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Recap:
 Defn: A DAG G is a perfect map (P-map) for a distribution P if 

I(P)I(G).
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Question: Is there a BN that is a 
perfect map for a given MN?
 The "diamond" MN

A

B D

C

© Eric Xing @ CMU, 2005-2014 3



 This MN does not have a perfect I-map as BN!

Question: Is there a BN that is a 
perfect map for a given MN?

A  C | {B,D}

B  D | {A,C}

A  C | {B,D}

B  D | A 

A  C | {B,D}

B  D

A

B D

C

A

B D

C

A

B D

C
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 V-structure example

A B

C

Question: Is there an MN that is a 
perfect I-map to a given BN?
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 V-structure has no equivalent in MNs! 

A  B

 (A  B | C)

A  B | C

 (A  B)

 (A  B |C)

 (A  B)

A B

C

A B

C

A B

C

Question: Is there an MN that is a 
perfect I-map to a given BN?
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 Also called chain graphs
 Nodes can be disjointly partitioned into several chain components
 An edge within the same chain component must be undirected
 An edge between two nodes in different chain components must be 

directed

Chain components:

{A}, {B}, {C,D,E},{F,G},{H}, {I}

Partially Directed Acyclic Graphs 
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 Investigated the relationship between BNs and MNs
 They represent different families of independence assumptions

 Not mentioned: Chain networks  superset of both BNs and 
MNs

 Why we care about this:
 BN and MN offer different semantics for designer to capture or expression 

(conditional) independences among variables
 Under certain condition BN can be represented as an MN and vice versa
 In the future, for certain operation (i.e., inference), we will be using a single 

representation as the “data structure” for which an algorithm can operate on.
 This makes algorithm design, and analysis of the algorithms simpler 

Summary
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Probabilistic Inference and 
Learning
 We now have compact representations of probability distributions:  

Graphical Models
 A GM M describes a unique probability distribution P

 Typical tasks:

 Task 1: How do we answer queries about PM, e.g., PM(X|Y) ?

 We use inference as a name for the process of computing answers to such 
queries

 Task 2: How do we estimate a plausible model M from data D?

i. We use learning as a name for the process of obtaining point estimate of M.

ii. But for Bayesian, they seek p(M |D), which is actually an inference problem.

iii. When not all variables are observable, even computing point estimate of M 
need to do inference to impute the missing data.
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Query 1: Likelihood
 Most of the queries one may ask involve evidence

 Evidence e is an assignment of values to a set E variables in the domain
 Without loss of generality E = { Xk+1, …, Xn }

 Simplest query: compute probability of evidence

 this is often referred to as computing the likelihood of  e
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Query 2: Conditional Probability
 Often we are interested in the conditional probability 

distribution of a variable given the evidence

 this is the a posteriori belief in X, given evidence e

 We usually query a subset Y of all domain variables 
X={Y,Z} and "don't care" about the remaining, Z:

 the process of summing out the "don't care" variables z is called 
marginalization, and the resulting P(y|e) is called a marginal prob.
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Applications of a posteriori Belief
 Prediction: what is the probability of an outcome given the starting 

condition

 the query node is a descendent of the evidence

 Diagnosis: what is the probability of disease/fault given symptoms

 the query node an ancestor of the evidence

 Learning under partial observation
 fill in the unobserved values under an "EM" setting (more later)

 The directionality of information flow between variables is not restricted 
by the directionality of the edges in a GM
 probabilistic inference can combine evidence form all parts of the network
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Example: Deep Belief Network
 Deep Belief Network (DBN) [Hinton et al., 2006]

 Generative model with multiple hidden layers
 Successful applications

 Recognizing handwritten digits
 Learning motion capture data
 Collaborative filtering
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 In this query we want to find the most probable joint 
assignment (MPA) for some variables of interest

 Such reasoning is usually performed under some given 
evidence e, and ignoring (the values of) other variables 
z :

 this is the maximum a posteriori configuration of y.

 
z

yy ezyeyeY )|,(maxarg)|(maxarg)|(MPA PP YY

Query 3: Most Probable 
Assignment
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Applications of MPA
 Classification 

 find most likely label, given the evidence

 Explanation 
 what is the most likely scenario, given the evidence

Cautionary note:

 The MPA of a variable depends on its "context"---the set 
of variables been jointly queried

 Example:
 MPA of Y1 ?
 MPA of (Y1, Y2) ?

y 1 y 2 P(y 1 ,y 2 )
0 0 0.35
0 1 0.05
1 0 0.3
1 1 0.3
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Thm:
Computing P(X = x | e) in a GM is NP-hard

 Hardness does not mean we cannot solve inference

 It implies that we cannot find a general procedure that works efficiently 
for arbitrary GMs

 For particular families of GMs, we can have provably efficient 
procedures

Complexity of Inference
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Approaches to inference
 Exact inference algorithms

 The elimination algorithm
 Message-passing algorithm (sum-product, belief propagation)
 The junction tree algorithms      

 Approximate inference techniques

 Stochastic simulation / sampling methods
 Markov chain Monte Carlo methods
 Variational algorithms
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 A signal transduction pathway:

 Query: P(e)

 By chain decomposition, we get
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)(
a naïve summation needs to 
enumerate over an 
exponential number of  terms

What is the likelihood that protein E is active?

