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Pros and Cons of 
Procedure Elimination

 Algebraic elimination  graphical elimination 

B A

DC

E F

G H

B A

DC

E F

G H

B A

DC

B A

DC

E F

G

B A

DC

E F

B A

DC

E

B A

C

B A A

2© Eric Xing @ CMU, 2005-2014



Complexity
 The overall complexity is determined by the number of the 

largest elimination clique

 What is the largest elimination clique? – a pure graph theoretic question

 Tree-width k: one less than the smallest achievable value of the cardinality of the 
largest elimination clique, ranging over all possible elimination ordering

 “good” elimination orderings lead to small cliques and hence reduce complexity 
(what will happen if we eliminate "e" first in the above graph?)

 Find the best elimination ordering of a graph --- NP-hard
 Inference is NP-hard

 But there often exist "obvious" optimal or near-opt elimination ordering  
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 Our algorithm so far answers only one query (e.g., on one node), do we 
need to do a complete elimination for every such query? 

 Elimination  message passing on a clique tree

 Messages can be reused

E F

H

A

E F

B A

C

E

G

A

DC

E

A

DC

B A A

hm
gm

em
fm

bmcm

dm

B A

DC

E F

G H

B A

DC

E F

G H

B A

DC

B A

DC

E F

G

B A

DC

E F

B A

DC

E

B A

C

B A A



From Elimination to Message 
Passing
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From Elimination to Message 
Passing
 Our algorithm so far answers only one query (e.g., on one node), do we 

need to do a complete elimination for every such query? 

 Elimination  message passing on a clique tree
 Another query ...

 Messages mf and mh are reused, others need to be recomputed
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Undirected tree: a 
unique path between 
any pair of nodes

Directed tree: all 
nodes except the root 
have exactly one 
parent

Poly tree:  can have 
multiple parents

We will come back to
this later

Tree GMs
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 Any undirected tree can be converted to a directed tree by choosing a root 
node and directing all edges away from it

 A directed tree and the corresponding undirected tree make the same 
conditional independence assertions

 Parameterizations are essentially the same.

 Undirected tree:

 Directed tree: 

 Equivalence:

 Evidence:?

Equivalence of directed and 
undirected trees
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From elimination to message 
passing
 Recall ELIMINATION algorithm:

 Choose an ordering Z in which query node f is the final node
 Place all potentials on an active list
 Eliminate node i by removing all potentials containing i, take sum/product over xi.
 Place the resultant factor back on the list
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Elimination on a tree

Let mji(xi) denote the factor resulting from 
eliminating variables from bellow up to i, 
which is a function of xi:

This is reminiscent of a message sent 
from j to i.

mij(xi) represents a "belief" of xi from xj!
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Message passing on a tree
 Elimination on trees is equivalent to message passing along 

tree branches!
f

i

j

k l
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From elimination to message 
passing
 Recall ELIMINATION algorithm:

 Choose an ordering Z in which query node f is the final node
 Place all potentials on an active list
 Eliminate node i by removing all potentials containing i, take sum/product over xi.
 Place the resultant factor back on the list

 For a TREE graph:
 Choose query node f as the root of the tree
 View tree as a directed tree with edges pointing towards leaves from f
 Elimination ordering based on depth-first traversal
 Elimination of each node can be considered as message-passing (or Belief 

Propagation) directly along tree branches, rather than on some transformed 
graphs

 thus, we can use the tree itself as a data-structure to do general inference!!
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Computing P(X1)
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The message passing protocol:
 A node can send a message to its neighbors when (and only when) 

it has received messages from all its other neighbors. 
 Computing node marginals: 

 Naïve approach: consider each node as the root and execute the message 
passing algorithm
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X1

X4X3
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Computing P(X2)

m32(x2) m42(x2)

m12(x2)

The message passing protocol:
 A node can send a message to its neighbors when (and only when) 

it has received messages from all its other neighbors. 
 Computing node marginals: 

 Naïve approach: consider each node as the root and execute the message 
passing algorithm
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Computing P(X3)

m23(x3) m42(x2)

m12(x2)

The message passing protocol:
 A node can send a message to its neighbors when (and only when) 

it has received messages from all its other neighbors. 
 Computing node marginals: 

