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Partially observed GMs
 Speech recognition

A AA AX2 X3X1 XT

Y2 Y3Y1 YT... 

... 
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Partially observed GM
 Biological Evolution

AGAGAC
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Mixture Models
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Mixture Models, con'd
 A density model p(x) may be multi-modal.
 We may be able to model it as a mixture of uni-modal 

distributions (e.g., Gaussians).
 Each mode may correspond to a different sub-population 

(e.g., male and female).


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Unobserved Variables
 A variable can be unobserved (latent) because:

 it is an imaginary quantity meant to provide some simplified and abstractive view 
of the data generation process
 e.g., speech recognition models, mixture models …

 it is a real-world object and/or phenomena, but difficult or impossible to measure
 e.g., the temperature of a star, causes of a disease, evolutionary ancestors …

 it is a real-world object and/or phenomena, but sometimes wasn’t measured, 
because of faulty sensors, etc.

 Discrete latent variables can be used to partition/cluster data 
into sub-groups.

 Continuous latent variables (factors) can be used for 
dimensionality reduction (factor analysis, etc).
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Gaussian Mixture Models (GMMs)
 Consider a mixture of K Gaussian components:

 This model can be used for unsupervised clustering.
 This model (fit by AutoClass) has been used to discover new kinds of stars in 

astronomical data, etc.

 
k kkkn xNxp ),|,(),( 

mixture proportion mixture component
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Gaussian Mixture Models (GMMs)
 Consider a mixture of K Gaussian components:

 Z is a latent class indicator vector:

 X is a conditional Gaussian variable with a class-specific mean/covariance

 The likelihood of a sample:
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Why is Learning Harder?
 In fully observed iid settings, the log likelihood decomposes 

into a sum of local terms (at least for directed models).

 With latent variables, all the parameters become coupled 
together via marginalization
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 Recall MLE for completely observed data

 Data log-likelihood

 MLE

 What if we do not know zn?
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Question
 “ … We solve problem X using Expectation-Maximization …”

 What does it mean?

 E
 What do we take expectation with?
 What do we take expectation over?

 M
 What do we maximize?
 What do we maximize with respect to?
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Recall: K-means
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Expectation-Maximization
 Start: 

 "Guess" the centroid k and coveriance k of each of the K clusters 

 Loop
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Example: Gaussian mixture 
model
 A mixture of K Gaussians:

 Z is a latent class indicator vector

 X is a conditional Gaussian variable with class-specific mean/covariance

 The likelihood of a sample:

 The expected complete log likelihood
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 We maximize           iteratively using the following               
iterative procedure:

─ Expectation step: computing the expected value of the sufficient 
statistics of the hidden variables (i.e., z) given current est. of the 
parameters (i.e.,  and ). 

 Here we are essentially doing inference
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 We maximize           iteratively using the following               
iterative procudure:

─ Maximization step: compute the parameters under               
current results of the expected value of the hidden variables

 This is isomorphic to MLE except that the variables that are hidden are replaced by their 
expectations (in general they will by replaced by their corresponding "sufficient 
statistics") 
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Compare: K-means and EM

 K-means
 In the K-means “E-step” we do hard 

assignment:

 In the K-means “M-step” we update the 
means as the weighted sum of the data, 
but now the weights are 0 or 1:

 EM
 E-step

 M-step
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The EM algorithm for mixtures of Gaussians is like a "soft 
version" of the K-means algorithm.
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Theory underlying EM
 What are we doing?

 Recall that according to MLE, we intend to learn the model 
parameter that would have maximize the likelihood of the 
data. 

 But we do not observe z, so computing 

is difficult!

 What shall we do?
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Complete & Incomplete Log 
Likelihoods
 Complete log likelihood

Let X denote the observable variable(s), and Z denote the latent variable(s). 
If Z could be observed, then

 Usually, optimizing lc() given both z and x is straightforward (c.f. MLE for fully 
observed models).

 Recalled that in this case the objective for, e.g., MLE, decomposes into a sum of 
factors, the parameter for each factor can be estimated separately.

 But given that Z is not observed, lc() is a random quantity, cannot be 
maximized directly.

 Incomplete log likelihood
With z unobserved, our objective becomes the log of a marginal probability:

 This objective won't decouple 
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Expected Complete Log 
Likelihood
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 For any distribution q(z), define expected complete log likelihood:

 A deterministic function of 
 Linear in lc() --- inherit its factorizabiility
 Does maximizing this surrogate yield a maximizer of the likelihood?

 Jensen’s inequality
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Lower Bounds and Free Energy
 For fixed data x, define a functional called the free energy:

 The EM algorithm is coordinate-ascent on F :
 E-step:

 M-step:
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E-step: maximization of expected 
lc w.r.t. q
 Claim: 

 This is the posterior distribution over the latent variables given the data and the 
parameters. Often we need this at test time anyway (e.g. to perform 
classification).

 Proof (easy): this setting attains the bound l(;x)F(q, )

 Can also show this result using variational calculus or the fact 
that
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E-step  plug in posterior 
expectation of latent variables
 Without loss of generality: assume that p(x,z|) is a 

generalized exponential family distribution:

 Special cases: if p(X|Z) are GLIMs, then 

 The expected complete log likelihood under                            
is
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M-step: maximization of expected 
lc w.r.t. 
 Note that the free energy breaks into two terms:

 The first term is the expected complete log likelihood (energy) and the second 
term, which does not depend on , is the entropy.

