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Partially observed GMs -

e Speech recognition

Joocepe: a xiogle word
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Fig. 1.2 Isolated Word Problem
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Partially observed GM -

e Biological Evolution

ancestor

T years
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Mixture Models
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Mixture Models, con'd

e A density model p(x) may be multi-modal.
e \We may be able to model it as a mixture of uni-modal

distributions (e.g., Gaussians).

e Each mode may correspond to a different sub-population

(e.g., male and female).
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Unobserved Variables ot

e A variable can be unobserved (latent) because:

e itis animaginary quantity meant to provide some simplified and abstractive view
of the data generation process

e.g., speech recognition models, mixture models ...

e itis a real-world object and/or phenomena, but difficult or impossible to measure
e.g., the temperature of a star, causes of a disease, evolutionary ancestors ...

e itis a real-world object and/or phenomena, but sometimes wasn’t measured,
because of faulty sensors, etc.

e Discrete latent variables can be used to partition/cluster data
iInto sub-groups.

e Continuous latent variables (factors) can be used for
dimensionality reduction (factor analysis, etc).
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Gaussian Mixture Models (GMMs) | s¢

e Consider a mixture of K Gaussian components:

p(xn‘,u,Z) = Zk”kN(X1| i 2y )
A\

mixture proportion  mixture component

e This model can be used for unsupervised clustering.

e This model (fit by AutoClass) has been used to discover new kinds of stars in
astronomical data, etc.
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Gaussian Mixture Models (GMMs) | 3¢

e Consider a mixture of K Gaussian components:
e Zis alatent class indicator vector:

p(z,) = multi(z, : ) =[] (=, )"

e Xis a conditional Gaussian variable with a class-specific mean/covariance

1 )
o(x. |25 =1, 11,5) = 2 explL (X, - 44, S (X, - 44.)]
k

e The likelihood of a sample:
mixture component
mixture proportion

p(X, |1, 2) =D, p(z =1]z)p(x,|z" =1, 1, %) Y
= Z:an_[k((”k)zﬁ N (X, :/uk’zk)ZE ): Zkﬂ-kN(x’l:uk’Ek)
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Why Is Learning Harder?

e In fully observed iid settings, the log likelihood decomposes
into a sum of local terms (at least for directed models).

¢.(0;D) =log p(x,z[0) =log p(z|8,)+log p(x|z,6,)

e With latent variables, all the parameters become coupled
together via marginalization

4,(0;D)=log > p(x,z|0)=log> p(z|6,)p(x|z,6,)
Z Z /L Z

X, X X

X
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T
Toward the EM algorithm .
e Recall MLE for completely observed data <>
e Data log-likelihood

¢(0;D) = logH p(z,,%,) = logH p(z, | 7)p(X, | Z,, 11, 0)

_Zlogl_[ﬁk +ZlogHN(x 1, 6)P
_ZZZk|OQ7Zk ZZznzz(x -1, )?+C

e MLE T wie = argmax, £(0; D),
/[lk,MLE =argmax £(0;D)
O wie =argmax_£(0;D)

e What if we do not know z,?
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Question 4+

e " ... We solve problem X using Expectation-Maximization ...”
e What does it mean?

o E

e What do we take expectation with?
e What do we take expectation over?

o M

e What do we maximize?
e What do we maximize with respect to?
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[ X XX
1
Recall: K-means .
Soet o -
-l i
T -1
2, =argmax(x, — 1)) 2,70 (%, - 1)
(1)
(t+1) o Zn5(zn ’k)Xn
) _
Y (29 k)
L8, ' Se. ey % £k |
2 ] o2 R &
> > LI 2 >
(a) (b) (c) (d) (e) (f)
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Expectation-Maximization

o Start:
e "Guess" the centroid g, and coveriance 2, of each of the K clusters
e Loop
™ :_, [ ] :'. L=1 . . L=4 . .
ot ORE ﬁ @
o ':‘ .o '.. @ .o . ’. .
(a) (c) (d) (€)
L=6 @ L=8 .{5 L=10 @ L=12 .@
* LI e 2 . &

(9)

(h)
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Example: Gaussian mixture i
model oo

e A mixture of K Gaussians:
e [/ is a latent class indicator vector
p(z,) =multi(z, : 7) =] [ (=, )ZE

k
e Xis a conditional Gaussian variable with class-specific mean/covariance

1 B
p(x. |z¥ =1, 1,%) = 2o expt L (X, - 40) S (%, - 1)
k

e The likelihood of a sample:
p(x,u.2) =Y, p(z* =1|7)p(x.|z* =1, 4,3)

=>. 11, (70 ¥ N a1, 507 @N (x| ﬂ@

e The expected complete log likelihood

(4.(0;x,2)) = > (log p(z, | 7)), ., + 2 (109 P(X, | Z,, 14, %))

p(z|x)

— anzk:<zﬁ>log7zk —%Zﬂlzk:<zﬁ>((xn — 1) (X = )+ Iog\zk\+c)
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E-step 4

e We maximize<lc (O)> iteratively using the following
iterative procedure:

— Expectation step: computing the expected value of the sufficient
statistics of the hidden variables (i.e., z) given current est. of the
parameters (i.e., zand u).

