
School of Computer Science

Probabilistic Graphical Models

Exact Inference:
Variable Elimination

Eric Xing
Lecture 4, January 27, 2014

Reading: KF-chap 9
E F

H

A

E F

B A

C

E

G

A

DC

E

A

DC

B A A

hm
gm

em
fm

bmcm

dm

E F

H

E F

H

E F

H

A

E F

A

E F

A

E F

B A

C

B A

C

B A

C

E

G

E

G

E

G

A

DC

E

A

DC

E

A

DC

E

A

DC

A

DC

B AB A AA

hm
gm

em
fm

bmcm

dm

hm
gm

em
fm

bmcm

dm

© Eric Xing @ CMU, 2005-2014 1

Recap:
 Defn: A DAG G is a perfect map (P-map) for a distribution P if

I(P)I(G).

© Eric Xing @ CMU, 2005-2014 2

Question: Is there a BN that is a
perfect map for a given MN?
 The "diamond" MN

A

B D

C

© Eric Xing @ CMU, 2005-2014 3

 This MN does not have a perfect I-map as BN!

Question: Is there a BN that is a
perfect map for a given MN?

A  C | {B,D}

B  D | {A,C}

A  C | {B,D}

B  D | A

A  C | {B,D}

B  D

A

B D

C

A

B D

C

A

B D

C

© Eric Xing @ CMU, 2005-2014 4

 V-structure example

A B

C

Question: Is there an MN that is a
perfect I-map to a given BN?

© Eric Xing @ CMU, 2005-2014 5

 V-structure has no equivalent in MNs!

A  B

 (A  B | C)

A  B | C

 (A  B)

 (A  B |C)

 (A  B)

A B

C

A B

C

A B

C

Question: Is there an MN that is a
perfect I-map to a given BN?

© Eric Xing @ CMU, 2005-2014 6

 Also called chain graphs
 Nodes can be disjointly partitioned into several chain components
 An edge within the same chain component must be undirected
 An edge between two nodes in different chain components must be

directed

Chain components:

{A}, {B}, {C,D,E},{F,G},{H}, {I}

Partially Directed Acyclic Graphs

© Eric Xing @ CMU, 2005-2014 7

 Investigated the relationship between BNs and MNs
 They represent different families of independence assumptions

 Not mentioned: Chain networks  superset of both BNs and
MNs

 Why we care about this:
 BN and MN offer different semantics for designer to capture or expression

(conditional) independences among variables
 Under certain condition BN can be represented as an MN and vice versa
 In the future, for certain operation (i.e., inference), we will be using a single

representation as the “data structure” for which an algorithm can operate on.
 This makes algorithm design, and analysis of the algorithms simpler

Summary

© Eric Xing @ CMU, 2005-2014 8

Probabilistic Inference and
Learning
 We now have compact representations of probability distributions:

Graphical Models
 A GM M describes a unique probability distribution P

 Typical tasks:

 Task 1: How do we answer queries about PM, e.g., PM(X|Y) ?

 We use inference as a name for the process of computing answers to such
queries

 Task 2: How do we estimate a plausible model M from data D?

i. We use learning as a name for the process of obtaining point estimate of M.

ii. But for Bayesian, they seek p(M |D), which is actually an inference problem.

iii. When not all variables are observable, even computing point estimate of M
need to do inference to impute the missing data.

© Eric Xing @ CMU, 2005-2014 9

 
1

1
x x

k
k

,,x,xPP)()(ee 

Query 1: Likelihood
 Most of the queries one may ask involve evidence

 Evidence e is an assignment of values to a set E variables in the domain
 Without loss of generality E = { Xk+1, …, Xn }

 Simplest query: compute probability of evidence

 this is often referred to as computing the likelihood of e

© Eric Xing @ CMU, 2005-2014 10

 


x
x,XP

X,P
P

X,PXP
)(

)(
)(

)()|(
e

e
e

ee

 
z

ezZYY)|()|(,PeP

Query 2: Conditional Probability
 Often we are interested in the conditional probability

distribution of a variable given the evidence

 this is the a posteriori belief in X, given evidence e

 We usually query a subset Y of all domain variables
X={Y,Z} and "don't care" about the remaining, Z:

 the process of summing out the "don't care" variables z is called
marginalization, and the resulting P(y|e) is called a marginal prob.