 Thus, in the M-step, maximizing with respect to  for fixed q
we only need to consider the first term:

 Under optimal qt+1, this is equivalent to solving a standard MLE of fully observed 
model p(x,z|), with the sufficient statistics involving z replaced by their 
expectations w.r.t. p(z|x,).
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Example: HMM
 Supervised learning: estimation when the “right answer” is known

 Examples: 
GIVEN: a genomic region x = x1…x1,000,000 where we have good

(experimental) annotations of the CpG islands
GIVEN: the casino player allows us to observe him one evening, 

as he changes dice and produces 10,000 rolls

 Unsupervised learning: estimation when the “right answer” is 
unknown
 Examples:

GIVEN: the porcupine genome; we don’t know how frequent are the 
CpG islands there, neither do we know their composition

GIVEN: 10,000 rolls of the casino player, but we don’t see when he 
changes dice

 QUESTION: Update the parameters  of the model to maximize P(x|) -
-- Maximal likelihood (ML) estimation 
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Hidden Markov Model: 
from static to dynamic mixture models

Dynamic mixture

A AA AX2 X3X1 XT

Y2 Y3Y1 YT... 

... 

Static mixture

AX1

Y1

N
The sequence:

The underlying 
source:

Phonemes,

Speech signal, 

sequence of rolls, 

dice,
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The Baum Welch algorithm
 The complete log likelihood

 The expected complete log likelihood

 EM
 The E step

 The M step ("symbolically" identical to MLE)
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Unsupervised ML estimation
 Given x = x1…xN for which the true state path y = y1…yN is 

unknown,

 EXPECTATION MAXIMIZATION

0. Starting with our best guess of a model M, parameters :

1. Estimate Aij , Bik in the training data 
 How?                             , ,

2. Update  according to Aij , Bik

 Now a "supervised learning" problem
3. Repeat 1 & 2, until convergence

This is called the Baum-Welch Algorithm

We can get to a provably more (or equally) likely parameter set  each iteration
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EM for general BNs
while not converged

% E-step
for each node i

ESSi = 0 % reset expected sufficient statistics
for each data sample n

do inference with Xn,H

for each node i

% M-step
for each node i

i := MLE(ESSi )
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Summary: EM Algorithm
 A way of maximizing likelihood function for latent variable models. 

Finds MLE of parameters when the original (hard) problem can be 
broken up into two (easy) pieces:

1. Estimate some “missing” or “unobserved” data from observed data and current 
parameters.

2. Using this “complete” data, find the maximum likelihood parameter estimates.

 Alternate between filling in the latent variables using the best guess 
(posterior) and updating the parameters based on this guess:

 E-step: 
 M-step: 

 In the M-step we optimize a lower bound on the likelihood. In the E-
step we close the gap, making bound=likelihood.
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Conditional mixture model: 
Mixture of experts

 We will model p(Y |X) using different experts, each responsible for 
different regions of the input space.
 Latent variable Z chooses expert using softmax gating function: 

 Each expert can be a linear regression model:
 The posterior expert responsibilities are
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EM for conditional mixture model
 Model:

 The objective function

 EM:

 E-step:

 M-step:  
 using the normal equation for standard LR                          , but with the data 

re-weighted by  (homework)
 IRLS and/or weighted IRLS algorithm to update {kkk} based on data pair 

(xn,yn), with weights           (homework?)
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Hierarchical mixture of experts

 This is like a soft version of a depth-2 classification/regression tree.
 P(Y |X,G1,G2) can be modeled as a GLIM, with parameters 

dependent on the values of G1 and G2 (which specify a "conditional 
path" to a given leaf in the tree).
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Mixture of overlapping experts

 By removing the X Z arc, we can make the partitions 
independent of the input, thus allowing overlap.

 This is a mixture of linear regressors; each subpopulation has 
a different conditional mean.
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Partially Hidden Data
 Of course, we can learn when there are missing (hidden) 

variables on some cases and not on others.
 In this case the cost function is:

 Note that Ym do not have to be the same in each case --- the data can have different 
missing values in each different sample

 Now you can think of this in a new way: in the E-step we 
estimate the hidden variables on the incomplete cases only.

 The M-step optimizes the log likelihood on the complete data 
plus the expected likelihood on the incomplete data using the 
E-step.
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EM Variants
 Sparse EM:

Do not re-compute exactly the posterior probability on each 
data point under all models, because it is almost zero. Instead 
keep an “active list” which you update every once in a while.

 Generalized (Incomplete) EM: 
It might be hard to find the ML parameters in the M-step, even 
given the completed data. We can still make progress by 
doing an M-step that improves the likelihood a bit (e.g. 
gradient step). Recall the IRLS step in the mixture of experts 
model.
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A Report Card for EM
 Some good things about EM:

 no learning rate (step-size) parameter
 automatically enforces parameter constraints
 very fast for low dimensions
 each iteration guaranteed to improve likelihood

 Some bad things about EM:
 can get stuck in local minima
 can be slower than conjugate gradient (especially near convergence)
 requires expensive inference step
 is a maximum likelihood/MAP method
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