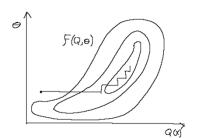


Probabilistic Graphical Models

Learning Partially Observed GM: the Expectation-Maximization algorithm

Eric Xing Lecture 9, February 12, 2014



Reading: MJ Chap 9, and 11

Speech recognition

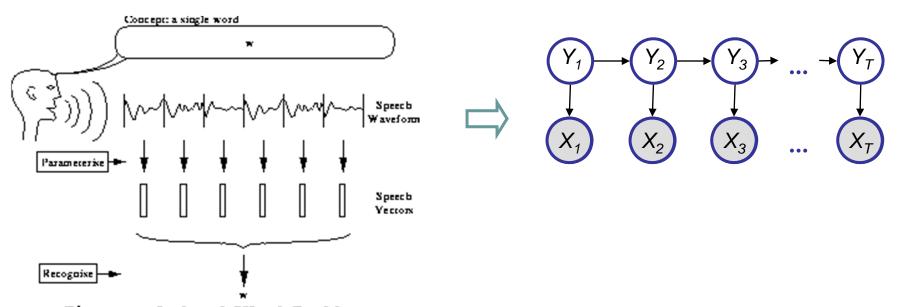
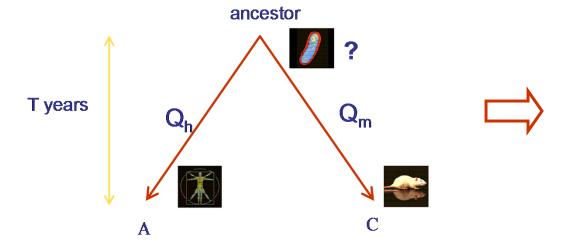
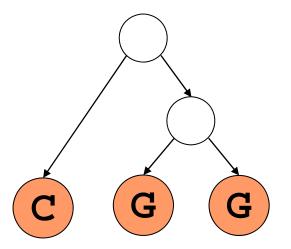


Fig. 1.2 Isolated Word Problem

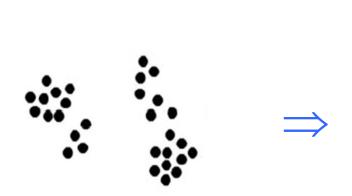
Biological Evolution

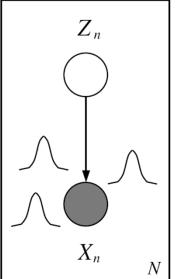




Mixture Models, con'd

- A density model p(x) may be multi-modal.
- We may be able to model it as a mixture of uni-modal distributions (e.g., Gaussians).
- Each mode may correspond to a different sub-population (e.g., male and female).





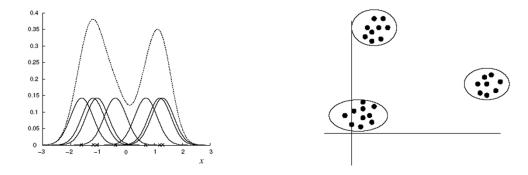
Unobserved Variables

- A variable can be unobserved (latent) because:
 - it is an imaginary quantity meant to provide some simplified and abstractive view of the data generation process
 - e.g., speech recognition models, mixture models ...
 - it is a real-world object and/or phenomena, but difficult or impossible to measure
 - e.g., the temperature of a star, causes of a disease, evolutionary ancestors ...
 - it is a real-world object and/or phenomena, but sometimes wasn't measured, because of faulty sensors, etc.
- Discrete latent variables can be used to partition/cluster data into sub-groups.
- Continuous latent variables (factors) can be used for dimensionality reduction (factor analysis, etc).

Gaussian Mixture Models (GMMs)

Consider a mixture of K Gaussian components:

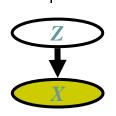
$$p(x_n | \mu, \Sigma) = \sum_k \pi_k N(x, | \mu_k, \Sigma_k)$$
 mixture proportion mixture component



- This model can be used for unsupervised clustering.
 - This model (fit by AutoClass) has been used to discover new kinds of stars in astronomical data, etc.

