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Probabilistic Graphical Models

Maximum likelihood learning of
undirected GM

Reading: MJ Chap 9, and 11
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ML Structural Learning via
Neighborhood Selection for

— completely observed
MRF



Gaussian Graphical Models 4

e Multivariate Gaussian density:

expl 3 (x- 1) =7 (x- )}

X u,2)=
p(x]| %) (27[),,,2‘2‘1/2

e WOLG: letp=0 Q=x"1

‘1/2

oy u—0.0)= 9 23 gy () -
p(Xsz’ ’Xplzu_O!Q)_(Zﬂ_)n/ZeXp 2Zqii(xi) ;qinin

e \We can view this as a continuous Markov Random Field with
potentials defined on every node and edge:
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Pairwise MRF (e.g., Ising Model) o°

e Assuming the nodes are discrete, and edges are weighted,
then for a sample x4, we have

P(x4|©) = exp(ZQ%xd@—l— Z 0iiTaiTa; — (@))

eV (i,7)EE
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The covariance and the precision | se2:
matrices oo

e Covariance matrix
Ei’j = 0 — XZJ_X] or p(XZ',Xj) = p(X@)p(XJ)

e Graphical model interpretation?

e Precision matrix ¢ = »;-!

Qi =0 = X LX;|X_;; or p(X;,X;|X_ ;) =p(Xi|X_ij)p(X;|X_i)

e Graphical model interpretation?
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Sparse precision vs. sparse
covariance in GGM

(s
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e How to estimate this MRF?
e Whatifp>>n

e MLE does not exist in general!

e What about only learning a “sparse” graphical model?
This is possible when s=0(n)
Very often it is the structure of the GM that is more interesting ...
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Recall lasso

é?; = argrréini(ﬁi) + A1 6; ||

where [(6;) = log P(yz-|x,,;, 92').
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Graph Regression os

Neighborhood selection | 2sso°

T
é) = argn‘lgil‘lZl(H) + )\IH 0 Hl
t=1
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Graph Regression os
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Graph Regression

O
)

It can be shown that:

given iid samples, and under several technical conditions (e.g.,

“irrepresentable"), the recovered structured is "sparsistent" even when p >>

n
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Learning Ising Model i
(1.e. pairwise MRF) oo

e Assuming the nodes are discrete, and edges are weighted,
then for a sample x4, we have

P(Xd|@) - exp(z Q;{Ud’i + Z Qijzz:d’ixd,j — A(@))

1€V (i,5)€E

e It can be shown following the same logic that we can use L_1
regularized logistic regression to obtain a sparse estimate of
the neighborhood of each variable in the discrete case.
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Consistency -

e Theorem: for the graphical regression algorithm, under
certain verifiable conditions (omitted here for simplicity):

PG\ # G| = O (exp (—Cn)) = 0

Note the from this theorem one should see that the regularizer is not actually
used to introduce an “artificial” sparsity bias, but a devise to ensure consistency
under finite data and high dimension condition.
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(X%
ML Parameter Est. for

completely observed MRFs of
given structure

e [he data:

{ @Z1:X0)s (22:X0), (Z3:X3), -+ (ZnoXn) 3
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Recap: MLE for BNs oo

e Assuming the parameters for each CPD are globally independent,
and all nodes are fully observed, then the log-likelihood function
decomposes into a sum of local terms, one per node:

£(0:0)=1og pD10) g ]| TT w0 1,00 | = [ T 1og 0,1, )

n i

ML
Qijk -

Nk
Z N

]k
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MLE for undirected graphical T
models oo

e For directed graphical models, the log-likelihood decomposes
into a sum of terms, one per family (node plus parents).

e For undirected graphical models, the log-likelihood does not
decompose, because the normalization constant Zis a
function of all the parameters

P(X,...,X,) = HWC(X) Z = Z [ [w.(x.)

ceC X, ceC

e In general, we will need to do inference (i.e., marginalization)
to learn parameters for undirected models, even in the fully
observed case.
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Log Likelihood for UGMs with i

tabular cligue potentials -

e Sufficient statistics: for a UGM (V,E), the number of times that a

configuration x (i.e., X,~x) is observed in a dataset D={xy,...,x;} can

be represented as follows:
def def

m(x) = Y 5(x,x,) (totalcount), and m(x,)=> m(x) (cliquecount)

Xvic

e In terms of the counts, the log likelihood is given by:
p(D|&) =TT p(x16)°**
logp(D[6) = > > 5(x,x,)logp(x|8) = > > 5(x,x,)logp(x | 6)