© Eric Xing @ CMU, 2005-2014 11

A CB

A CB

?

?

Applications of a posteriori Belief
 Prediction: what is the probability of an outcome given the starting

condition

 the query node is a descendent of the evidence

 Diagnosis: what is the probability of disease/fault given symptoms

 the query node an ancestor of the evidence

 Learning under partial observation
 fill in the unobserved values under an "EM" setting (more later)

 The directionality of information flow between variables is not restricted
by the directionality of the edges in a GM
 probabilistic inference can combine evidence form all parts of the network

© Eric Xing @ CMU, 2005-2014 12

2W

3W

1W

visible nodes (data)

V

H1

H2

H3

Example: Deep Belief Network
 Deep Belief Network (DBN) [Hinton et al., 2006]

 Generative model with multiple hidden layers
 Successful applications

 Recognizing handwritten digits
 Learning motion capture data
 Collaborative filtering

© Eric Xing @ CMU, 2005-2014 13

 In this query we want to find the most probable joint
assignment (MPA) for some variables of interest

 Such reasoning is usually performed under some given
evidence e, and ignoring (the values of) other variables
z :

 this is the maximum a posteriori configuration of y.

 
z

yy ezyeyeY)|,(maxarg)|(maxarg)|(MPA PP YY

Query 3: Most Probable
Assignment

© Eric Xing @ CMU, 2005-2014 14

Applications of MPA
 Classification

 find most likely label, given the evidence

 Explanation
 what is the most likely scenario, given the evidence

Cautionary note:

 The MPA of a variable depends on its "context"---the set
of variables been jointly queried

 Example:
 MPA of Y1 ?
 MPA of (Y1, Y2) ?

y 1 y 2 P(y 1 ,y 2)
0 0 0.35
0 1 0.05
1 0 0.3
1 1 0.3

© Eric Xing @ CMU, 2005-2014 15

Thm:
Computing P(X = x | e) in a GM is NP-hard

 Hardness does not mean we cannot solve inference

 It implies that we cannot find a general procedure that works efficiently
for arbitrary GMs

 For particular families of GMs, we can have provably efficient
procedures

Complexity of Inference

© Eric Xing @ CMU, 2005-2014 16

Approaches to inference
 Exact inference algorithms

 The elimination algorithm
 Message-passing algorithm (sum-product, belief propagation)
 The junction tree algorithms

 Approximate inference techniques

 Stochastic simulation / sampling methods
 Markov chain Monte Carlo methods
 Variational algorithms

© Eric Xing @ CMU, 2005-2014 17

 A signal transduction pathway:

 Query: P(e)

 By chain decomposition, we get

A B C ED









d c b a

d c b a

dePcdPbcPabPaP

e)P(a,b,c,d,eP

)|()|()|()|()(

)(
a naïve summation needs to
enumerate over an
exponential number of terms

What is the likelihood that protein E is active?

Marginalization and Elimination

© Eric Xing @ CMU, 2005-2014 18

A B C ED

 






d c b a

d c b a

abPaPdePcdPbcP

dePcdPbcPabPaPeP

)|()()|()|()|(

)|()|()|()|()()(

Elimination on Chains

 Rearranging terms ...

© Eric Xing @ CMU, 2005-2014 19

 Now we can perform innermost summation

 This summation "eliminates" one variable from our
summation argument at a "local cost".

A B C EDX



 




d c b

d c b a

bpdePcdPbcP

abPaPdePcdPbcPeP

)()|()|()|(

)|()()|()|()|()(

Elimination on Chains

© Eric Xing @ CMU, 2005-2014 20

A B C ED



 









d c

d c b

d c b

cpdePcdP

bpbcPdePcdP

bpdePcdPbcPeP

)()|()|(

)()|()|()|(

)()|()|()|()(

X X

Elimination in Chains

 Rearranging and then summing again, we get

© Eric Xing @ CMU, 2005-2014 21

 Eliminate nodes one by one all the way to the end, we get

 Complexity:
 Each step costs O(|Val(Xi)|*|Val(Xi+1)|) operations: O(kn2)
 Compare to naïve evaluation that sums over joint values of n-1 variables O(nk)