AN, 2”210
2 N 20)

n n

i = (28) =zt =11 %49, 50) =
q

Here we are essentially doing inference
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M-step 4

o We maximize</c (9)> iteratively using the following
iterative procudure:

— Maximization step: compute the parameters under
current results of the expected value of the hidden variables

mr, = argmax(l,(6)), = =(I.(0))=0,vk, st 7, =1
k
z¥ k(1)
2l >KZ =R
. ) r¥Ox
M, =arg max<| (9)>, o ,U;E = W Fact:
n-n 8Iog‘A*l‘ -
k(t) () (AN oA ! -
>, =argmax(1(0)), = I\ = 2,0 ﬂkrk(?)(xn e ") X AX_ g
oA

This is isomorphic to MLE except that the variables that are hidden are replaced by their
expectations (in general they will by replaced by their corresponding "sufficient
statistics")
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Compare: K-means and EM

The EM algorithm for mixtures of Gaussians is like a "soft
version" of the K-means algorithm.

e K-means e EM
e Inthe K-means “E-step” we do hard e E-step
assignment:

k(t) _ k
Z-n - <Zn>q(t)

= p(z! =1] % 4, 29) =

Tyl
2V =arg max(x, — i) EIV (%, - 1)) () )
7Ty N(Xn’|:uk ’Zk )

ON(x | 4O sO
e Inthe K-means “M-step” we update the Ziﬂ' (| 475, 257)
means as the weighted sum of the data,
but now the weights are 0 or 1: e M-step
(t) k(t)
(t+1) _ Zné‘(zﬂt ’k)Xﬂ (t+1) _ ZnT” X“
/uk - Z 5(2(0 k) ,le Z T:(t)

© Eric Xing @ CMU, 2005-2014 17



Theory underlying EM -

e \What are we doing?

e Recall that according to MLE, we intend to learn the model
parameter that would have maximize the likelihood of the
data.

e But we do not observe z, so computing
£,(0;D)=log > p(x,z]|0)=log ) p(z]6,)p(x|z,6,)

is difficult!

e \What shall we do?
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Complete & Incomplete Log
Likelihoods

e Complete log likelihood
Let X denote the observable variable(s), and Z denote the latent variable(s).
If Z could be observed, then def
l(0;x,z)=logp(x,z|0)

e Usually, optimizing () given both z and x is straightforward (c.f. MLE for fully
observed models).

e Recalled that in this case the objective for, e.g., MLE, decomposes into a sum of
factors, the parameter for each factor can be estimated separately.

e Butgiven that Z is not observed, () is arandom quantity, cannot be
maximized directly.

e Incomplete log likelihood
With z unobserved, our objective becomes the log of a marginal probability:

£(6:x) =109 p(x |6) =Iog 3 p(x.Z |)

e This objectlve won't decouple
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Expected Complete Log i
Likelihood oo

e For any distribution g(z), define expected complete log likelihood:
def

</C(¢9;x,z)>q =Y q(z |x,0)logp(x,z|0)
A deterministic function of &
Linear in £() --- inherit its factorizabiility

Does maximizing this surrogate yield a maximizer of the likelihood?

e Jensen's inequality

(0;x)=logp(x|6)
10y plx.z2 10 /

p(x,20) /
= |
g q(z 0Pt

p(x,z|0)
q(z|x)

© Eric Xing @ CMU, 2005-2014 20

>3 q(z | x)log ¢(0;x)>(4.(6;x,2)) +H,



Lower Bounds and Free Energy

e For fixed data x, define a functional called the free energy:
def

i p(x,z|0) |
F(g.,0) = Zz:q(z | x)log 2 ) <{(0;x)

e The EM algorithm is coordinate-ascent on F :

e E-step: gttt =argmaxF (g,6")
q

e M-step: 9t+1 = arg mng(q”l,é’t)

N
F@Q.e) j
-
—
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E-step: maximization of expected | ss2:
4L w.r.t. g :

e Claim: gt =argmaxF (q,6") = p(z | x,6")
q

e This is the posterior distribution over the latent variables given the data and the
parameters. Often we need this at test time anyway (e.g. to perform
classification).

