

Probabilistic Graphical Models

The Belief Propagation (Sum-Product) Algorithm

Eric Xing

Lecture 5, January 29, 2014

Reading: KF-chap 10

© Eric Xing @ CMU, 2005-2014

Pros and Cons of Procedure Elimination

• Algebraic elimination = graphical elimination

Complexity

- The overall complexity is determined by the number of the largest elimination clique
 - What is the largest elimination clique? a pure graph theoretic question
 - **Tree-width** *k*: one less than the smallest achievable value of the cardinality of the largest elimination clique, ranging over all possible elimination ordering
 - "good" elimination orderings lead to **small cliques** and hence reduce complexity (what will happen if we eliminate "e" first in the above graph?)
 - Find the best elimination ordering of a graph --- NP-hard
 - → Inference is NP-hard
 - But there often exist "obvious" optimal or near-opt elimination ordering

From Elimination to Message Passing

- Our algorithm so far answers only one query (e.g., on one node), do we need to do a complete elimination for every such query?
- Elimination = message passing on a clique tree

• Messages can be reused

© Eric Xing @ CMU, 2005-2014

From Elimination to Message Passing

- Our algorithm so far answers only one query (e.g., on one node), do we need to do a complete elimination for every such query?
- Elimination = message passing on a clique tree
 - Another query ...

• Messages m_f and m_h are reused, others need to be recomputed © Eric Xing @ CMU, 2005-2014

Tree GMs

Undirected tree: a unique path between any pair of nodes Directed tree: all nodes except the root have exactly one parent

Poly tree: can have multiple parents

Equivalence of directed and undirected trees

- Any undirected tree can be converted to a directed tree by choosing a root node and directing all edges away from it
- A directed tree and the corresponding undirected tree make the same conditional independence assertions
- Parameterizations are essentially the same.

• Undirected tree:
$$p(x) = \frac{1}{Z} \left(\prod_{i \in V} \psi(x_i) \prod_{(i,j) \in E} \psi(x_i, x_j) \right)$$

- Directed tree: $p(x) = p(x_r) \prod_{(i,j) \in E} p(x_j | x_i)$
- Equivalence: $\psi(x_r) = p(x_r); \quad \psi(x_i, x_j) = p(x_j | x_i);$ $Z = 1, \quad \psi(x_i) = 1$
- Evidence:?

From elimination to message passing

- Recall ELIMINATION algorithm:
 - Choose an ordering \mathcal{Z} in which query node f is the final node
 - Place all potentials on an active list
 - Eliminate node *i* by removing all potentials containing *i*, take sum/product over x_i .
 - Place the resultant factor back on the list

Elimination on a tree

Message passing on a tree

From elimination to message passing

• Recall ELIMINATION algorithm:

- Choose an ordering \mathcal{Z} in which query node f is the final node
- Place all potentials on an active list
- Eliminate node *i* by removing all potentials containing *i*, take sum/product over x_i .
- Place the resultant factor back on the list

• For a TREE graph:

- Choose query node *f* as the root of the tree
- View tree as a directed tree with edges pointing towards leaves from f
- Elimination ordering based on depth-first traversal
- Elimination of each node can be considered as message-passing (or Belief Propagation) directly along tree branches, rather than on some transformed graphs
- \rightarrow thus, we can use the tree itself as a data-structure to do general inference!!

- A node can send a message to its neighbors when (and only when) it has received messages from all its *other* neighbors.
- Computing node marginals:
 - Naïve approach: consider each node as the root and execute the message passing algorithm

- A node can send a message to its neighbors when (and only when) it has received messages from all its *other* neighbors.
- Computing node marginals:
 - Naïve approach: consider each node as the root and execute the message passing algorithm

- A node can send a message to its neighbors when (and only when) it has received messages from all its *other* neighbors.
- Computing node marginals:
 - Naïve approach: consider each node as the root and execute the message passing algorithm

Computing node marginals

- Naïve approach:
 - Complexity: NC
 - N is the number of nodes
 - C is the complexity of a complete message passing
- Alternative dynamic programming approach
 - 2-Pass algorithm (next slide →)
 - Complexity: 2C!