- Consider a mixture of K Gaussian components:
 - Z is a latent class indicator vector:

$$p(z_n) = \text{multi}(z_n : \pi) = \prod_k (\pi_k)^{z_n^k}$$



X is a conditional Gaussian variable with a class-specific mean/covariance

$$p(x_n \mid z_n^k = 1, \mu, \Sigma) = \frac{1}{(2\pi)^{m/2} |\Sigma_k|^{1/2}} \exp\left\{-\frac{1}{2} (x_n - \mu_k)^T \Sigma_k^{-1} (x_n - \mu_k)\right\}$$

The likelihood of a sample:

$$p(x_n | \mu, \Sigma) = \sum_k p(z^k = 1 | \pi) p(x, | z^k = 1, \mu, \Sigma)$$

$$= \sum_{z_n} \prod_k \left((\pi_k)^{z_n^k} N(x_n : \mu_k, \Sigma_k)^{z_n^k} \right) = \sum_k \pi_k N(x, | \mu_k, \Sigma_k)$$
mixture component
$$= \sum_{z_n} \prod_k \left((\pi_k)^{z_n^k} N(x_n : \mu_k, \Sigma_k)^{z_n^k} \right) = \sum_k \pi_k N(x, | \mu_k, \Sigma_k)$$

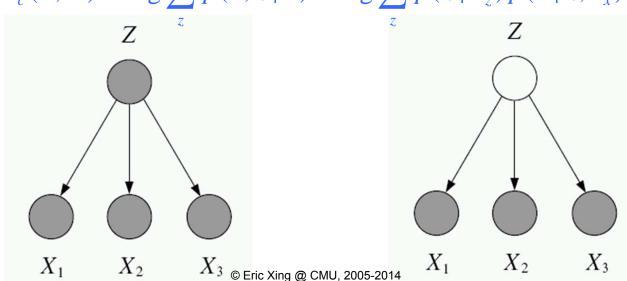
Why is Learning Harder?

• In fully observed iid settings, the log likelihood decomposes into a sum of local terms (at least for directed models).

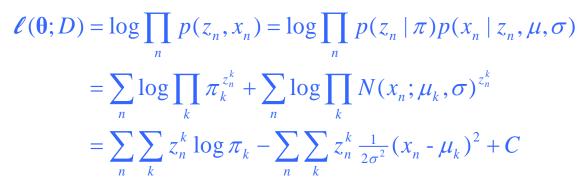
$$\ell_c(\theta; D) = \log p(x, z \mid \theta) = \log p(z \mid \theta_z) + \log p(x \mid z, \theta_x)$$

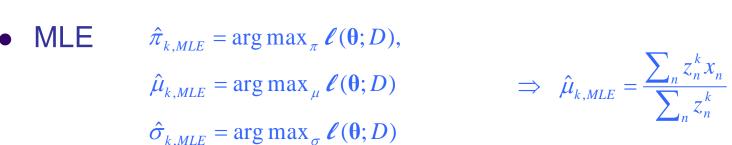
 With latent variables, all the parameters become coupled together via marginalization

$$\ell_c(\theta; D) = \log \sum p(x, z \mid \theta) = \log \sum p(z \mid \theta_z) p(x \mid z, \theta_x)$$



- Recall MLE for completely observed data
- Data log-likelihood





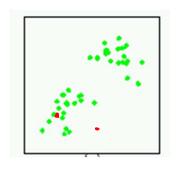
What if we do not know z_n?

Question

- " ... We solve problem X using Expectation-Maximization ... "
 - What does it mean?

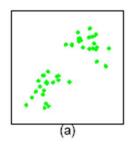
- E
 - What do we take expectation with?
 - What do we take expectation over?
- M
 - What do we maximize?
 - What do we maximize with respect to?

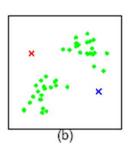
Recall: K-means

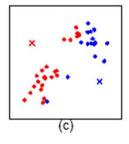


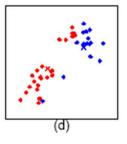
$$z_n^{(t)} = \arg\max_k (x_n - \mu_k^{(t)})^T \Sigma_k^{-1(t)} (x_n - \mu_k^{(t)})$$

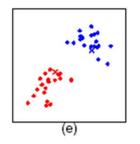
$$\mu_{k}^{(t+1)} = \frac{\sum_{n} \delta(z_{n}^{(t)}, k) x_{n}}{\sum_{n} \delta(z_{n}^{(t)}, k)}$$

