc ∼ G0:

G =

∞∑
c=1

πcδφc (2)

2 Chinese Restaurant Process

Figure 2: Chinese Restaurant Process

The Chinese restaurant process (CRP) is a distribution of partitions of integers, which was introduced by
Pitman and Dubins. Suppose N customers arrive at a restaurant with infinite capacity sequentially. Denote
ni as the number of customers already sitting at table i. Each incoming customer chooses a table at random,
with probability that:

p(i|previousCustomers) ∝ ni
p(nextEmptyTable|previousCustomers) ∝ α

(3)

where α is a parameter that is invariable during the process. Note that a new customer can either sit at an
existing table, or can start a new table. Figure 21 illustrates an example of the Chinese restaurant process,
in which each customer is numbered by his arrival sequence. CRP is a representation of partition of integers
1, 2, . . . N . For example, in figure 2 the numbers are partitioned into 3 different groups.

In CRP mixture model, each data point is generated as follows: Each table corresponds to a cluster, which
is associated with a parameter drawn from a prior p(η∗|λ). For each customer, we first choose a table
Z ∼ CRP (α), then we draw a value from p(x|η∗x), e.g, a prior over Gaussian locations. The generative
process is similar to mixture models, but with unbounded number of mixture components. Note than an
outlier in the data can be thought of as a new cluster. So the emphasis of CRP is not on the actual number
of clusters. Given data {x1, x2, . . . xN}, the posterior is a distribution on:

1. Number of clusters (number of occupied tables)

2. Data points assigned to each cluster

3. parameter η∗x of each cluster

Generally the number of clusters is random and unknown and new data can be assigned to a new cluster.
Our goal is to estimate this posterior distribution.
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Figure 3: Hierarchical Dirichlet Process

3 Hierarchical Dirichlet Process

A hierarchical Dirichlet process (HDP) is built on multiple Dirichlet processes as shown in figure 3. By adding
one more level of DP over G0, HDP enables data in groups to share countable infinite cluster identities and
to exhibit unique cluster propositions. By simply adding a second level of DP over G0 with concentration
parameter γ and base measure H, HDP guaranties the discreteness of G0. Therefore, HDP mixture models
yield exactly the grouped data characteristic [4].

3.1 Chinese Restaurant Franchise

An analog of the Chinese restaurant process for hierarchical Dirichlet processes is the Chinese restaurant
franchise. Imagine a franchise of restaurants, serving an infinitely large, global menu. Each table in each
restaurant orders a single dish. Let nrt be the number of customers in restaurant r sitting at table t. Let
mrd be the number of tables in restaurant r serving dish d. Let md be the number of tables, across all
restaurants, serving dish d. Customers enter the restaurants, and sit at tables according to the CRP. The
first customer enters a restaurant, and picks a table. The nth customer enters the restaurant. He sits at an
existing table with probability mk

n−1+α , where mk is the number of people sitting at table k. He sits at a
new table with probability α

n−1+α . In addition, each table in each restaurant picks a dish, with probability
proportional to the number of times it has been served across all restaurants.

p(table t choose dich d — previous tables) = md
T+γ for an existing table

p(table t choose dich d — previous tables) = γ
T+γ for a new table

3.2 Infinite topic Models

A motivation from a different angle that brought about the need for HDP relates to topic modeling. Consider
the case where we want to model Latent Dirichlet Allocation (LDA) as a model with infinite topics. This
would definitely be advantageous, at the same time it is slightly trickier to deal with infinite topics than
dealing with infinite clusters for population inference. This is because, in LDA, when we say we need infinite

1http://cdn-ak.f.st-hatena.com/
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topics, what we really mean is that we want the number of topics to be unbounded. However, we must
note that the way topics are used in an LDA context is different from how cluster centroids are used in a
clustering scenario. In LDA, the connection is more indirect and we are in fact estimating the per document
topic breakdown. Since we deal with “infinite” topics here, we need to have ways of dealing with the scenario
wherein, we represent the topics in two documents in the same infinite dimensional space, that is the mth

topic in the vector for document A should be the same as the mth topic for document B, even though we
are now dealing with infinite dimensional space.