• A two-pass algorithm:

© Eric Xing @ CMU, 2005-2014

Belief Propagation (SP-algorithm): Sequential implementation

Belief Propagation (SP-algorithm): Parallel synchronous implementation

- For a node of degree d, whenever messages have arrived on any subset of d-1 node, compute the message for the remaining edge and send!
 - A pair of messages have been computed for each edge, one for each direction
 - All incoming messages are eventually computed for each node

© Eric Xing @ CMU, 2005-2014

Correctness of BP on tree

- Collollary: the synchronous implementation is "non-blocking"
- Thm: The Message Passage Guarantees obtaining all marginals in the tree

$$m_{ji}(x_i) = \sum_{x_j} \left(\psi(x_j)\psi(x_i, x_j) \prod_{k \in N(j) \setminus i} m_{kj}(x_j) \right)$$

• What about non-tree?

Another view of SP: Factor Graph

• Example 1

© Eric Xing @ CMU, 2005-2014

Factor Graphs • Example 2 X_1 X₁ \mathbf{f}_{c} f_a X_3 X₃ X_2 X_2 f_b $\psi(\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3) = f_a(\mathbf{x}_1, \mathbf{x}_2) f_b(\mathbf{x}_2, \mathbf{x}_3) f_c(\mathbf{x}_3, \mathbf{x}_1)$ Example 3 X_1 X_1 f_a X_2 X_3 X_3 X_2 $\psi(\mathbf{X}_1, \mathbf{X}_2, \mathbf{X}_3) = f_a(\mathbf{X}_1, \mathbf{X}_2, \mathbf{X}_3)$

© Eric Xing @ CMU, 2005-2014

Factor Tree

• A Factor graph is a Factor Tree if the undirected graph obtained by ignoring the distinction between variable nodes and factor nodes is an undirected tree

Message Passing on a Factor Tree

- Two kinds of messages
 - 1. v: from variables to factors
 - 2. µ: from factors to variables

 $\nu_{is}(x_i) = \prod_{t \in \mathcal{N}(i) \setminus s} \mu_{ti}(x_i) \qquad \mu_{si}(x_i) = \sum_{x_{\mathcal{N}}(s) \setminus i} \left(f_s(x_{\mathcal{N}(s)}) \prod_{j \in \mathcal{N}(s) \setminus i} \nu_{js}(x_j) \right)$

Message Passing on a Factor Tree, con'd

- Message passing protocol:
 - A node can send a message to a neighboring node only when it has received messages from all its *other* neighbors
- Marginal probability of nodes:

$$\begin{split} \mathsf{P}(\mathsf{x}_{\mathsf{i}}) & \propto \prod_{\mathsf{s} \ \in \ \mathsf{N}(\mathsf{i})} \mu_{\mathsf{s}\mathsf{i}}(\mathsf{x}_{\mathsf{i}}) \\ & \propto \nu_{\mathsf{i}\mathsf{s}}(\mathsf{x}_{\mathsf{i}}) \mu_{\mathsf{s}\mathsf{i}}(\mathsf{x}_{\mathsf{i}}) \end{split}$$

BP on a Factor Tree

Why factor graph?

• Tree-like graphs to Factor trees

Poly-trees to Factor trees

Why factor graph?

- Because FG turns tree-like graphs to factor trees,
- and trees are a data-structure that guarantees correctness of BP !

Max-product algorithm: computing MAP probabilities

Max-product algorithm: computing MAP configurations using a final bookkeeping backward pass

Summary

- Sum-Product algorithm computes singleton marginal probabilities on:
 - Trees
 - Tree-like graphs
 - Poly-trees
- *Maximum a posteriori* configurations can be computed by replacing sum with max in the sum-product algorithm
 - Extra bookkeeping required

Inference on general GM

- Now, what if the GM is not a tree-like graph?
- Can we still directly run message-passing protocol along its edges?
- For non-trees, we do not have the guarantee that message-passing will be consistent!
- Then what?
 - Construct a graph data-structure from P that has a tree structure, and run message-passing on it!
- \rightarrow Junction tree algorithm

Elimination Clique

- Recall that Induced dependency during marginalization is captured in elimination cliques
 - Summation <-> elimination
 - Intermediate term <-> elimination clique