 Naïve approach: consider each node as the root and execute the message 
passing algorithm
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Computing node marginals
 Naïve approach:

 Complexity: NC
 N is the number of nodes
 C is the complexity of a complete message passing

 Alternative dynamic programming approach
 2-Pass algorithm (next slide )
 Complexity: 2C!
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The message passing protocol:
 A two-pass algorithm:

m21(X 1)

m32(X 2) m42(X 2)

m12(X 2)

m23(X 3)
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Belief Propagation (SP-algorithm): 
Sequential implementation
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Belief Propagation (SP-algorithm): 
Parallel synchronous implementation

 For a node of degree d, whenever messages have arrived on any subset of d-1 
node, compute the message for the remaining edge and send!
 A pair of messages have been computed for each edge, one for each direction
 All incoming messages are eventually computed for each node
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Correctness of BP on tree

 Collollary: the synchronous implementation is "non-blocking"

 Thm: The Message Passage Guarantees obtaining all 
marginals in the tree

 What about non-tree?
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 Example 1
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Another view of SP: Factor Graph
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 Example 2

 Example 3
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Factor Graphs
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Factor Tree 
 A Factor graph is a Factor Tree if the undirected graph 

obtained by ignoring the distinction between variable nodes 
and factor nodes is an undirected tree

x1,x2,x3) = fa(x1,x2,x3)

X1

X2 X3

fa

X1

X2 X3
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Message Passing on a Factor 
Tree
 Two kinds of messages

1. : from variables to factors
2. : from factors to variables
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Message Passing on a Factor 
Tree, con'd
 Message passing protocol:

 A node can send a message to a neighboring node only when it has received 
messages from all its other neighbors

 Marginal probability of nodes:

xi
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fs

f3
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fs

P(xi)  s  N(i) si(xi)

 is(xi)si(xi)
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BP on a Factor Tree
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 Tree-like graphs to Factor trees
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Why factor graph?
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Poly-trees to Factor trees

27© Eric Xing @ CMU, 2005-2014



Why factor graph?
 Because FG turns tree-like 

graphs to factor trees, 
 and trees are a data-structure 

that guarantees correctness of 
BP !
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Max-product algorithm:
computing MAP probabilities
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Max-product algorithm:
computing MAP configurations using a final 
bookkeeping backward pass
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 Sum-Product algorithm computes singleton marginal 
probabilities on:
 Trees
 Tree-like graphs
 Poly-trees

 Maximum a posteriori configurations can be computed by 
replacing sum with max in the sum-product algorithm
 Extra bookkeeping required 

Summary
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Inference on general GM
 Now, what if the GM is not a tree-like graph?

 Can we still directly run
message-passing protocol along its edges?

 For non-trees, we do not have the guarantee that message-passing 
will be consistent!

 Then what?
 Construct a graph data-structure from P that has a tree structure, and run 

message-passing on it!

 Junction tree algorithm
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 Recall that Induced dependency during marginalization is 
captured in elimination cliques
 Summation <-> elimination
 Intermediate term <-> elimination clique

 Can this lead to an generic 
inference algorithm?

Elimination Clique

E F

H

A

E F

B A

C

E

G

A

DC

E

A

DC

B A A

cm bm

gm

em

dm
fm

hm

33© Eric Xing @ CMU, 2005-2014



Moral Graph
 Note that for both directed GMs and undirected GMs, the joint 

probability is in a product form:

 So let’s convert local conditional probabilities into potentials; then 
the second expression will be generic, but how does this operation 
affect the directed graph?
 We can think of a conditional probability, e.g,. P(C|A,B) as a function of the three 

variables A, B, and C (we get a real number of each configuration):

 Problem: But a node and its parent are not generally in the same clique in a BN
 Solution: Marry the parents to obtain the "moral graph"  
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Moral Graph (cont.)
 Define the potential on a clique as the product over all conditional 

probabilities contained within the clique
 Now the product of potentials gives the right answer:
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Note that here the 
interpretation of potential 
is ambivalent: 
it can be either marginals 
or conditionals
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Clique trees
 A clique tree is an (undirected) tree of cliques

 Consider cases in which two neighboring cliques V and W have an 
overlap S (e.g., (X1, X2, X3) overlaps with (X3, X4, X5) ),

 Now we have an alternative representation of the joint in terms of 
the potentials:
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Clique trees
 A clique tree is an (undirected) tree of cliques

 The alternative representation of the joint in terms of the potentials:

 Generally:
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Now each potential is 
isomorphic to the cluster 
marginal of the attendant 
set of variables
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Why this is useful?
 Propagation of probabilities

 Now suppose that some evidence has been "absorbed" (i.e., certain values of 
some nodes have been observed). How do we propagate this effect to the rest of 
the graph?