£ =Y m(x) Iog[%H v, (xc)j

- ZZ m(xc)log Wc(xc)_ N IOgZ

e There is a nasty log Z in the likelihood
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Log Likelihood for UGMs with i
tabular cligue potentials o°

e Sufficient statistics: for a UGM (V,E), the number of times that a
configuration x (i.e., X,~x) is observed in a dataset D={xy,...,x;} can

be represented as follows:
def def

m(x):25(x,xn) (totalcount), and m(xC):Zm(x) (clique count)

Xvic

e In terms of the counts, the log likelihood is given by:

logp(D|#) = D > m(x,)logw,(x.) - NlogZ

e There is a nasty log Z in the likelihood
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Derivative of log Likelihood

e Log-likelihood:  2=> > m(x.)logy, (x.)-NlogZ

: . 04 _m(x,)
e Firstterm: By (X)) 46

e Secondterm: <dlogZ

- Zawool

oy (%) Z oy (x,)

Set the value of variables to X

=%;5(ic,xc)

1

oy, (X.)

(Xc)

H'ﬂd (X4)
d

‘ [r Va4 (;(d )j
d

1

=200 ) e Tve &)

1
v, (X.)

Z&()?C,
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Conditions on Clique Marginals -

e Derivative of log-likelihood

ol :m(xc)_N p(X.)
oy (X)) w. (X))  w.(X)

e Hence, for the maximum likelihood parameters, we know that:

m (XC def

p/ltlLE (Xc): N :E(Xc)

e In other words, at the maximum likelihood setting of the
parameters, for each clique, the model marginals must be
equal to the observed marginals (empirical counts).

e This doesn't tell us how to get the ML parameters, it just gives
us a condition that must be satisfied when we have them.
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MLE for undirected graphical T
models :

e |s the graph decomposable (triangulated)?

e Are all the clique potentials defined on maximal cliques (not

e Are the cligue potentials full tables (or Gaussians), or
parameterized more compactly, e.g. v.(x.)=exp(> 6,f (x.)) ?

© Eric Xing @ CMU, 2005-2014
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Properties on MLE of clique
potentials .o

e For decomposable models, where potentials are defined on
maximal cliques, the MLE of clique potentials equate to the
empirical marginals (or conditionals) of the corresponding
clique. Thus the MLE can be solved by inspection!!

e |If the graph is non-decomposable, and or the potentials are
defined on non-maximal cliques (e.g., w4,, Ws,4), We could not
equate MLE of cliques potentials to empirical marginals (or
conditionals).

e Potential expressed as a tabular form: IPF

e Feature-based potentials: GIS
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MLE for decomposable T
undirected models -

e Decomposable models:
e G is decomposable < G is triangulated < G has a junction tree

X
e Potential based representation: p(X) = 3=< Ve (X.)
11, o:(x)

e Consider a chain X; — X, — X;. The cliques are (X,,X, ) and
(X,,X5); the separator is X,

e The empirical marginals must equal the model marginals.

p (X1,X2)p (X72.X3)

. —~
Letus guess that  ; (v x x,)- 27
e We can verify that such a guess satisfies the conditions:

and Siéﬂ}ér@(hXZ) = ZX3 ﬁMLE (X11X2,X3) = E(Xl |X2)Zx3 E(XZ’X3) = E(XI’XZ)

Puce (X21X3) = E(Xzixs)
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MLE for decomposable cece
undirected models (cont.)

e Letusguessthat p,.(x, x,,x;) =202 0e0)

e To compute the clique potentials, just equate them to the
empirical marginals (or conditionals), i.e., the separator must
be divided into one of its neighbors. Then Z = 1.

B,
p (Xz)

~ MLE ~ MLE

V12 (X1’X2):E(X11X2) Vas o (X2, X3 :E(X2|X3)

e One more example:
p(XI’XZ’X3)P(X21X3,X4)

e (Xq, X0 X5, X)) = —
Q @ Pumie (X1, X5, X3, X4 5 (X, X3)
_ (X, X,, X _
@a@ Wll\g;E (X, X5, X3) = pé(1X2,2X3)3) = P(X, | X5, %3)

~ MLE ~
Waza (X320 X3,X4) =P (X5, X3,X,)
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Non-decomposable and/or with
non-maximal clique potentials

e If the graph is non-decomposable, and or the potentials are
defined on non-maximal cliques (e.g., w4,, Ws,), We could not
equate empirical marginals (or conditionals) to MLE of cliques

potentials.