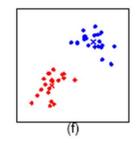






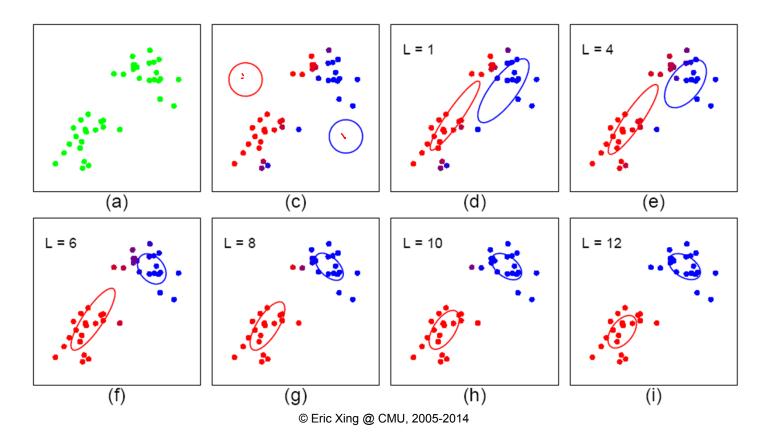






Expectation-Maximization

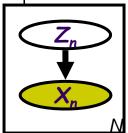
- Start:
 - "Guess" the centroid μ_k and coveriance Σ_k of each of the K clusters
- Loop



Example: Gaussian mixture model

- A mixture of K Gaussians:
 - Z is a latent class indicator vector

$$p(z_n) = \text{multi}(z_n : \pi) = \prod_{k} (\pi_k)^{z_n^k}$$



• X is a conditional Gaussian variable with class-specific mean/covariance

$$p(\mathbf{x}_{n} \mid \mathbf{z}_{n}^{k} = 1, \mu, \Sigma) = \frac{1}{(2\pi)^{m/2} |\Sigma_{k}|^{1/2}} \exp \left\{ -\frac{1}{2} (\mathbf{x}_{n} - \mu_{k})^{\mathsf{T}} \Sigma_{k}^{-1} (\mathbf{x}_{n} - \mu_{k}) \right\}$$

The likelihood of a sample:

$$p(x_n | \mu, \Sigma) = \sum_k p(z^k = 1 | \pi) p(x, | z^k = 1, \mu, \Sigma)$$

$$= \sum_{z_n} \prod_k \left((\pi_k)^{z_n^k} N(x_n : \mu_k, \Sigma_k)^{z_n^k} \right) = \sum_k \pi_k N(x, | \mu_k, \Sigma_k)$$

The expected complete log likelihood

$$\langle \boldsymbol{\ell}_{c}(\boldsymbol{\theta}; x, z) \rangle = \sum_{n} \langle \log p(z_{n} \mid \pi) \rangle_{p(z\mid x)} + \sum_{n} \langle \log p(x_{n} \mid z_{n}, \mu, \Sigma) \rangle_{p(z\mid x)}$$

$$= \sum_{n} \sum_{k} \langle z_{n}^{k} \rangle \log \pi_{k} - \frac{1}{2} \sum_{n} \sum_{k} \langle z_{n}^{k} \rangle ((x_{n} - \mu_{k})^{T} \Sigma_{k}^{-1} (x_{n} - \mu_{k}) + \log |\Sigma_{k}| + C)$$

E-step

- We maximize $\langle I_c(\theta) \rangle$ iteratively using the following iterative procedure:
 - Expectation step: computing the expected value of the sufficient statistics of the hidden variables (i.e., z) given current est. of the parameters (i.e., π and μ).

$$\tau_n^{k(t)} = \left\langle z_n^k \right\rangle_{q^{(t)}} = p(z_n^k = 1 \mid x, \mu^{(t)}, \Sigma^{(t)}) = \frac{\pi_k^{(t)} N(x_n, | \mu_k^{(t)}, \Sigma_k^{(t)})}{\sum_i \pi_i^{(t)} N(x_n, | \mu_i^{(t)}, \Sigma_i^{(t)})}$$

Here we are essentially doing inference

M-step

- We maximize $\langle I_c(\mathbf{\theta}) \rangle$ iteratively using the following iterative procudure:
 - Maximization step: compute the parameters under current results of the expected value of the hidden variables

$$\pi_{k}^{*} = \arg\max\langle l_{c}(\boldsymbol{\theta})\rangle, \qquad \Rightarrow \frac{\partial}{\partial \pi_{k}} \langle l_{c}(\boldsymbol{\theta})\rangle = 0, \forall k, \quad \text{s.t.} \sum_{k} \pi_{k} = 1$$

$$\Rightarrow \pi_{k}^{*} = \frac{\sum_{n} \langle z_{n}^{k} \rangle_{q^{(t)}}}{N} = \frac{\sum_{n} \tau_{n}^{k(t)}}{N} = \frac{\langle n_{k} \rangle_{N}}{N}$$

$$\mu_{k}^{*} = \arg\max\langle l(\boldsymbol{\theta})\rangle, \qquad \Rightarrow \mu_{k}^{(t+1)} = \frac{\sum_{n} \tau_{n}^{k(t)} x_{n}}{\sum_{n} \tau_{n}^{k(t)}}$$

$$\Sigma_{k}^{*} = \arg\max\langle l(\boldsymbol{\theta})\rangle, \qquad \Rightarrow \Sigma_{k}^{(t+1)} = \frac{\sum_{n} \tau_{n}^{k(t)} (x_{n} - \mu_{k}^{(t+1)})(x_{n} - \mu_{k}^{(t+1)})^{T}}{\sum_{n} \tau_{n}^{k(t)}}$$

$$\frac{\partial \log |A^{-1}|}{\partial A^{-1}} = A^{T}$$

$$\frac{\partial \mathbf{x}^{T} A \mathbf{x}}{\partial A} = \mathbf{x} \mathbf{x}^{T}$$