P(a)P(b)P(c|b)P(d|a)P(e|c,d)P(f|a)P(g|e)P(h|e,f)

- $\Rightarrow P(a)P(b)P(c|b)P(d|a)P(e|c,d)P(f|a)P(g|e)\phi_{h}(e,f)$
- $\Rightarrow P(a)P(b)P(c|b)P(d|a)P(e|c,d)P(f|a)\phi_g(e)\phi_h(e,f)$
- $\Rightarrow P(a)P(b)P(c|b)P(d|a)P(e|c,d)\phi_f(a,e)$
- $\Rightarrow P(a)P(b)P(c|b)P(d|a)\phi_{e}(a,c,d)$
- $\Rightarrow P(a)P(b)P(c|b)\phi_d(a,c)$
- $\Rightarrow P(a)P(b)\phi_c(a,b)$
- $\Rightarrow P(a)\phi_b(a)$
- $\Rightarrow \phi(a)$
 - Can this lead to an generic inference algorithm?

Moral Graph

• Note that for both directed GMs and undirected GMs, the joint probability is in a product form:

BN:
$$P(\mathbf{X}) = \prod_{i=1:d} P(X_i | \mathbf{X}_{\pi_i})$$

MRF:
$$P(\mathbf{X}) = \frac{1}{Z} \prod_{c \in C} \psi_c(\mathbf{X}_c)$$

- So let's convert local conditional probabilities into potentials; then the second expression will be generic, but how does this operation affect the directed graph?
 - We can think of a conditional probability, e.g., P(C|A,B) as a function of the three variables *A*, *B*, and *C* (we get a real number of each configuration):

- Problem: But a node and its parent are not generally in the same clique in a BN
- Solution: Marry the parents to obtain the "moral graph"

Moral Graph (cont.)

- Define the potential on a clique as the product over all conditional probabilities contained within the clique
- Now the product of potentials gives the right answer:

 $P(X_{1}, X_{2}, X_{3}, X_{4}, X_{5}, X_{6})$ $= P(X_{1})P(X_{2})P(X_{3} | X_{1}, X_{2})P(X_{4} | X_{3})P(X_{5} | X_{3})P(X_{6} | X_{4}, X_{5})$ $= \psi(X_{1}, X_{2}, X_{3})\psi(X_{3}, X_{4}, X_{5})\psi(X_{4}, X_{5}, X_{6})$ where $\psi(X_{1}, X_{2}, X_{3}) = P(X_{1})P(X_{2})P(X_{3} | X_{1}, X_{2})$ $\psi(X_{3}, X_{4}, X_{5}) = P(X_{4} | X_{3})P(X_{5} | X_{3})$ $\psi(X_{4}, X_{5}, X_{6}) = P(X_{6} | X_{4}, X_{5})$ Note the interpretion of concentration of the con

Note that here the interpretation of potential is ambivalent: it can be either *marginals* or *conditionals*

Clique trees

• A clique tree is an (undirected) tree of cliques

• Consider cases in which two neighboring cliques V and W have an overlap S (e.g., (X_1, X_2, X_3) overlaps with (X_3, X_4, X_5)),

 Now we have an alternative representation of the joint in terms of the potentials:

Clique trees

• A clique tree is an (undirected) tree of cliques

• The alternative representation of the joint in terms of the potentials:

$$P(X_{1}, X_{2}, X_{3}, X_{4}, X_{5}, X_{6})$$

$$= P(X_{1})P(X_{2})P(X_{3} | X_{1}, X_{2})P(X_{4} | X_{3})P(X_{5} | X_{3})P(X_{6} | X_{4}, X_{5})$$

$$= P(X_{1}, X_{2}, X_{3}) \frac{P(X_{3}, X_{4}, X_{5})}{P(X_{3})} \frac{P(X_{4}, X_{5}, X_{6})}{P(X_{4}, X_{5})}$$

$$= \psi(X_{1}, X_{2}, X_{3}) \frac{\psi(X_{3}, X_{4}, X_{5})}{\psi(X_{3})} \frac{\psi(X_{4}, X_{5}, X_{6})}{\psi(X_{4}, X_{5})}$$
Now each isomorphism arginal set of values of values of values of the set of the se

Now each potential is isomorphic to the *cluster marginal* of the attendant set of variables

Why this is useful?