-
/s

P(XI,XZ,X3,X4):HV/U (X;.X;)

U3

MLE

A0,J) st oy (x,x;)#

Homework!
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p(x;,x;)p(x;)
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MLE for undirected graphical

models

e |s the graph decomposable (triangulated)?

e Are all the clique potentials defined on maximal cliques (not

e Are the cligue potentials full tables (or Gaussians), or
parameterized more compactly, e.g. v.(x.) :exp(zc 0.f, (xc)) ?

Decomposable? Max clique? Tabular? Method
N \ N Direct
v IPF
Gradient

© Eric Xing @ CMU, 2005-2014
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lterative Proportional Fitting (IPF) | s¢

e From the derivative of the likelihood:
o _mX) _p PX)
e Wwe can derive anothe(l? ?lélg’éfgnsﬁ/iﬁ.()(C) Ve (X)

p(x.) _ p(x)

ve(X) we(x)
in which y, appears implicitly in the model marginal p(x;).

e This is therefore a fixed-point equation for y..

e Solving ¥, in closed-form is hard, because it appears on both sides of this implicit
nonlinear equation.

e The idea of IPF is to hold i, fixed on the right hand side (both in the
numerator and denominator) and solve for it on the left hand side. We cycle
through all cliques, then iterate:

(t+1) ) p(x.)
Ve (Xc) =V (Xc) p(t) (X )/Need to do inference here
c

© Eric Xing @ CMU, 2005-2014 28




000
0000
0000
. ::0
Properties of IPF Updates %
e |PF iterates a set of fixed-point equations:
t+1) t) p(X.)
ve (X )= (X,)
p(x.)
e However, we can prove it is also a coordinate ascent
algorithm (coordinates = parameters of clique potentials).
Me,
e Hence at each step, it will increase Me,
the log-likelihood, and it will converge ‘
to a global maximum. g
iV
e |-projection: finding a distribution with T
the correct marginals that has the A

maximal entropy
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KL Divergence View -

e |PF can be seen as coordinate ascent in the likelihood using
the way of expressing likelihoods using KL divergences.

e \We can show that maximizing the log likelihood is equivalent
to minimizing the KL divergence (cross entropy) from the
observed distribution to the model distribution:

p (x)
p(x|0)

e Using a property of KL divergence based on the conditional

chain rule: p(x) = p(x,)p(Xx,|Xx,):
KL %) 906 30))= 3 (906 1, )log : g;‘; ((’; 'l’;z))
= 3 900 1100 T el 3 gx,)q(x, 1x,)log

Xq:Xp ( a Xq:Xp

max £ < minKL(p (x) || p(x [8))=Y" p (x)log

q(xb |Xa)
p(xb |Xa)

= KL(g(x) | p(x.))+ " g (x,)KL(g (x, | x,) 1| p(x, | X,))

© Eric Xing @ CNMU, 2005-2014
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IPF minimizes KL divergence o°

e Putting things together, we have

KL(p ()1l p(x16))=KL(p (x.) | p(x, |6))+
> p(xKL(P (X %) p(X_ |X.))

It can be shown that changing the clique potential y, has no effect
on the conditional distribution, so the second term in unaffected.

e To minimize the first term, we set the marginal to the
observed marginal, just as in IPF.

e Note that this is only good when the model is decomposable !

e We can interpret IPF updates as retaining the “old” conditional
probabilities p(t)(x_.|x_) while replacing the “old” marginal
probability p(Y(x,) with the observed marginal p (x.).
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MLE for undirected graphical cece

models :

e |s the graph decomposable (triangulated)?

e Are all the clique potentials defined on maximal cliques (not

e Are the cligue potentials full tables (or Gaussians), or
parameterized more compactly, e.g. v.(x.)=exp(> 6,f (x.)) ?

Decomposable? Max clique? Tabular? Method
N \ N Direct
v IPF
Gradient
GIS
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Feature-based Clique Potentials os

e So far we have discussed the most general form of an
undirected graphical model in which cliques are
parameterized by general “tabular” potential functions . (x.).

e But for large cliques these general potentials are
exponentially costly for inference and have exponential
numbers of parameters that we must learn from limited data.

e One solution: change the graphical model to make cliques
smaller. But this changes the dependencies, and may force
us to make more independence assumptions than we would
like.

e Another solution: keep the same graphical model, but use a
less general parameterization of the clique potentials.

e Thisis the idea behind feature-based models.
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Features :

e Consider a clique x, of random variables in a UGM, e.g. three
consecutive characters c¢,c,c; in a string of English text.

e How would we build a model of p(c,c,¢;3)?

e |f we use a single clique function over ¢,c,c;, the full joint clique potential would
be huge: 263-1 parameters.