In LDA, each distribution is associated with a distribution over K topics, and the issue here is as to how to
choose the number of topics. Choosing infinitely many topics serves as a solution to this issue. And for this,
we replace the Dirichlet distribution over topics, by a Dirichlet process.

Figure 4: Infinite Topic Models

The typical LDA model (on the left), is modeled as containing N words per document, each word wi having
a topic indicator zi, and every document having a topic weight vector πj and containing K topics. When
modeled as a DP (center), it is similar to the earlier case; we are going to group words into clusters and each
cluster is defined by a word frequency vector, and now we let the number of clusters be infinite. However,
one apparent issue here is that after we have dealt with an article with vector πj , when we sample another
πj′ , there is no direct way to get the same ordering of topics as we did for the previous article j. Now,
moving to HDP (right), we use the upper level DP to create an infinite pool of topics. Then we can treat
every article J by itself as a clustering problem, and every article in this clustering problem is going to draw
from the infinite discrete pool the set of topics that is useful to it. This way different documents will have
a mechanism of sharing topics with one another, even though the weights corresponding to that topic may
vary, the centroid (ordering of topics) would be same. And hence graphically, now the π doesn’t just follow
a DP, but now follows a HDP so that the same set of infinite topics can be chosen across different topics
(same set of topics, but with different weights across different topics). Then we can do appropriate inference
on this model. For example, in the Chinese restaurant franchise, we can consider restaurants and dishes as
being equivalent to documents and topics respectively. Let H be a V-dimensional Dirichlet distribution, so
a sample from H is a distribution over a vocabulary of V words. Then we can sample a global distribution
over topics as,

G0 =

∞∑
k=1

πkδβk DP (α,H) (4)

And then for each document m = 1, ...,M ,

• Sample a distribution over topics Gm ∼ DP (γ,G0)
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• For each word n = 1, ..., Nm

– Sample a topic φmn ∼ Discrete(G0)

– Sample a word wmk ∼ Discrete(φmn)

Figure 5: The “right” number of topics

We can then justify the usefulness of this proposed new model by using perplexity as a metric. This is a
lenient justification, as we know that there no exact “right” number of topics. We see here (figure 5) that
HDP allows us to explore a whole range of the number of topics and determine a best case setup for model
complexity.

4 Genetic Inference of the World Population

4.1 Terminology

• Single Nucleotide Polymorphism (SNP): DNA sequence variation due to difference of a single nucleotide.

– Each DNA site is called a “locus”

– Each variant is called an allele

• Happlotype: A consecutive sequence of SNP alleles on the same chromosome.

• Genotype: Unordered pair of alleles at a locus present in an individual

4.2 Haplotype Inference

Genotype can be obtained easily but an individual’s genotype might not define its haplotype uniquely. For
example, a heterozygous diploid organism with genotype T/C T/G A/A could have haplotypes TGA and
CTA or TTA and CGA. Given the genotypes for many individuals, haplotype inference can be done by
making use of the observation that haplotypes are shared in a population. Thus, given sets of possible
haplotypes, we choose the one that uses fewer haplotypes overall.
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A Finite Mixture of Allele Model The probability of a genotype g is:

p(g) =
∑

h1,h2∈H

p(h1, h2)p(g|h1, h2) (5)

where, H is the population haplotype pool, p(h1, h2) is the haplotype model and p(g|h1, h2) is the genotyping
model. Generally, |H| << K = 2J and p(h1, h2) = p(h1)p(h2).