• Propagation of probabilities

• Now suppose that some evidence has been "absorbed" (i.e., certain values of some nodes have been observed). How do we propagate this effect to the rest of the graph?

• What do we mean by propagate?

Can we adjust all the potentials $\{\psi\}$, $\{\phi\}$ so that they still represent the correct cluster marginals (or unnormalized equivalents) of their respective attendant variables?

• Utility? $P(X_1 | X_6 = x_6) = \sum_{X_2, X_3} \psi(X_1, X_2, X_3)$ $P(X_3 | X_6 = x_6) = \phi(X_3)$ $P(x_6) = \sum_{X_4, X_5} \psi(X_4, X_5, x_6)$ © Eric Xing @ CMU, 2005-2014

Local operations!

Local Consistency

• We have two ways of obtaining p(S)

$$P(S) = \sum_{V \setminus S} \psi(V) \qquad \qquad P(S) = \sum_{W \setminus S} \psi(W)$$

and they must be the same

- The following update-rule ensures this:
 - Forward update:

Backward update

$$\phi_{S}^{*} = \sum_{V \setminus S} \psi_{V}^{*} \qquad \psi_{W}^{*} = \frac{\phi_{S}^{*}}{\phi_{S}} \psi_{W}$$
$$\phi_{S}^{**} = \sum_{W \setminus S} \psi_{W}^{*} \qquad \psi_{V}^{**} = \frac{\phi_{S}^{**}}{\phi_{S}^{*}} \psi_{V}^{*}$$

• Two important identities can be proven

$$\sum_{V\setminus S} \psi_V^{**} = \sum_{W\setminus S} \psi_W^* = \phi_S^{**}$$

Local Consistency

 $\cdot = \frac{\psi_V^{**}\psi_W^{**}}{\phi^{**}} = \frac{\psi_V\psi_W}{\phi_S}$

 $\psi(V)$

V

 $\phi(S)$

S

 $\psi(W)$

W

Invariant Joint

Message Passing Algorithm

$$\phi_{S}^{*} = \sum_{V \setminus S} \psi_{V}^{*} \qquad \psi_{W}^{*} = \frac{\phi_{S}^{*}}{\phi_{S}} \psi_{W}$$
$$\phi_{S}^{**} = \sum_{W \setminus S} \psi_{W}^{*} \qquad \psi_{V}^{**} = \frac{\phi_{S}^{**}}{\phi_{S}^{*}} \psi_{V}^{*}$$

- This simple local message-passing algorithm on a clique tree defines the general probability propagation algorithm for directed graphs!
 - Many interesting algorithms are special cases:
 - Forward-backward algorithm for hidden Markov models,
 - Kalman filter updates
 - Pealing algorithms for probabilistic trees
 - The algorithm seems reasonable. Is it correct?

A problem

• Consider the following graph and a corresponding clique tree

- Note that C appears in two non-neighboring cliques
- Question: with the previous message passage, can we ensure that the probability associated with C in these two (non-neighboring) cliques consistent?
- Answer: No. It is not true that in general local consistency implies global consistency
- What else do we need to get such a guarantee?

Triangulation

- A triangulated graph is one in which *no cycles* with four or more nodes exist in which there is no *chord*
- We triangulate a graph by adding chords:
- Now we no longer have our global inconsistency problem.
 - A clique tree for a triangulated graph has the *running intersection property*: If a node appears in two cliques, it appears everywhere on the path between the cliques
 - Thus local consistency implies global consistency

D

С

Junction trees

- A clique tree for a triangulated graph is referred to as a *junction tree*
- In junction trees, local consistency implies global consistency. Thus the local message-passing algorithms is (provably) correct
- It is also possible to show that *only* triangulated graphs have the property that their clique trees are junction trees. Thus if we want local algorithms, we *must* triangulate
- Are we now all set?
 - How to triangulate?
 - The complexity of building a JT depends on how we triangulate!!
 - Consider this network: it turns out that we will need to pay an O(2⁴) or O(2⁶) cost depending on how we triangulate!