Marginalization and Elimination
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Elimination on Chains

 Rearranging terms ...
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 Now we can perform innermost summation

 This summation "eliminates" one variable from our 
summation argument at a "local cost".
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Elimination on Chains
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X X

Elimination in Chains

 Rearranging and then summing again, we get
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 Eliminate nodes one by one all the way to the end, we get

 Complexity:
 Each step costs O(|Val(Xi)|*|Val(Xi+1)|) operations: O(kn2)
 Compare to naïve evaluation that sums over joint values of n-1 variables O(nk)

A B C ED
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X X X X

Elimination in Chains
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Hidden Markov Model

p(x, y) = p(x1……xT, y1, ……, yT) 
= p(y1) p(x1 | y1) p(y2 | y1) p(x2 | y2) … p(yT | yT-1) p(xT | yT)

Conditional probability:

A AA Ax2 x3x1 xT

y2 y3y1 yT... 

... 
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Hidden Markov Model

Conditional probability:

A AA Ax2 x3x1 xT

y2 y3y1 yT... 

... 
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 Rearranging terms ...

A B C ED

Undirected Chains
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Conditional Random Fields

Y1 Y2 Y5…

X1 … Xn
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The Sum-Product Operation
 In general, we can view the task at hand as that of computing 

the value of an expression of the form:

where F is a set of factors

 We call this task the sum-product inference task.


z F


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General idea:
 Write query in the form

 this suggests an "elimination order" of latent variables to be 
marginalized

 Iteratively

 Move all irrelevant terms outside of innermost sum
 Perform innermost sum, getting a new term
 Insert the new term into the product

 wrap-up
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Inference on General GM via 
Variable Elimination
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Outcome of elimination
 Let X be some set of variables, 

let F be a set of factors such that for each   F , Scope[ ]  X, 
let Y  X be a set of query variables, 
and let Z = X−Y be the variable to be eliminated

 The result of eliminating the variable Z is a factor

 This factor does not necessarily correspond to any probability or conditional 
probability in this network. (example forthcoming)
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Dealing with evidence
 Conditioning as a Sum-Product Operation

 The evidence potential:

 Total evidence potential:

 Introducing evidence --- restricted factors:
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The elimination algorithm
Procedure Elimination (

G, // the GM
E, // evidence
Z, // Set of variables to be eliminated
X, // query variable(s) 
)

1. Initialize (G)
2. Evidence (E)
3. Sum-Product-Elimination (F, Z, ≺)
4. Normalization (F)
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The elimination algorithm
Procedure Initialize (G, Z)
1. Let Z1, . . . ,Zk be an ordering of Z

such that Zi ≺ Zj iff i < j
2. Initialize F with the full the set of 

factors 

Procedure Evidence (E)
1. for each iE , 
F =F (Ei, ei)

Procedure Sum-Product-Variable-
Elimination (F, Z, ≺)

1. for i = 1, . . . , k
F← Sum-Product-Eliminate-Var(F, Zi)

2. ∗ ← F 
3. return ∗

4. Normalization (∗)
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The elimination algorithm
Procedure Normalization (∗)
1. P(X|E)=∗(X)/x∗(X)

Procedure Sum-Product-Eliminate-Var (
F, // Set of factors
Z // Variable to be eliminated
)

1. F ′ ← {  F : Z  Scope[]}
2. F ′′ ← F − F ′
 ←F ′ 
 ← Z 
5. return F ′′  {}

Procedure Initialize (G, Z)
1. Let Z1, . . . ,Zk be an ordering of Z

such that Zi ≺ Zj iff i < j
2. Initialize F with the full the set of 

factors 

Procedure Evidence (E)
1. for each iE , 
F =F (Ei, ei)

Procedure Sum-Product-Variable-
Elimination (F, Z, ≺)

1. for i = 1, . . . , k
F← Sum-Product-Eliminate-Var(F, Zi)

2. ∗ ← F 
3. return ∗

4. Normalization (∗)
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B A

DC

E F

G H

A food web

What is the probability that hawks are leaving given that the grass condition is poor?

A more complex network
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 Query: P(A |h)
 Need to eliminate: B,C,D,E,F,G,H

 Initial factors:

 Choose an elimination order: H,G,F,E,D,C,B

 Step 1: 
 Conditioning (fix the evidence node (i.e., h) on its observed value (i.e.,   )):

 This step is isomorphic to a marginalization step:

B A

DC

E F

G H

),|()|()|(),|()|()|()()( fehPegPafPdcePadPbcPbPaP

),|~(),( fehhpfemh 
h~
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h
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B A

DC

E F

G

Example: Variable Elimination
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 Query: P(B |h)
 Need to eliminate: B,C,D,E,F,G

 Initial factors:

 Step 2: Eliminate G
 compute

B A

DC

E F

G H
),()|()|(),|()|()|()()(

),|()|()|(),|()|()|()()(
femegPafPdcePadPbcPbPaP
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g
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h

hg
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

Example: Variable Elimination
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 Query: P(B |h)
 Need to eliminate: B,C,D,E,F