e Proof (easy): this setting attains the bound 48 x)>F(q,6)

p(x,z]6")
p(z|x,0%)

F(p(z‘x,@t),et):Zp(z‘x,é’t)log

= q(z|x)logp(x |6")

=logp(x [6")=£(6"; )
e Can also show this result using variational calculus or the fact
that /(g:x)-F(q.0)=KL(g I p(z | x.6))
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E-step = plug In posterior i
expectation of latent variables 4+

e Without loss of generality: assume that p(x,z|6) is a
generalized exponential family distribution:

1
p(x,z|0) =%h(x,z)exp{zi:6’,ﬁ(x,z)}

e Special cases: if p(X|Z) are GLIMs, then f(x,z)= ,7T (2)& (x)

e The expected complete log likelihood under gt = p(z | x,6")
IS

(40" ix.2)) . =2.q(z]x.6)logp(x,2|6") - A(0)

- Zg’t <f’ (X’z)>q(z|x,9t) —A(Q)

p~GLIM

= Z 0; <77i (Z)>q(z|x,9t)§i (x)—A(0)
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M-step: maximization of expected | ss2:

Lw.rt 6 ot

e Note that the free energy breaks into two terms:
p(x,z|0)

q(z|x)

=Zq(z | x)logp(x,z |¢9)—Zq(z |x)logq(z | x)

F(g.0)=2,q(z x)log

=(£(0:x,2)) +H,

e The first term is the expected complete log likelihood (energy) and the second
term, which does not depend on 4, is the entropy.

e Thus, in the M-step, maximizing with respect to & for fixed g
we only need to consider the first term:

t+1l . _
0t = arg mgxx(l@ (0:%,2)) . =arg mgxxzz:q(z |x)log p(x,z |6)

e Under optimal gt*, this is equivalent to solving a standard MLE of fully observed
model p(x,z| 8), with the sufficient statistics involving z replaced by their
expectations w.r.t. p(z| x,0).
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Example: HMM

e Supervised learning: estimation when the “right answer” is known
e Examples:

GIVEN: a genomic region X = X;...Xq goo 000 Where we have good
(experimental) annotations of the CpG islands
GIVEN: the casino player allows us to observe him one evening,

as he changes dice and produces 10,000 rolls

e Unsupervised learning: estimation when the “right answer” is

unknown
e Examples:
GIVEN: the porcupine genome; we don’t know how frequent are the

CpG islands there, neither do we know their composition

GIVEN: 10,000 rolls of the casino player, but we don’t see when he
changes dice

e QUESTION: Update the parameters 6 of the model to maximize P(x|6) -
-- Maximal likelihood (ML) estimation
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Hidden Markov Model: eecs
from static to dynamic mixture models oo

Static mixture Dynamic mixture

‘).? X I

The underlying

source.:
Speech signal,

dice,

The sequence:
N Phonemes,

sequence of rolls,
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The Baum Welch algorithm o°

e The complete log likelihood
£(0:x,y) = log p(x.y) - IogH(p(ynJ)tf!p(yn,t s T P |xn,t)j

e The expected complete rllog Iikelih_ood _

(40:x.y)) = ;[(y,f,l)pwn) log, |+ ;é((yé,ﬂyi&

o EM
e TheE step
Yot = <)’r§,t>: p(¥,: =11x,)
Ed =yl ) =p(ae s =Lyl =1]x,)
e The M step ("symbolically" identical to MLE)

. T i T .
7Z'.ML _ Zn 7/"’1 GUML = Zn Z?—zf{l g b/I:ML _ Zn Zt_%_}if;l,tixnlit
| N ZnZt:ﬂ/ﬂI Z,, Zt:ﬂ/n,t
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Unsupervised ML estimation -

Given x = x;...xy for which the true state path y = y,...yy is
unknown,

e EXPECTATION MAXIMIZATION

0. Starting with our best guess of a model M, parameters 6.

1. Estimate A;;, By in the training data

2 ‘
How: A; Z <)/nt 1)’nt> Bik :Zn,t <Yr;,t >Xnk,t ’
Update 6’accord|ng to Aj;

N

Now a "supervised Iearmng problem
3. Repeat 1 & 2, until convergence

This is called the Baum-Welch Algorithm

We can get to a provably more (or equally) likely parameter set ¢ each iteration
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EM for general BNs

while not converged

% E-step
for each node |

ESS =0 % reset expected sufficient statistics
for each data sample n

do inference with X,

for each node |

ESS, += (S5, (X, X,.))