© Eric Xing @ CMU, 2005-2014

How to triangulate

• A graph elimination algorithm

moralization

graph elimination

- Intermediate terms correspond to the cliques resulted from elimination
 - "good" elimination orderings lead to **small cliques** and hence reduce complexity (what will happen if we eliminate "e" first in the above graph?)
 - finding the optimum ordering is NP-hard, but for many graph optimum or nearoptimum can often be heuristically found

A junction tree

Message-passing algorithms

- Message update
 - The Hugin update
 - The Shafer-Shenoy update

$$\phi_S^* = \sum_{V \setminus S} \psi_V \qquad \psi_W^* = \frac{\phi_S^*}{\phi_S} \psi_W$$

$$m_{i \to j}(S_{ij}) = \sum_{C_i \setminus S_{ij}} \psi_{C_i} \prod_{k \neq j} m_{k \to i}(S_{ki})$$

© Eric Xing @ CMU, 2005-2014

A Sketch of the Junction Tree Algorithm

• The algorithm

- 1. Moralize the graph (trivial)
- 2. Triangulate the graph (good heuristic exist, but actually NP hard)
- 3. Build a clique tree (e.g., using a maximum spanning tree algorithm
- 4. Propagation of probabilities --- a local message-passing protocol
- Results in marginal probabilities of all cliques --- solves all queries in a single run
- A **generic** exact inference algorithm for any GM
- **Complexity**: exponential in the size of the maximal clique --- a good elimination order often leads to small maximal clique, and hence a good (i.e., thin) JT

Recall the Elimination and Message Passing Algorithm

• Elimination = message passing on a clique tree

$$m_e(a,c,d)$$

= $\sum_e p(e \mid c,d) m_g(e) m_f(a,e)$

$$(y_1 \rightarrow y_2 \rightarrow y_3 \rightarrow \dots \rightarrow y_T)$$

$$(x_1 \rightarrow x_2 \rightarrow x_3 \rightarrow \dots \rightarrow x_T)$$

$$\alpha_t^k = p(x_t \mid y_t^k = 1) \sum_i \alpha_{t-1}^i a_{i,k}$$

$$P(\mathbf{x}) = \sum_{k} \alpha_T^k$$

Shafer Shenoy for HMMs

• Recap: Shafer-Shenoy algorithm

• Message from clique *i* to clique *j* :

$$\mu_{i \to j} = \sum_{C_i \setminus S_{ij}} \psi_{C_i} \prod_{k \neq j} \mu_{k \to i}(S_{ki})$$

• Clique marginal

$$p(C_i) \propto \psi_{C_i} \prod_k \mu_{k \to i}(S_{ki})$$

Message Passing for HMMs (cont.)

• A junction tree for the HMM

- Rightward pass $\mu_{t \to t+1}(y_{t+1}) = \sum_{y_t} \psi(y_t, y_{t+1}) \mu_{t-1 \to t}(y_t) \mu_{t\uparrow}(y_{t+1})$ $= \sum_{y_t}^{y_t} p(y_{t+1} | y_t) \mu_{t-1 \to t}(y_t) p(x_{t+1} | y_{t+1})$ $= p(x_{t+1} | y_{t+1}) \sum_{y_t} a_{y_t, y_{t+1}} \mu_{t-1 \to t}(y_t)$
 - This is exactly the *forward algorithm*!
- Leftward pass ...

$$\mu_{t-1\leftarrow t}(y_t) = \sum_{y_{t+1}} \psi(y_t, y_{t+1}) \mu_{t\leftarrow t+1}(y_{t+1}) \mu_{t\uparrow}(y_{t+1})$$
$$= \sum_{\mathbf{y}_{t+1}} p(\mathbf{y}_{t+1} | \mathbf{y}_t) \mu_{t\leftarrow t+1}(\mathbf{y}_{t+1}) p(\mathbf{x}_{t+1} | \mathbf{y}_{t+1})$$

• This is exactly the backward algorithm!

Summary

- Junction tree data-structure for exact inference on general graphs
- Two methods
 - Shafer-Shenoy
 - Belief-update or Lauritzen-Speigelhalter
- Constructing Junction tree from chordal graphs
 - Maximum spanning tree approach