e However, we often know that some particular joint settings of the variables in a
clique are quite likely or quite unlikely. e.g. ing, ate, ion, ?ed, qu?, jkx, zzz,...
e A “feature” is a function which is vacuous over all joint settings
except a few particular ones on which it is high or low.
e For example, we might have f, ,(¢,¢,c3) which is 1 if the string is ing’ and 0
otherwise, and similar features for '?ed’, etc.
e We can also define features when the inputs are continuous.
Then the idea of a cell on which it is active disappears, but we
might still have a compact parameterization of the feature.
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Features as Micropotentials os

e By exponentiating them, each feature function can be made
iInto a “micropotential”. We can multiply these micropotentials
together to get a clique potential.

e Example: a clique potential y(c,c,c;) could be expressed as:

e?edf?

l//C(C11C21C3):eemgfingxe edX...

K
= eXp{kZ; 0,1 (¢1,C, ’Cs)}

e This is still a potential over 263 possible settings, but only
uses K parameters if there are K features.

e By having one indicator function per combination of x., we recover the standard
tabular potential.
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Combining Features -

e Each feature has a weight 4, which represents the numerical
strength of the feature and whether it increases or decreases
the probability of the clique.

e The marginal over the clique is a generalized exponential
family distribution, actually, a GLIM:
gingfing (€11€21C3) + Oreyfreg (€1,C5,C5) + }

p(c;,C,,C3) cexp
e {eqwfqu’? (Cl 2, C3) T ezzzfzzz (Cl 1% ’C3) T

e In general, the features may be overlapping, unconstrained
indicators or any function of any subset of the clique

variables: def
V. (Xc) - exp{z Qkfk (Xc,- )}

iel,
e How can we combine feature into a probability model?
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Feature Based Model ot

e \We can multiply these clique potentials as usual:

P()—mn%( )_ﬁ {Zzgkfk(xc,)}

¢ iel,

e However, in general we can forget about associating features
with cliques and just use a simplified form:

p(X )_Z( )exp{zé’iﬁ(xc,)}

e This is just our friend the exponential family model, with the
features as sufficient statistics!
p (X.)
p(x.)

e Not obvious how to use this rule to update the weights and features
individually !

e Learning: recall that in IPF, we have v ™" (x.) =y (x,.)
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MLE of Feature Based UGMs ot

e Scaled likelihood function

¢ (0;D)=¢(6:D)IN =%Zlog p(x,|0)
=Y p(x)logp(x |6)
— Zﬁ(x)ZH,f,(x)—logZ(H)

e Instead of optimizing this objective directly, we attack its lower
bound

The logarithm has a linear upper bound ...
| log Z (0) < uZ (0) —log -1

This bound holds for all x4, in particular, for -
u=Z7(0%)

e Thus we have

¢ (0:D) > Zp(x)Z@f(x)—Z((i))) logZ (6%)) +1
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Generalized lterative Scaling cece
(GIS) oo

e Lower bound of scaled loglikelihood

- _ Z (0 t
4 (H;D)ng(x)zi“@,f,(x Z(é“))) ~logZ (0%)) +1

e Define AgY z 0. —o®
/~(6’;D)2;5(X)Zé’,ﬁ(X)—Z(2m);exp{zi:gifi(x)}_mgz(H(t))+1
:,ZQ’;’E(XWX)‘Z(;mgeXp{Z@“)ﬁ (X)}exp{IZAe,ﬂ“ﬁ (X)}—IogZ(a‘”)H
:Ze«'ZE(X)ﬁ(X)—ZP(X|9‘”)eXp{ZA9,<”ﬁ(x)}_|ogz(g<t>)+1

e Relax again

Assume  f (x)>0, Z,ff (x)=1

Convexity of exponential: exp(z T.X )< Z - exp(x.)
e \We have:

70 D)= 36,3 p(xf ()~ Zp(xw“))Zf(x)exp(Ae )-logZ (6%) +1= A(0)
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GIS

e Lower bound of scaled loglikelihood y
£(0:0)>3 6 p(x)If (x)—Zp(x |9<”)Zf(x)exp(A9.<*>)— log Z (69) +1 = A(6)

e [ake derivative: g_zp(x)f (x)- EXp(AQ(t))Z p(X |(9(t))f (x)
e Setto zero D INIOLACREDY p(X)fi(X) .
eAHi _ X _ X t )

= Z(0
2 P[0 fi(x) > pY (X fi (%) (
where p()(x) is the unnormalized version of p(x|&Y)

e Update 6 =6 +AGY = p“(x) = p () Te**"

P (X) ARAUITS fi (x)
Z(H(t))r_ ZP(”(X)ﬁ(X) (9 )