 This is isomorphic to MLE except that the variables that are hidden are replaced by their expectations (in general they will by replaced by their corresponding "sufficient statistics")

The EM algorithm for mixtures of Gaussians is like a "soft version" of the K-means algorithm.

- K-means
 - In the K-means "E-step" we do hard assignment:

$$z_n^{(t)} = \arg\max_k (x_n - \mu_k^{(t)})^T \Sigma_k^{-1(t)} (x_n - \mu_k^{(t)})$$

 In the K-means "M-step" we update the means as the weighted sum of the data, but now the weights are 0 or 1:

$$\mu_k^{(t+1)} = \frac{\sum_n \delta(z_n^{(t)}, k) x_n}{\sum_n \delta(z_n^{(t)}, k)}$$

- EM
 - E-step

$$\begin{aligned} & \tau_n^{k(t)} = \left\langle z_n^k \right\rangle_{q^{(t)}} \\ &= p(z_n^k = 1 \mid x, \mu^{(t)}, \Sigma^{(t)}) = \frac{\pi_k^{(t)} N(x_n, | \mu_k^{(t)}, \Sigma_k^{(t)})}{\sum_i \pi_i^{(t)} N(x_n, | \mu_i^{(t)}, \Sigma_i^{(t)})} \end{aligned}$$

M-step

$$\mu_k^{(t+1)} = \frac{\sum_{n} \tau_n^{k(t)} x_n}{\sum_{n} \tau_n^{k(t)}}$$

Theory underlying EM

- What are we doing?
- Recall that according to MLE, we intend to learn the model parameter that would have maximize the likelihood of the data.
- But we do not observe z, so computing

$$\ell_c(\theta; D) = \log \sum_z p(x, z \mid \theta) = \log \sum_z p(z \mid \theta_z) p(x \mid z, \theta_x)$$

is difficult!

What shall we do?

Complete & Incomplete Log Likelihoods

Complete log likelihood

Let *X* denote the observable variable(s), and *Z* denote the latent variable(s). If *Z* could be observed, then

$$\ell_c(\theta; \mathbf{x}, \mathbf{z}) = \log p(\mathbf{x}, \mathbf{z} \mid \theta)$$

- Usually, optimizing $\ell_c()$ given both z and x is straightforward (c.f. MLE for fully observed models).
- Recalled that in this case the objective for, e.g., MLE, decomposes into a sum of factors, the parameter for each factor can be estimated separately.
- But given that Z is not observed, ℓ_c() is a random quantity, cannot be maximized directly.

Incomplete log likelihood

With *z* unobserved, our objective becomes the log of a marginal probability:

$$\ell_c(\theta; \mathbf{x}) = \log \mathbf{p}(\mathbf{x} \mid \theta) = \log \sum \mathbf{p}(\mathbf{x}, \mathbf{z} \mid \theta)$$

This objective won't decouple

Expected Complete Log Likelihood

• For any distribution q(z), define expected complete log likelihood:

$$\langle \ell_c(\theta; \mathbf{x}, \mathbf{z}) \rangle_q = \sum_{\mathbf{z}} q(\mathbf{z} \mid \mathbf{x}, \theta) \log p(\mathbf{x}, \mathbf{z} \mid \theta)$$

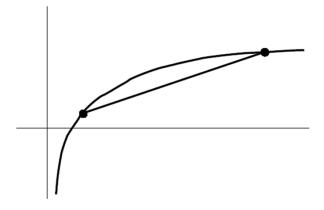
- A deterministic function of θ
- Linear in $\ell_c()$ --- inherit its factorizabiility
- Does maximizing this surrogate yield a maximizer of the likelihood?
- Jensen's inequality

$$\ell(\theta; x) = \log p(x \mid \theta)$$

$$= \log \sum_{z} p(x, z \mid \theta)$$

$$= \log \sum_{z} q(z \mid x) \frac{p(x, z \mid \theta)}{q(z \mid x)}$$

$$\geq \sum_{z} q(z \mid x) \log \frac{p(x, z \mid \theta)}{q(z \mid x)}$$



$$\Rightarrow \ell(\theta; \mathbf{x}) \ge \langle \ell_c(\theta; \mathbf{x}, \mathbf{z}) \rangle_q + H_q$$