A B C ED


d

dpdePeP)()|()(

X X X X

Elimination in Chains

© Eric Xing @ CMU, 2005-2014 22

Hidden Markov Model

p(x, y) = p(x1……xT, y1, ……, yT)
= p(y1) p(x1 | y1) p(y2 | y1) p(x2 | y2) … p(yT | yT-1) p(xT | yT)

Conditional probability:

A AA Ax2 x3x1 xT

y2 y3y1 yT...

...

© Eric Xing @ CMU, 2005-2014 23

Hidden Markov Model

Conditional probability:

A AA Ax2 x3x1 xT

y2 y3y1 yT...

...

© Eric Xing @ CMU, 2005-2014 24

 Rearranging terms ...

A B C ED

Undirected Chains







 



d c b a

d c b a

abdecdbc
Z

decdbcab
Z

eP

),(),(),(),(

),(),(),(),()(





1

1

© Eric Xing @ CMU, 2005-2014 25

Conditional Random Fields

Y1 Y2 Y5…

X1 … Xn

© Eric Xing @ CMU, 2005-2014 26

The Sum-Product Operation
 In general, we can view the task at hand as that of computing

the value of an expression of the form:

where F is a set of factors

 We call this task the sum-product inference task.


z F



© Eric Xing @ CMU, 2005-2014 27

General idea:
 Write query in the form

 this suggests an "elimination order" of latent variables to be
marginalized

 Iteratively

 Move all irrelevant terms outside of innermost sum
 Perform innermost sum, getting a new term
 Insert the new term into the product

 wrap-up

 
nx

x x i
ii paxPXP

3 2

)|(),(1 e




1

1

1
1

x
X

XXP
),(

),()|(
e

ee




Inference on General GM via
Variable Elimination

© Eric Xing @ CMU, 2005-2014 28

Outcome of elimination
 Let X be some set of variables,

let F be a set of factors such that for each   F , Scope[]  X,
let Y  X be a set of query variables,
and let Z = X−Y be the variable to be eliminated

 The result of eliminating the variable Z is a factor

 This factor does not necessarily correspond to any probability or conditional
probability in this network. (example forthcoming)





z

Y
F

)(

© Eric Xing @ CMU, 2005-2014 29

Dealing with evidence
 Conditioning as a Sum-Product Operation

 The evidence potential:

 Total evidence potential:

 Introducing evidence --- restricted factors:









ii

ii
ii eE

eE
eE

 if 0
 if

),(
1







ez

eEeY
,

),(),(
F







E

eE
Ii

ii eE),(),(

© Eric Xing @ CMU, 2005-2014 30

The elimination algorithm
Procedure Elimination (

G, // the GM
E, // evidence
Z, // Set of variables to be eliminated
X, // query variable(s)
)

1. Initialize (G)
2. Evidence (E)
3. Sum-Product-Elimination (F, Z, ≺)
4. Normalization (F)

© Eric Xing @ CMU, 2005-2014 31

The elimination algorithm
Procedure Initialize (G, Z)
1. Let Z1, . . . ,Zk be an ordering of Z

such that Zi ≺ Zj iff i < j
2. Initialize F with the full the set of

factors

Procedure Evidence (E)
1. for each iE ,
F =F (Ei, ei)

Procedure Sum-Product-Variable-
Elimination (F, Z, ≺)

1. for i = 1, . . . , k
F← Sum-Product-Eliminate-Var(F, Zi)

2. ∗ ← F 
3. return ∗

4. Normalization (∗)
© Eric Xing @ CMU, 2005-2014 32

The elimination algorithm
Procedure Normalization (∗)
1. P(X|E)=∗(X)/x∗(X)

Procedure Sum-Product-Eliminate-Var (
F, // Set of factors
Z // Variable to be eliminated
)