 What do we mean by propagate?
Can we adjust all the potentials {}, {} so that they still represent the correct 
cluster marginals (or unnormalized equivalents) of their respective attendant 
variables?

 Utility? 
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Local Consistency
 We have two ways of obtaining p(S)

and they must be the same

 The following update-rule ensures this:

 Forward update:

 Backward update

 Two important identities can be proven
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Local Consistency Invariant Joint
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Message Passing Algorithm

 This simple local message-passing algorithm on a clique tree 
defines the general probability propagation algorithm for 
directed graphs!

 Many interesting algorithms are special cases:
 Forward-backward algorithm for hidden Markov models,
 Kalman filter updates
 Pealing algorithms for probabilistic trees

 The algorithm seems reasonable. Is it correct?
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A problem
 Consider the following graph and a corresponding clique tree

 Note that C appears in two non-neighboring cliques

 Question: with the previous message passage, can we ensure 
that the probability associated with C in these two (non-
neighboring) cliques consistent?

 Answer: No. It is not true that in general local consistency 
implies global consistency

 What else do we need to get such a guarantee?

A B

C D

A,B B,D

A,C C,D
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Triangulation
 A triangulated graph is one in which no cycles with 

four or more nodes exist in which there is no chord

 We triangulate a graph by adding chords:

 Now we no longer have our global inconsistency 
problem.

 A clique tree for a triangulated graph has the running 
intersection property: If a node appears in two cliques, 
it appears everywhere on the path between the cliques

 Thus local consistency implies global consistency

A B

C D

A B

C D

A,B,C

B,C,D
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Junction trees
 A clique tree for a triangulated graph is referred to as a junction tree

 In junction trees, local consistency implies global consistency. Thus 
the local message-passing algorithms is (provably) correct

 It is also possible to show that only triangulated graphs have the 
property that their clique trees are junction trees. Thus if we want 
local algorithms, we must triangulate

 Are we now all set?
 How to triangulate?
 The complexity of building a 

JT depends on how we triangulate!!
 Consider this network:

it turns out that we will need to pay an O(24) 
or O(26) cost depending on how we triangulate!
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moralization
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graph elimination

How to triangulate
 A graph elimination algorithm

 Intermediate terms correspond to the cliques resulted from 
elimination
 “good” elimination orderings lead to small cliques and hence reduce complexity

(what will happen if we eliminate "e" first in the above graph?)

 finding the optimum ordering is NP-hard, but for many graph optimum or near-
optimum can often be heuristically found 
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Message-passing algorithms

 Message update

 The Hugin update

 The Shafer-Shenoy update
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A Sketch of the Junction Tree 
Algorithm 
 The algorithm

1. Moralize the graph (trivial)

2. Triangulate the graph (good heuristic exist, but actually NP hard)

3. Build a clique tree (e.g., using a maximum spanning tree algorithm   

4. Propagation of probabilities --- a local message-passing protocol

 Results in marginal probabilities of all cliques --- solves all queries 
in a single run

 A generic exact inference algorithm for any GM

 Complexity: exponential in the size of the maximal clique --- a 
good elimination order often leads to small maximal clique, and 
hence a good (i.e., thin) JT
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 Elimination  message passing on a clique tree
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Shafer Shenoy for HMMs
 Recap: Shafer-Shenoy algorithm

 Message from clique i to clique j :

 Clique marginal 
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Message Passing for HMMs 
(cont.)
 A junction tree for the HMM

 Rightward pass

 This is exactly the forward algorithm!

 Leftward pass …

 This is exactly the backward algorithm! 
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Summary
 Junction tree data-structure for exact inference on general 

graphs
 Two methods

 Shafer-Shenoy
 Belief-update or Lauritzen-Speigelhalter

 Constructing Junction tree from chordal graphs
 Maximum spanning tree approach
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