Lower Bounds and Free Energy

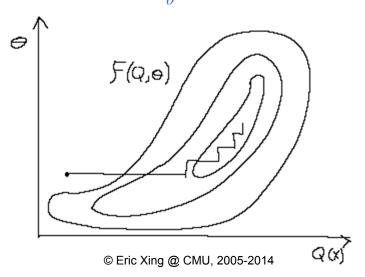
For fixed data x, define a functional called the free energy:

$$F(q,\theta) \stackrel{\text{def}}{=} \sum_{z} q(z \mid x) \log \frac{p(x,z \mid \theta)}{q(z \mid x)} \le \ell(\theta;x)$$

The EM algorithm is coordinate-ascent on F:

• E-step:
$$q^{t+1} = \arg \max_{q} F(q, \theta^t)$$

 $q^{t+1} = \arg \max_{q} F(q, \theta^{t})$ $\theta^{t+1} = \arg \max_{\theta} F(q^{t+1}, \theta^{t})$ M-step:



E-step: maximization of expected ℓ_c w.r.t. q

Claim:

$$q^{t+1} = \arg \max_{q} F(q, \theta^{t}) = p(z \mid x, \theta^{t})$$

- This is the posterior distribution over the latent variables given the data and the parameters. Often we need this at test time anyway (e.g. to perform classification).
- Proof (easy): this setting attains the bound $\ell(\theta,x) \ge F(q,\theta)$

$$F(p(z|x,\theta^t),\theta^t) = \sum_{z} p(z|x,\theta^t) \log \frac{p(x,z|\theta^t)}{p(z|x,\theta^t)}$$
$$= \sum_{z} q(z|x) \log p(x|\theta^t)$$
$$= \log p(x|\theta^t) = \ell(\theta^t;x)$$

• Can also show this result using variational calculus or the fact that $\ell(\theta;x) - F(q,\theta) = \text{KL}(q \parallel p(z \mid x,\theta))$

E-step ≡ plug in posterior expectation of latent variables

• Without loss of generality: assume that $p(x,z|\theta)$ is a generalized exponential family distribution:

$$p(x,z|\theta) = \frac{1}{Z(\theta)}h(x,z)\exp\left\{\sum_{i}\theta_{i}f_{i}(x,z)\right\}$$

- Special cases: if p(X|Z) are GLIMs, then $f_i(X,Z) = \eta_i^T(Z)\xi_i(X)$
- The expected complete log likelihood under $q^{t+1} = p(z \mid x, \theta^t)$ is

$$\left\langle \ell_{c} \left(\theta^{t} ; \mathbf{x}, \mathbf{z} \right) \right\rangle_{q^{t+1}} = \sum_{\mathbf{z}} q(\mathbf{z} | \mathbf{x}, \theta^{t}) \log p(\mathbf{x}, \mathbf{z} | \theta^{t}) - A(\theta)$$

$$= \sum_{i} \theta_{i}^{t} \left\langle f_{i}(\mathbf{x}, \mathbf{z}) \right\rangle_{q(\mathbf{z} | \mathbf{x}, \theta^{t})} - A(\theta)$$

$$= \sum_{i} \theta_{i}^{t} \left\langle \eta_{i}(\mathbf{z}) \right\rangle_{q(\mathbf{z} | \mathbf{x}, \theta^{t})} \xi_{i}(\mathbf{x}) - A(\theta)$$

M-step: maximization of expected ℓ_c w.r.t. θ

Note that the free energy breaks into two terms:

$$F(q,\theta) = \sum_{z} q(z \mid x) \log \frac{p(x,z \mid \theta)}{q(z \mid x)}$$

$$= \sum_{z} q(z \mid x) \log p(x,z \mid \theta) - \sum_{z} q(z \mid x) \log q(z \mid x)$$

$$= \langle \ell_{c}(\theta;x,z) \rangle_{q} + H_{q}$$

- The first term is the expected complete log likelihood (energy) and the second term, which does not depend on θ , is the entropy.
- Thus, in the M-step, maximizing with respect to θ for fixed q we only need to consider the first term:

$$\theta^{t+1} = \arg \max_{\theta} \left\langle \ell_{c}(\theta; \boldsymbol{x}, \boldsymbol{z}) \right\rangle_{q^{t+1}} = \arg \max_{\theta} \sum_{\boldsymbol{z}} q(\boldsymbol{z} \mid \boldsymbol{x}) \log p(\boldsymbol{x}, \boldsymbol{z} \mid \theta)$$

• Under optimal q^{t+1} , this is equivalent to solving a standard MLE of fully observed model $p(x,z|\theta)$, with the sufficient statistics involving z replaced by their expectations w.r.t. $p(z|x,\theta)$.