 Initial factors:

 Step 3: Eliminate F
 compute

B A

DC

E F

G H

Example: Variable Elimination
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B A

DC

E
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B A

DC

E

 Query: P(B |h)
 Need to eliminate: B,C,D,E

 Initial factors:

 Step 4: Eliminate E
 compute

B A

DC

E F

G H

Example: Variable Elimination
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 Query: P(B |h)
 Need to eliminate: B,C,D

 Initial factors:

 Step 5: Eliminate D
 compute

B A

DC

E F

G H

Example: Variable Elimination

),,()|()|()()(

),(),|()|()|()()(
),()|(),|()|()|()()(

),()|()|(),|()|()|()()(
),|()|()|(),|()|()|()()(

dcamadPbcPbPaP

eamdcePadPbcPbPaP
femafPdcePadPbcPbPaP

femegPafPdcePadPbcPbPaP
fehPegPafPdcePadPbcPbPaP

e

f

h

h








d

ed dcamadpcam ),,()|(),(

),()|()()( camdcPbPaP d

B A
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 Query: P(B |h)
 Need to eliminate: B,C

 Initial factors:

 Step 6: Eliminate C
 compute

B A

DC

E F

G H

Example: Variable Elimination
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 Query: P(B |h)
 Need to eliminate: B

 Initial factors:

 Step 7: Eliminate B
 compute

B A

DC

E F

G H

Example: Variable Elimination
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 Query: P(B |h)
 Need to eliminate: B

 Initial factors:

 Step 8: Wrap-up

B A

DC

E F

G H

Example: Variable Elimination
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 Suppose in one elimination step we compute

This requires 
 multiplications

 For each value for x, y1, …, yk, we do k multiplications

 additions
 For each value of y1, …, yk , we do |Val(X)| additions

Complexity is exponential in number of variables 
in the intermediate factor

Complexity of variable 
elimination
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i

Ci
Xk )Val()Val( Y
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i

Ci
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1
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 A graph elimination algorithm

moralization

B A

DC

E F

G H

B A

DC

E F

G H

B A

DC

B A

DC

E F

G

B A

DC

E F

B A

DC

E

B A

C

B A A

graph elimination

Understanding Variable 
Elimination
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Graph elimination
 Begin with the undirected GM or moralized BN

 Graph G(V, E) and elimination ordering I

 Eliminate next node in the ordering I
 Removing the node from the graph
 Connecting the remaining neighbors of the nodes

 The reconstituted graph G'(V, E')
 Retain the edges that were created during the elimination procedure
 The graph-theoretic property: the factors resulted during variable elimination are 

captured by recording the elimination clique
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 A graph elimination algorithm

 Intermediate terms correspond to the cliques resulted from 
elimination

moralization

B A

DC

E F

G H

B A

DC

E F

G H

B A

DC

B A

DC

E F

G

B A

DC

E F

B A

DC

E

B A

C

B A A

graph elimination

Understanding Variable 
Elimination

E F

H

A

E F

B A

C

E

G
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Elimination Cliques
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Graph elimination and 
marginalization
 Induced dependency during marginalization vs. elimination 

clique
 Summation <-> elimination
 Intermediate term <-> elimination clique
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A clique tree
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Complexity
 The overall complexity is determined by the number of the 

largest elimination clique

 What is the largest elimination clique? – a pure graph theoretic question

 Tree-width k: one less than the smallest achievable value of the cardinality of the 
largest elimination clique, ranging over all possible elimination ordering

 “good” elimination orderings lead to small cliques and hence reduce complexity 
(what will happen if we eliminate "e" first in the above graph?)

 Find the best elimination ordering of a graph --- NP-hard
 Inference is NP-hard

 But there often exist "obvious" optimal or near-opt elimination ordering  
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Examples
 Star

 Tree
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More example: Ising model
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Limitation of Procedure Elimination

 Limitation

B A

DC

E F

G H

B A

DC

E F

G H

B A

DC

B A

DC

E F

G

B A

DC

E F

B A

DC

E

B A

C

B A A

© Eric Xing @ CMU, 2005-2014 53



 Our algorithm so far answers only one query (e.g., on one node), do we 
need to do a complete elimination for every such query? 

 Elimination  message passing on a clique tree

 Messages can be reused
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From Elimination to Message 
Passing
 Our algorithm so far answers only one query (e.g., on one node), do we 

need to do a complete elimination for every such query? 

 Elimination  message passing on a clique tree
 Another query ...

 Messages mf and mh are reused, others need to be recomputed
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Summary
 The simple Eliminate algorithm captures the key algorithmic 

Operation underlying probabilistic inference:
--- That of taking a sum over product of potential functions

 What can we say about the overall computational complexity of the 
algorithm? In particular, how can we control the "size" of the 
summands that appear in the sequence of summation operation. 

 The computational complexity of the Eliminate algorithm can be 
reduced to purely graph-theoretic considerations. 

 This graph interpretation will also provide hints about how to design 
improved inference algorithm that overcome the limitation of 
Eliminate. 
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