PO (x) = TFke) Y e
> X (t) !
Z(H(”)F ;p(”(x)f,(x)j <Z @) Recall IPF:

. £ (x) t+1) W) p(X,)
SFCOf () ) v, (X )=w (X))
_ @) x ¢ ¢ ¢ ¢ (t)

=P (X)H zr:(”(x)f,-(x)j pr(X.)
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Summary

e |PF is a general algorithm for finding MLE of UGMs.

a fixed-point equation for y, over single cliques, coordinate ascent

e |-projection in the clique marginal space

e Requires the potential to be fully parameterized

e The clique described by the potentials do not have to be max-clique
e For fully decomposable model, reduces to a single step iteration

o GIS

e lterative scaling on general UGM with feature-based potentials

e |PF is a special case of GIS which the clique potential is built on features defined
as an indicator function of clique configurations.

GIS: IPF:

(t+1) ) zpoe ) (t+1) (t)
P (x)=p (X)H > pO(x) i (x) Ve (Xc) =V, (Xc)
] X

> (%)
(t+1) _ (1) .
g =0 +|Og(2p<”(x)fi(x)j

p (X.)
p(t)(xc)
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Where does the exponential form | 322
come from? -

e Review: Maximum Likelihood for exponential family

£(0;D)=> m(x)logp(x |0)

- Zm(x)[z o.f (x)—logZ (9)j

=2 m(x)Y 6 (x)~-Nlog Z (6)

0
00,

1

=Y mx)f(x)-NY p(x |0)f (x)

0
00

£(6:D) =3 m(x)f,(x)~N - —-log Z (6)

m(x)
N
e i.e., At ML estimate, the expectations of the sufficient statistics

under the model must match empirical feature average.
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Maximum Entropy -

e \We can approach the modeling problem from an entirely
different point of view. Begin with some fixed feature

expectations:
2 p(X)i(x)=¢,

e Assuming expectations are consistent, there may exist many
distributions which satisfy them. Which one should we select?
e The most uncertain or flexible one, i.e., the one with maximum entropy.

e This yields a new optimization problem:
max, H(p(x))=->p(x)logp(x)
S.L. ZP(X)fI (x)=¢a,

_1 This is a variational
; p(x) = definition of a distribution!
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Solution to the MaxEnt Problem .

e To solve the MaxEnt problem, we use Lagrange multipliers:

L ==Y p(x)log P(X)—Z@(ZP(X)?‘,-(X)—a,-j—ﬂ[ZP(X)—lj

L —_ — —
ey~ 11090 - 0 () -

p'(x)=e"" exp{Z Hiﬁ(x)}

Z(@)=e"" = Zexp{z Q,ﬁ(x)} (since ) p (x)=1)

1
p(x|0) = 0 exp{z of, (X)}
e So feature constraints + MaxEnt = exponential family.
e Problem is strictly convex w.r.t. p, so solution is unique.

© Eric Xing @ CMU, 2005-2014
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A more general MaxEnt problem os

min,  KL(p(x)Ilh(x))

p
dSZp(x)Iog Zg; =—H(p) -2, p(x)logh(x)

st Y pxXf(x)=¢,
> p(x)=1

X

1
= p(xe)=mh(x>exp{ze,ﬁ<x)}
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Constraints from Data ot

e Where do the constraints «; come from?
e Just as before, measure the empirical counts on the training

data: -
e o =3 M (x) =3 §(0F (X)

X

e This also ensures consistency automatically.

e Known as the “method of moments”. (c.f. law of large
numbers)

e \We have seen a case of convex duality:

e In one case, we assume exponential family and show that ML implies model
expectations must match empirical expectations.

e In the other case, we assume model expectations must match empirical feature
counts and show that MaxEnt implies exponential family distribution.

e No duality gap = yield the same value of the objective

© Eric Xing @ CMU, 2005-2014
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0000
0000
. : °o°
Geometric Interpretation o
e All exponential family distribution: I
_ 1
é={p(x) Pl =~ (e)h(x)exp{ze,-f,-(x)}} y
e All distributions satisfying moment constraints ¢
L
s ={pl) : S P00 - ZF 00 ) .
e Pythagorean theorem /
KL(g 1 p)=KL(g Il py )+ KL(py I )
MaxEnt : MaxLik :
min, KL(gh) min, KL(p [l p)
st. qeM st. qgeé&

KL(g[lh)=KL(g || pu )+ KLIPRHEL  KL(p Il p)= KB KL(py Il p)
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Summary .

e Exponential family distribution can be viewed as the solution
to an variational expression --- the maximum entropy!

e The max-entropy principle to parameterization offers a dual
perspective to the MLE.
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