Example: HMM

- Supervised learning: estimation when the "right answer" is known
 - Examples:

GIVEN: a genomic region $x = x_1...x_{1,000,000}$ where we have good

(experimental) annotations of the CpG islands

GIVEN: the casino player allows us to observe him one evening,

as he changes dice and produces 10,000 rolls

- Unsupervised learning: estimation when the "right answer" is unknown
 - Examples:

GIVEN: the porcupine genome; we don't know how frequent are the

CpG islands there, neither do we know their composition

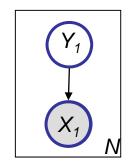
GIVEN: 10,000 rolls of the casino player, but we don't see when he

changes dice

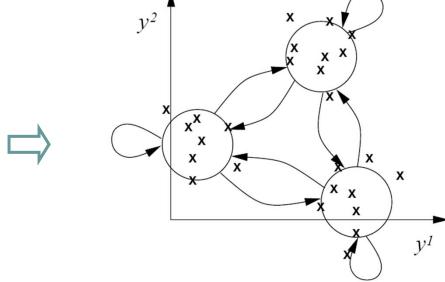
- QUESTION: Update the parameters θ of the model to maximize $P(x|\theta)$ -
 - -- Maximal likelihood (ML) estimation

Hidden Markov Model: from static to dynamic mixture models

Static mixture



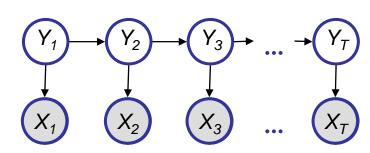
Dynamic mixture



The underlying source:

Speech signal, dice,

The sequence:
Phonemes,
sequence of rolls,



The Baum Welch algorithm

The complete log likelihood

$$\ell_c(\boldsymbol{\theta}; \mathbf{x}, \mathbf{y}) = \log p(\mathbf{x}, \mathbf{y}) = \log \prod_n \left(p(\mathbf{y}_{n,1}) \prod_{t=2}^T p(\mathbf{y}_{n,t} \mid \mathbf{y}_{n,t-1}) \prod_{t=1}^T p(\mathbf{x}_{n,t} \mid \mathbf{x}_{n,t}) \right)$$

The expected complete log likelihood

$$\left\langle \ell_{c}\left(\boldsymbol{\theta}; \mathbf{x}, \mathbf{y}\right) \right\rangle = \sum_{n} \left(\left\langle \mathbf{y}_{n,1}^{i} \right\rangle_{p(\mathbf{y}_{n,1}|\mathbf{x}_{n})} \log \pi_{i} \right) + \sum_{n} \sum_{t=2}^{T} \left(\left\langle \mathbf{y}_{n,t-1}^{i} \mathbf{y}_{n,t}^{j} \right\rangle_{p(\mathbf{y}_{n,t-1}, \mathbf{y}_{n,t}|\mathbf{x}_{n})} \log \mathbf{a}_{i,j} \right) + \sum_{n} \sum_{t=1}^{T} \left(\mathbf{x}_{n,t}^{k} \left\langle \mathbf{y}_{n,t}^{i} \right\rangle_{p(\mathbf{y}_{n,t}|\mathbf{x}_{n})} \log \mathbf{b}_{i,k} \right)$$

- EM
 - The E step

$$\gamma_{n,t}^{i} = \left\langle \mathbf{y}_{n,t}^{i} \right\rangle = \mathbf{p}(\mathbf{y}_{n,t}^{i} = 1 \mid \mathbf{x}_{n})$$

$$\xi_{n,t}^{i,j} = \left\langle \mathbf{y}_{n,t-1}^{i} \mathbf{y}_{n,t}^{j} \right\rangle = \mathbf{p}(\mathbf{y}_{n,t-1}^{i} = 1, \mathbf{y}_{n,t}^{j} = 1 \mid \mathbf{x}_{n})$$

The M step ("symbolically" identical to MLE)

$$\pi_{i}^{ML} = \frac{\sum_{n} \gamma_{n,1}^{i}}{N} \qquad a_{ij}^{ML} = \frac{\sum_{n} \sum_{t=2}^{T} \xi_{n,t}^{i,j}}{\sum_{n} \sum_{t=1}^{T-1} \gamma_{n,t}^{i}} \qquad b_{ik}^{ML} = \frac{\sum_{n} \sum_{t=1}^{T} \gamma_{n,t}^{i} X_{n,t}^{k}}{\sum_{n} \sum_{t=1}^{T-1} \gamma_{n,t}^{i}}$$