% M-step
for each node |

0.:= MLE(ESS;)

P (Xn H |Xn,—H )

© Eric Xing @ CMU, 2005-2014
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Summary: EM Algorithm o°

e A way of maximizing likelihood function for latent variable models.
Finds MLE of parameters when the original (hard) problem can be
broken up into two (easy) pieces:

1. Estimate some “missing” or “unobserved” data from observed data and current
parameters.

2. Using this “complete” data, find the maximum likelihood parameter estimates.

e Alternate between filling in the latent variables using the best guess
(posterior) and updating the parameters based on this guess:

o E-step: g‘™ =argmaxF (q,6%)
. q
o M-step: gt — arg mng (qt+1 | gt)

e In the M-step we optimize a lower bound on the likelihood. In the E-
step we close the gap, making bound=likelihood.
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Conditional mixture model: T
Mixture of experts o

XF!

Y,

N

o We will model p(Y |X) using different experts, each responsible for

different regions of the input space.
e Latent variable Z chooses expert using softmax gating function:

P(z" =1lx) = Softmax(éTx)
e [Each expert can be a linear regression model:

P(y‘x,z" =)= (y;00 x,07)
e The posterior expert responsibilities are

(Zk :l‘x)pk()"x’ek,gf)
P(z¥=1x,y,0) = piz_ -
‘ ' ©Eri X'Z(‘éjcﬁu(‘zzois-zzmyx)pj (y‘X’HJ ’GJ'Z)
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EM for conditional mixture model

e Model:

Plylx)=2, p(z" =1Ix,&)ply lz* =1,x,6,,0)

e The objective function

(4.(0:%,y,2)) = > (log p(z, 1 %,:)) v, +Z<|09 p(ynlxn’ 0 0.0)) )

n

_ZZ< >Iog(softmax(§kxn)) ZZ<ZE>[(y” ;T )+|Ogak2+Cj
n k Gk

EM:

E-step: T:(t) _ p(znk _ I‘Xn Y,,0) =

M-step:

p(znk - l‘xn)pk ()/n ‘Xn 1 ‘9k 1 Glf)

ZJ p(sz :l‘xn)Pj (Yn‘xn’gj ’O'J'Z)

using the normal equation for standard LR g _ (x™ x )1 xTy , but with the data
re-weighted by 7 (homework)

IRLS and/or weighted IRLS algorithm to update {&,, 6,, o,} based on data pair

T

k(t)
n

(homework?)
© Eric Xing @ CMU, 2005-2014
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Hierarchical mixture of experts os

A twe level Dalawnced  Hievarchical Mixtiwey of Experty wedel ox . . .

... Bayegiawe Net

X
Expert ‘Expert Expert Expert T
Hebaork Neharork Hetwork Hetaark

e This is like a soft version of a depth-2 classification/regression tree.

e P(Y|X,6,,6,) can be modeled as a GLIM, with parameters
dependent on the values of &, and &, (which specify a "conditional
path" to a given leaf in the tree).
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Mixture of overlapping experts

Xll

Y"

:

N

e By removing the X - Z arc, we can make the partitions

Y

independent of the input, thus allowing overlap.

e This is a mixture of linear regressors; each subpopulation has
a different conditional mean.

P(z" =1lx,y,0)=

P(Zk :l)Pk(Y‘X’Qk’GIf)

ZJ- p(zj :l)PJ' ()"X’HJ’UJ'Z)

© Eric Xing @ CMU, 2005-2014
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Partially Hidden Data -

e Of course, we can learn when there are missing (hidden)
variables on some cases and not on others.

e In this case the cost function is:

4.(0;0)= > logp(x,.y,10)+ >, log) p(x,.yn!|0)

neComplete meMissing Ym

Note that ¥, do not have to be the same in each case --- the data can have different
missing values in each different sample

e Now you can think of this in a new way: in the E-step we
estimate the hidden variables on the incomplete cases only.

e The M-step optimizes the log likelihood on the complete data
plus the expected likelihood on the incomplete data using the
E-step.

© Eric Xing @ CMU, 2005-2014
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EM Variants ot

e Sparse EM:

Do not re-compute exactly the posterior probability on each
data point under all models, because it is almost zero. Instead
keep an “active list” which you update every once in a while.

e Generalized (Incomplete) EM.:

It might be hard to find the ML parameters in the M-step, even
given the completed data. We can still make progress by
doing an M-step that improves the likelihood a bit (e.g.
gradient step). Recall the IRLS step in the mixture of experts
model.
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A Report Card for EM

e Some good things about EM:

no learning rate (step-size) parameter
automatically enforces parameter constraints
very fast for low dimensions

each iteration guaranteed to improve likelihood

e Some bad things about EM:

can get stuck in local minima

can be slower than conjugate gradient (especially near convergence)
requires expensive inference step

is a maximum likelihood/MAP method

© Eric Xing @ CMU, 2005-2014
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