1. F ′ ← {  F : Z  Scope[]}
2. F ′′ ← F − F ′
 ←F ′ 
 ← Z 
5. return F ′′  {}

Procedure Initialize (G, Z)
1. Let Z1, . . . ,Zk be an ordering of Z

such that Zi ≺ Zj iff i < j
2. Initialize F with the full the set of

factors

Procedure Evidence (E)
1. for each iE ,
F =F (Ei, ei)

Procedure Sum-Product-Variable-
Elimination (F, Z, ≺)

1. for i = 1, . . . , k
F← Sum-Product-Eliminate-Var(F, Zi)

2. ∗ ← F 
3. return ∗

4. Normalization (∗)
© Eric Xing @ CMU, 2005-2014 33

B A

DC

E F

G H

A food web

What is the probability that hawks are leaving given that the grass condition is poor?

A more complex network

© Eric Xing @ CMU, 2005-2014 34

 Query: P(A |h)
 Need to eliminate: B,C,D,E,F,G,H

 Initial factors:

 Choose an elimination order: H,G,F,E,D,C,B

 Step 1:
 Conditioning (fix the evidence node (i.e., h) on its observed value (i.e.,)):

 This step is isomorphic to a marginalization step:

B A

DC

E F

G H

),|()|()|(),|()|()|()()(fehPegPafPdcePadPbcPbPaP

),|~(),(fehhpfemh 
h~

 
h

h hhfehpfem)~(),|(),(

B A

DC

E F

G

Example: Variable Elimination

© Eric Xing @ CMU, 2005-2014 35

 Query: P(B |h)
 Need to eliminate: B,C,D,E,F,G

 Initial factors:

 Step 2: Eliminate G
 compute

B A

DC

E F

G H
),()|()|(),|()|()|()()(

),|()|()|(),|()|()|()()(
femegPafPdcePadPbcPbPaP

fehPegPafPdcePadPbcPbPaP

h

1)|()( 
g

g egpem
B A

DC

E F),()|(),|()|()|()()(

),()()|(),|()|()|()()(

femafPdcePadPbcPbPaP

fememafPdcePadPbcPbPaP

h

hg





Example: Variable Elimination

© Eric Xing @ CMU, 2005-2014 36

 Query: P(B |h)
 Need to eliminate: B,C,D,E,F

 Initial factors:

 Step 3: Eliminate F
 compute

B A

DC

E F

G H

Example: Variable Elimination

),()|(),|()|()|()()(
),()|()|(),|()|()|()()(

),|()|()|(),|()|()|()()(

femafPdcePadPbcPbPaP
femegPafPdcePadPbcPbPaP

fehPegPafPdcePadPbcPbPaP

h

h





f

hf femafpaem),()|(),(

),(),|()|()|()()(eamdcePadPbcPbPaP f

B A

DC

E

© Eric Xing @ CMU, 2005-2014 37

B A

DC

E

 Query: P(B |h)
 Need to eliminate: B,C,D,E

 Initial factors:

 Step 4: Eliminate E
 compute

B A

DC

E F

G H

Example: Variable Elimination

),(),|()|()|()()(
),()|(),|()|()|()()(

),()|()|(),|()|()|()()(
),|()|()|(),|()|()|()()(

eamdcePadPbcPbPaP
femafPdcePadPbcPbPaP

femegPafPdcePadPbcPbPaP
fehPegPafPdcePadPbcPbPaP

f

h

h






e

fe eamdcepdcam),(),|(),,(

),,()|()|()()(dcamadPbcPbPaP e

B A

DC

© Eric Xing @ CMU, 2005-2014 38

 Query: P(B |h)
 Need to eliminate: B,C,D

 Initial factors:

 Step 5: Eliminate D
 compute

B A

DC

E F

G H

Example: Variable Elimination

),,()|()|()()(

),(),|()|()|()()(
),()|(),|()|()|()()(

),()|()|(),|()|()|()()(
),|()|()|(),|()|()|()()(

dcamadPbcPbPaP

eamdcePadPbcPbPaP
femafPdcePadPbcPbPaP

femegPafPdcePadPbcPbPaP
fehPegPafPdcePadPbcPbPaP

e

f

h

h








d

ed dcamadpcam),,()|(),(

),()|()()(camdcPbPaP d

B A

C

© Eric Xing @ CMU, 2005-2014 39

 Query: P(B |h)
 Need to eliminate: B,C

 Initial factors:

 Step 6: Eliminate C
 compute

B A

DC

E F

G H

Example: Variable Elimination

),()|()()(camdcPbPaP d


c

dc cambcpbam),()|(),(

),()|()()(
),,()|()|()()(

),(),|()|()|()()(
),()|(),|()|()|()()(

),()|()|(),|()|()|()()(
),|()|()|(),|()|()|()()(

camdcPbPaP
dcamadPdcPbPaP

eamdcePadPdcPbPaP
femafPdcePadPdcPbPaP

femegPafPdcePadPdcPbPaP
fehPegPafPdcePadPdcPbPaP

d

e

f

h

h








B A

© Eric Xing @ CMU, 2005-2014 40

 Query: P(B |h)
 Need to eliminate: B

 Initial factors:

 Step 7: Eliminate B
 compute

B A

DC

E F

G H

Example: Variable Elimination

),()()(
),()|()()(

),,()|()|()()(

),(),|()|()|()()(
),()|(),|()|()|()()(

),()|()|(),|()|()|()()(
),|()|()|(),|()|()|()()(

bambPaP
camdcPbPaP

dcamadPdcPbPaP

eamdcePadPdcPbPaP
femafPdcePadPdcPbPaP

femegPafPdcePadPdcPbPaP
fehPegPafPdcePadPdcPbPaP

c

d

e

f

h

h










b

cb bambpam),()()(

)()(amaP b

A

© Eric Xing @ CMU, 2005-2014 41

 Query: P(B |h)
 Need to eliminate: B

 Initial factors:

 Step 8: Wrap-up

B A

DC

E F

G H

Example: Variable Elimination

)()(
),()()(

),()|()()(
),,()|()|()()(

),(),|()|()|()()(
),()|(),|()|()|()()(

),()|()|(),|()|()|()()(
),|()|()|(),|()|()|()()(

amaP
bambPaP

camdcPbPaP
dcamadPdcPbPaP

eamdcePadPdcPbPaP
femafPdcePadPdcPbPaP

femegPafPdcePadPdcPbPaP
fehPegPafPdcePadPdcPbPaP

b

c

d

e

f

h

h










,)()()~,(amaphap b




a
b

b

amap
amaphaP

)()(
)()()~|(


a

b amaphp)()()~(

© Eric Xing @ CMU, 2005-2014 42

 Suppose in one elimination step we compute

This requires
 multiplications

 For each value for x, y1, …, yk, we do k multiplications

 additions
 For each value of y1, …, yk , we do |Val(X)| additions

Complexity is exponential in number of variables
in the intermediate factor

Complexity of variable
elimination


i

Ci
Xk)Val()Val(Y


i

Ci
X)Val()Val(Y


x

kxkx yyxmyym),,,('),,(11 





k

i
cikx i

xmyyxm
1

1),(),,,(' y

© Eric Xing @ CMU, 2005-2014 43

 A graph elimination algorithm

moralization

B A

DC

E F

G H

B A

DC

E F

G H

B A

DC

B A

DC

E F

G

B A

DC

E F

B A

DC

E

B A

C

B A A

graph elimination

Understanding Variable
Elimination

© Eric Xing @ CMU, 2005-2014 44

Graph elimination
 Begin with the undirected GM or moralized BN

 Graph G(V, E) and elimination ordering I

 Eliminate next node in the ordering I
 Removing the node from the graph
 Connecting the remaining neighbors of the nodes

 The reconstituted graph G'(V, E')
 Retain the edges that were created during the elimination procedure
 The graph-theoretic property: the factors resulted during variable elimination are

captured by recording the elimination clique

© Eric Xing @ CMU, 2005-2014 45

 A graph elimination algorithm

 Intermediate terms correspond to the cliques resulted from
elimination

moralization

B A

DC

E F

G H

B A

DC

E F

G H

B A

DC

B A

DC

E F

G

B A

DC

E F

B A

DC

E

B A

C

B A A

graph elimination

Understanding Variable
Elimination

E F

H

A

E F

B A

C

E

G

A

DC

E

A

DC

B A A

© Eric Xing @ CMU, 2005-2014 46

Elimination Cliques

B A

DC

E F

G H

B A

DC

E F

G H

B A

DC

E F

G

B A

DC

E F

G H

B A

DC

B A

DC

E F

B A

DC

E

B A

C

B A A

),(femh)(emg),(aem f),,(dcame

),(camd),(bamc)(amb

© Eric Xing @ CMU, 2005-2014 47

Graph elimination and
marginalization
 Induced dependency during marginalization vs. elimination