Unsupervised ML estimation

- Given $x = x_1...x_N$ for which the true state path $y = y_1...y_N$ is unknown,
 - **EXPECTATION MAXIMIZATION**
 - Starting with our best guess of a model M, parameters θ .
 - Estimate A_{ij} , B_{ik} in the training data
 - How? $A_{ij} = \sum_{n,t} \left\langle \mathbf{y}_{n,t-1}^i \mathbf{y}_{n,t}^j \right\rangle$, $B_{ik} = \sum_{n,t} \left\langle \mathbf{y}_{n,t}^i \right\rangle \mathbf{x}_{n,t}^k$, Update θ according to A_{ij} , B_{ik}
 - - Now a "supervised learning" problem
 - Repeat 1 & 2, until convergence

This is called the Baum-Welch Algorithm

We can get to a provably more (or equally) likely parameter set θ each iteration

EM for general BNs

```
while not converged
```

% E-step

for each node i

$$ESS_i = 0$$

 $ESS_i = 0$ % reset expected sufficient statistics

for each data sample n

do inference with X_{nH}

for each node i

$$ESS_{i} += \left\langle SS_{i}\left(X_{n,i},X_{n,\pi_{i}}\right)\right\rangle_{p(X_{n,H}|X_{n,-H})}$$

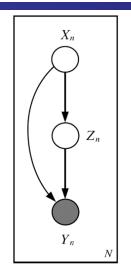
% M-step

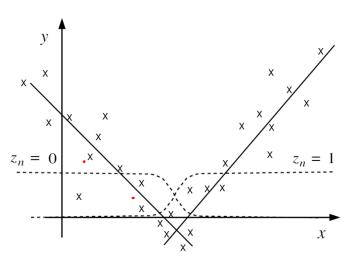
for each node i

$$\theta_i := MLE(ESS_i)$$

- A way of maximizing likelihood function for latent variable models.
 Finds MLE of parameters when the original (hard) problem can be broken up into two (easy) pieces:
 - 1. Estimate some "missing" or "unobserved" data from observed data and current parameters.
 - 2. Using this "complete" data, find the maximum likelihood parameter estimates.
- Alternate between filling in the latent variables using the best guess (posterior) and updating the parameters based on this guess:
 - E-step: $q^{t+1} = \arg \max_{q} F(q, \theta^t)$ • M-step: $\theta^{t+1} = \arg \max_{\theta} F(q^{t+1}, \theta^t)$
- In the M-step we optimize a lower bound on the likelihood. In the E-step we close the gap, making bound=likelihood.

Conditional mixture model: Mixture of experts





- We will model p(Y|X) using different experts, each responsible for different regions of the input space.
 - Latent variable Z chooses expert using softmax gating function:

$$P(z^k = 1|x) = \operatorname{Softmax}(\xi^T x)$$

Each expert can be a linear regression model:

$$P(\mathbf{y}|\mathbf{x},\mathbf{z}^k=1) = \mathcal{N}(\mathbf{y};\theta_k^\mathsf{T}\mathbf{x},\sigma_k^2)$$

The posterior expert responsibilities are

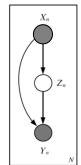
$$P(z^{k} = 1 | x, y, \theta) = \frac{p(z^{k} = 1 | x) p_{k}(y | x, \theta_{k}, \sigma_{k}^{2})}{\sum_{\text{© Eric Xing @ CMU, 2005-2014}} p(z^{j} = 1 | x) p_{j}(y | x, \theta_{j}, \sigma_{j}^{2})}$$

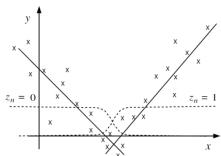
EM for conditional mixture model

Model:

$$P(\mathbf{y}|\mathbf{x}) = \sum_{k} p(\mathbf{z}^{k} = 1 \mid \mathbf{x}, \xi) p(\mathbf{y}|\mathbf{z}^{k} = 1, \mathbf{x}, \theta_{i}, \sigma)$$

The objective function





$$\langle \boldsymbol{\ell}_{c}(\boldsymbol{\theta}; x, y, z) \rangle = \sum_{n} \langle \log p(z_{n} \mid x_{n}, \xi) \rangle_{p(z\mid x, y)} + \sum_{n} \langle \log p(\overline{y_{n} \mid x_{n}, z_{n}, \theta, \sigma)} \rangle_{p(z\mid x, y)}$$

$$= \sum_{n} \sum_{k} \langle z_{n}^{k} \rangle \log \left(\operatorname{softmax}(\xi_{k}^{T} x_{n}) \right) - \frac{1}{2} \sum_{n} \sum_{k} \langle z_{n}^{k} \rangle \left(\frac{(y_{n} - \theta_{k}^{T} x_{n})}{\sigma_{k}^{2}} + \log \sigma_{k}^{2} + C \right)$$