An Infinite Mixture of Allele Model Since its difficult to infer the parameter values H,K, a statistical
model for haplotype inference based on a dirichlet process prior and a likelihood has been proposed called
the DP-Haplotyper [5]. In this model each individuals genotype is formed by drawing two random templates
from the ancestral pool, and subjected to random perturbations. Posterior inference can be done by an
MCMC procedure, that used both Gibbs and Metropolis-hasting updates. This process is analogous to the
CRP as follows:

• Associate a population haplotype with a table

• sample α, θ at each table from a base measure G0 to obtain the population haplotype and nucleotide
substitution frequency for that component

• The posterior distribution on the number of population haplotypes can be obtained from p(h|A, θ) and
p(g|h1, h2)

Inheritance and Observation Models

1. Noisy Observation Model: Hi1 , Hi2 → Gi, PG(g|h1, h2) : gt = h1,t ⊕ h2,t with probability λ

2. Single-locus mutation model: ACie → Hie

PH(ht|at, θ) =

{
θ ifht = at
1−θ
|B|−1 otherwise

MCMC for Haplotype Inference Using Gibbs sampling we can perform inference by drawing samples of
each random variable to be sampled given values of all the remaining variables. Integrate out the parameters
such as θ or λ and sample Cie , ak, and Hie .

p(cie = k|c[−ie],h,a) ∝ p(cie = k|c[−ie])p(hiek |ak,h[−ie], c) (6)

4.3 Multi-population Haplotype Inference using Hierarchical DP Mixture

Now we see how to perform haplotype inference while dealing with multiple populations, such as geographic
regions or different ethnicities. We could use the earlier model on each population separately or on the
union of all populations. This would however result in our losing valuable information about say population
structures implicitly present in the data or the data becoming too fragmented. Thus, we choose to couple
the haplotype inference problems using a hierarchical DP mixture model and choose to solve the different
clustering problems jointly. To do this, we consider the ancestors of the populations to be shared, but
weighted differently. We can consider the ancestors to be drawn for a DP at the top level, providing atoms
that then constitute each of the population’s DP mixtures.
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We refer to the HDP mixture model from figure 3. To describe the process in some detail, in each bottom
level urn j (each population), we can choose θk with a probability of

mjk∑
k′ mjk′+α0

or we may return to the

top level urn with a probability α0∑
k′ mjk′+α0

as in a typical DP. In the top level urn, we can now select θk

with probability nk∑
k′ nk′+γ

or draw a new sample with probability γ∑
k′ nk′+γ

. Drawing the θk for the top

level urn also selects the parameter for the bottom level urn. This two level scheme allows the ancestors to
be shared across populations, but with different weights within each population. This approach has been
detailed in [6].

Let us now see how we can obtain the general samples for the urns in the two levels. The top level urn
follows the Dirichlet process DP (γ,H):

θi|θ−i ∼
K∑
k=1

nk
i+ γ

δφ∗k(θi) +
γ

i+ γ
H(θi) (7)

In the bottom level urn we condition on DP (γ,H) for the mjth draw from the mth bottom level urn:

θmj |θ−mj ∼
K∑
k=1

mj,k + α nk
n+γ

mj + α
δφ∗k(θmj ) +

α

mj + α

γ

i+ γ
H(θmj ) (8)

=

K∑
k=1

p∗kδθ∗k(θmj ) + p∗K+1H(θmj ) (9)

5 Dynamic Dirichlet Process

Another dimension of DP that is interesting to explore is modeling time series data. Time series data
brings with it some associated challenges: the clustering problem is essentially changing over time and the
association of data to cluster centroids would also change over time. The two main ideas that we explore
here are:

• Infinite Hidden Markov Model (HMM): a hidden markov DP

• Dependent DP/HDP: directly evolving a DP/HDP

Here we will see a short introduction of the first and a more detailed exploration of the second.

5.1 Infinite HMM

If suppose a HMM has k states, then the transition matrix would have k ∗ k dimensions. If we extend the
number of states to infinity, then we would have a matrix whose rows and columns are infinite in number.
Treat the matrix as a collection of multinomial distribution. Now each row in the matrix is a multinomial
distribution that tells us where we would go at the next time point. And now, when we are not aware as
to how many possible states exist in the next time step, we can make that a DP. The issue here is that no
matter where we come from at time t, we will move into a set of states that is common (across the source
states from time t) at time t+1. That is, the set of target states remains the same irrespective of where
we originate from. This sharing of target set across different rows might not be desirable. Now if we just
design different independent DPs for each row, then these infinite states will not be shared. That is, the set
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of states when moving out of state 1 will not be the same as the set of states while moving out of state 2.
We want different DPs for the different transition events to be shared. And we thus need a HDP, wherein
all the DPs will be drawn from a base measure which is itself a DP.