clique
 Summation <-> elimination
 Intermediate term <-> elimination clique

E F

H

A

E F

B A

C

E

G

A

DC

E

A

DC

B A A

)()(
),()()(

),()|()()(
),,()|()|()()(

),(),|()|()|()()(
),()|(),|()|()|()()(

),()|()|(),|()|()|()()(
),|()|()|(),|()|()|()()(

amaP
bambPaP

camdcPbPaP
dcamadPdcPbPaP

eamdcePadPdcPbPaP
femafPdcePadPdcPbPaP

femegPafPdcePadPdcPbPaP
fehPegPafPdcePadPdcPbPaP

b

c

d

e

f

h

h










© Eric Xing @ CMU, 2005-2014 48

A clique tree

E F

H

A

E F

B A

C

E

G

A

DC

E

A

DC

B A A

hm
gm

em
fm

bmcm

dm


e

fg

e

eamemdcep
dcam

),()(),|(
),,(

© Eric Xing @ CMU, 2005-2014 49

Complexity
 The overall complexity is determined by the number of the

largest elimination clique

 What is the largest elimination clique? – a pure graph theoretic question

 Tree-width k: one less than the smallest achievable value of the cardinality of the
largest elimination clique, ranging over all possible elimination ordering

 “good” elimination orderings lead to small cliques and hence reduce complexity
(what will happen if we eliminate "e" first in the above graph?)

 Find the best elimination ordering of a graph --- NP-hard
 Inference is NP-hard

 But there often exist "obvious" optimal or near-opt elimination ordering

© Eric Xing @ CMU, 2005-2014 50

Examples
 Star

 Tree

© Eric Xing @ CMU, 2005-2014 51

More example: Ising model

© Eric Xing @ CMU, 2005-2014 52

Limitation of Procedure Elimination

 Limitation

B A

DC

E F

G H

B A

DC

E F

G H

B A

DC

B A

DC

E F

G

B A

DC

E F

B A

DC

E

B A

C

B A A

© Eric Xing @ CMU, 2005-2014 53

 Our algorithm so far answers only one query (e.g., on one node), do we
need to do a complete elimination for every such query?

 Elimination  message passing on a clique tree

 Messages can be reused

E F

H

A

E F

B A

C

E

G

A

DC

E

A

DC

B A A

hm
gm

em
fm

bmcm

dm

B A

DC

E F

G H

B A

DC

E F

G H

B A

DC

B A

DC

E F

G

B A

DC

E F

B A

DC

E

B A

C

B A A



From Elimination to Message
Passing


e

fg

e

eamemdcep
dcam

),()(),|(
),,(

© Eric Xing @ CMU, 2005-2014 54

E F

H

A

E F

B A

C

E

G

A

DC

E

A

DC

B A A

cm bm

gm

em

dm
fm

hm

From Elimination to Message
Passing
 Our algorithm so far answers only one query (e.g., on one node), do we

need to do a complete elimination for every such query?

 Elimination  message passing on a clique tree
 Another query ...

 Messages mf and mh are reused, others need to be recomputed
© Eric Xing @ CMU, 2005-2014 55

Summary
 The simple Eliminate algorithm captures the key algorithmic

Operation underlying probabilistic inference:
--- That of taking a sum over product of potential functions

 What can we say about the overall computational complexity of the
algorithm? In particular, how can we control the "size" of the
summands that appear in the sequence of summation operation.

 The computational complexity of the Eliminate algorithm can be
reduced to purely graph-theoretic considerations.

 This graph interpretation will also provide hints about how to design
improved inference algorithm that overcome the limitation of
Eliminate.

© Eric Xing @ CMU, 2005-2014 56