• EM:

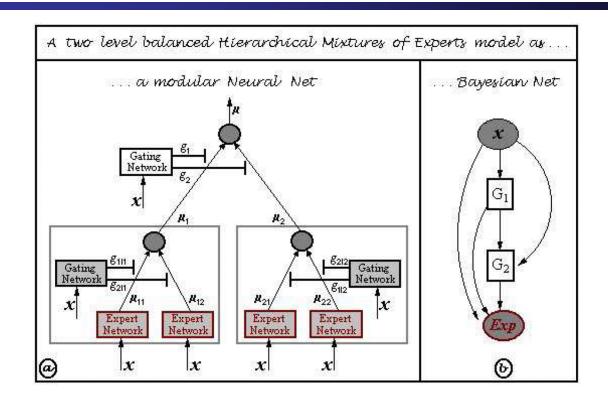
• E-step:
$$\tau_n^{k(t)} = P(z_n^k = 1 | x_n, y_n, \theta) = \frac{p(z_n^k = 1 | x_n) p_k(y_n | x_n, \theta_k, \sigma_k^2)}{\sum_j p(z_n^j = 1 | x_n) p_j(y_n | x_n, \theta_j, \sigma_j^2)}$$

• M-step:

- using the normal equation for standard LR $_{\theta}=(X^{\tau}X)^{-1}X^{\tau}y$, but with the data re-weighted by τ (homework)
- IRLS and/or weighted IRLS algorithm to update $\{\xi_k, \theta_k, \sigma_k\}$ based on data pair (x_n, y_n) , with weights $\tau_n^{k(t)}$ (homework?)

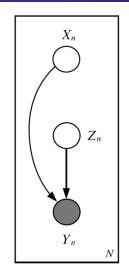
 Seric Xing @ CMU, 2005-2014

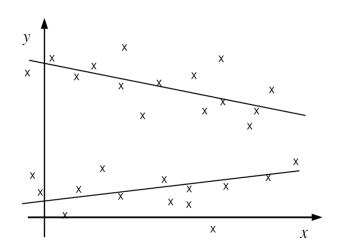
Hierarchical mixture of experts



- This is like a soft version of a depth-2 classification/regression tree.
- $P(Y|X,G_1,G_2)$ can be modeled as a GLIM, with parameters dependent on the values of G_1 and G_2 (which specify a "conditional path" to a given leaf in the tree).

Mixture of overlapping experts





- By removing the $X \rightarrow Z$ arc, we can make the partitions independent of the input, thus allowing overlap.
- This is a mixture of linear regressors; each subpopulation has a different conditional mean.

$$P(z^{k} = 1 | x, y, \theta) = \frac{p(z^{k} = 1)p_{k}(y|x, \theta_{k}, \sigma_{k}^{2})}{\sum_{j} p(z^{j} = 1)p_{j}(y|x, \theta_{j}, \sigma_{j}^{2})}$$

Partially Hidden Data

- Of course, we can learn when there are missing (hidden) variables on some cases and not on others.
- In this case the cost function is:

$$\ell_{c}(\theta; D) = \sum_{n \in \text{Complete}} \log p(x_{n}, y_{n} \mid \theta) + \sum_{m \in \text{Missing}} \log \sum_{y_{m}} p(x_{m}, y_{m} \mid \theta)$$

- Note that Y_m do not have to be the same in each case --- the data can have different missing values in each different sample
- Now you can think of this in a new way: in the E-step we estimate the hidden variables on the incomplete cases only.
- The M-step optimizes the log likelihood on the complete data plus the expected likelihood on the incomplete data using the E-step.

EM Variants

Sparse EM:

Do not re-compute exactly the posterior probability on each data point under all models, because it is almost zero. Instead keep an "active list" which you update every once in a while.

Generalized (Incomplete) EM:

It might be hard to find the ML parameters in the M-step, even given the completed data. We can still make progress by doing an M-step that improves the likelihood a bit (e.g. gradient step). Recall the IRLS step in the mixture of experts model.

A Report Card for EM

- Some good things about EM:
 - no learning rate (step-size) parameter
 - automatically enforces parameter constraints
 - very fast for low dimensions
 - each iteration guaranteed to improve likelihood
- Some bad things about EM:
 - can get stuck in local minima
 - can be slower than conjugate gradient (especially near convergence)
 - requires expensive inference step
 - is a maximum likelihood/MAP method