Thus infinite HMM is also a HDP, with infinite number of clusters, since we have infinite states to move to
out of one single state at time t.

5.2 Dependent DP/HDP

In Dependent DP, we are going to create DPs over time but not in a totally independent way. This problem
is sometimes also referred to as Evolutionary Clustering. Here, the cluster components keep changing, even
in a fixed dimensionality scenario. This is different from other static clustering techniques in that, here
mixture components can die out, new ones can be born and retained mixture component parameters evolve
according to Markovian dynamics. This type of approach can be used in Text processing, say for historical
data: topics can come into existence or die and topics can change over time.

We now see a simple construction of such an evolving process, once again employing the Chinese Restaurant
Process metaphor.

Layout:

• Customers correspond to data points

• Tables correspond to clusters or mixture components

• Dishes correspond to parameter of the mixtures

Taking the usual CRP, we want to be able to use this over time in a recurrent fashion, so that the restaurant
that we build at time point t, would depend on the restaurant at time point t − 1. The restaurant thus
operates in epochs: it is taken to be closed at the end of each epoch and that the state of the restaurant at
time epoch t depends on that at epoch t−1. This is the first order markov dependence, and can be extended
to higher-order dependencies.

Lets look at this example, at time point T = 1.
Generative Process: Customers at time T = 1 are seated as usual:

• Choose table j ∝ Nj,1 and sample xi ∼ f(φj,1)

• Choose a new table K + 1 ∝ α

– Sample φK+1,1 ∼ G0 and sample xi ∼ f(φK+1,1)

So we have the customers belonging to different clusters grouped here, and we have the cluster centroids
from which the dishes are being sampled.

Now at time point T = 2, we consider it to be dependent on the system state at T = 1. We can first copy
the active (occupied) tables from the previous day (or time point) since they must have been popular to
some degree. Each table is annotated with the number of customers it attracted at the previous time point
and thus has an associated count of imaginary customers. Thus, when a new customer comes in on day
two (T = 2), he is not going to make his decision as he would have at T = 1 and he would be able to look
at how popular a table was the previous day and choose accordingly. He could now choose any of the new
existing tables or a new table based on the counts, even though he is the very first customer for day 2. This
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Figure 6: Recurrent Chinese Restaurant Process

will continue for the rest of the customers, and at the end of the day, a sweep to check for active and new
clusters will take place. Some existing clusters may die out, and new clusters may spring up. Now counts
from day 2 will be carried over as imaginary counts to day 3 and the process continues.

As mentioned earlier, the model can be extended to higher-order dependencies and the dependencies can

decay over time. Then the pseudo-counts for table k at time t:
∑W
w=1 e

−w
λ Nk,t−w, where W is the history

size, first term is the decay factor and the second term represents the number of customers sitting at table
K at time epoch t-w. It can also be that the dishes are not exactly the same across time points, for instance
we may use a linear Gaussian model, say Kalman filtering, to model the transformation between φ1,1 and
the slightly different φ1,2. This is useful, since the customers that we might get on the second day might
vary from the first day and/or the chef may have slight variety in the menu. Another instance, say in the
case of topic modeling, though we may talk about the same topic on two consecutive days, say sports, the
actual content may vary, for example depending on that day’s game.

6 The Big Picture

We earlier reviewed finite mixture models, for instance could be k-means or the EM algorithm. We can
extend in the time space, still sticking to finite dimensions, but modeling time series data, say by employing
HMM or Kalman filtering type of design. Thus, we will have an evolving topic model or evolving clusters in
this setup. We can also grow in the dimensionality space, by replacing the Dirichlet prior with a Dirichlet
Process prior. And then we can combine these two to lead to dynamic and infinite dimensional models.
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