

Probabilistic Graphical Models

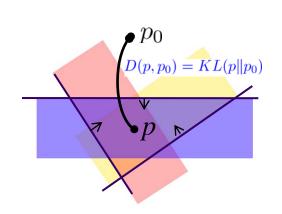
Posterior Regularization: an integrative paradigm for learning GMs

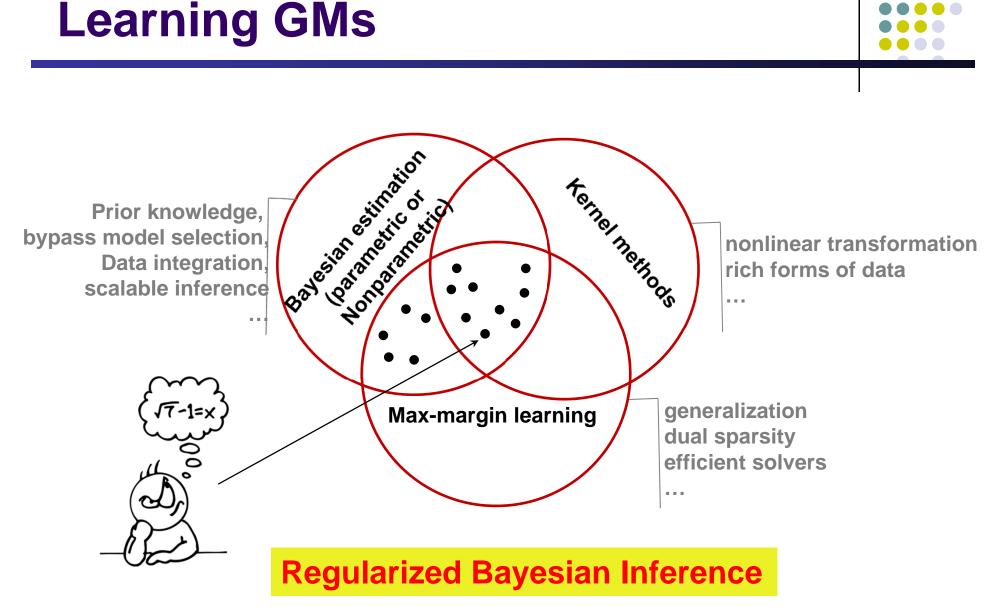
Eric Xing (courtesy to Jun Zhu)

Lecture 29, April 30, 2014

Reading:

© Eric Xing @ CMU, 2005-2014





© Eric Xing @ CMU, 2005-2014

Bayesian Inference

$$p(\mathcal{M}|\mathbf{x}) = \frac{p(\mathbf{x}|\mathcal{M})\pi(\mathcal{M})}{\int p(\mathbf{x}|\mathcal{M})\pi(\mathcal{M})d\mathcal{M}}$$

- *M*: a model from some hypothesis space
- x: observed data

Thomas Bayes (1702 - 1761)

 Bayes' rule offers a mathematically rigorous computational mechanism for combining prior knowledge with incoming evidence

Parametric Bayesian Inference

 ${\cal M}$ is represented as a finite set of parameters $\, heta$

- A parametric likelihood: $\mathbf{x} \sim p(\cdot|\theta)$
- Prior on θ : $\pi(\theta)$
- Posterior distribution

$$p(\theta|\mathbf{x}) = \frac{p(\mathbf{x}|\theta)\pi(\theta)}{\int p(\mathbf{x}|\theta)\pi(\theta)d\theta} \propto p(\mathbf{x}|\theta)\pi(\theta)$$

Examples:

- Gaussian distribution prior + 2D Gaussian likelihood → Gaussian posterior distribution
- Dirichilet distribution prior + 2D Multinomial likelihood → Dirichlet posterior distribution
- Sparsity-inducing priors + some likelihood models → Sparse Bayesian inference

Nonparametric Bayesian Inference

 \mathcal{M} is a richer model, e.g., with an infinite set of parameters

- A nonparametric likelihood: $\mathbf{x} \sim p(\cdot | \mathcal{M})$
- Prior on \mathcal{M} : $\pi(\mathcal{M})$
- Posterior distribution

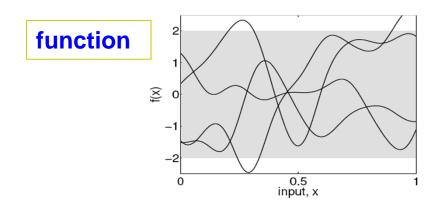
$$p(\mathcal{M}|\mathbf{x}) = \frac{p(\mathbf{x}|\mathcal{M})\pi(\mathcal{M})}{\int p(\mathbf{x}|\mathcal{M})\pi(\mathcal{M})d\mathcal{M}} \propto p(\mathbf{x}|\mathcal{M})\pi(\mathcal{M})$$

 \rightarrow see next slide

Nonparametric Bayesian Inference

Dirichlet Process Prior [Antoniak, 1974] + Multinomial/Gaussian/Softmax likelihood Indian Buffet Process Prior [Griffiths & Gharamani, 2005] + Gaussian/Sigmoid/Softmax likelihood

 ∞

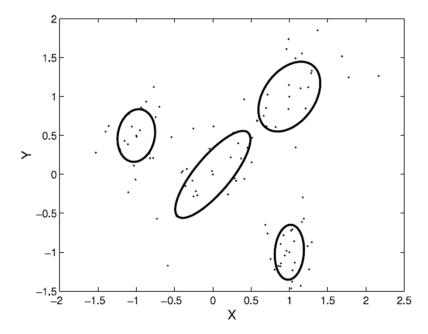


Gaussian Process Prior [Doob, 1944; Rasmussen & Williams, 2006] + Gaussian/Sigmoid/Softmax likelihood

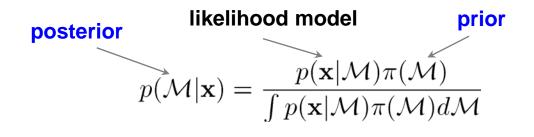
© Eric Xing @ CMU, 2005-2014

Why Bayesian Nonparametrics?

- Let the data speak for themselves
- Bypass the model selection problem
 - let data determine model complexity (e.g., the number of components in mixture models)
 - allow model complexity to grow as more data observed



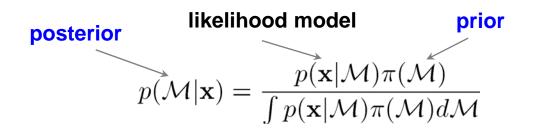
Can we further control the posterior distributions?



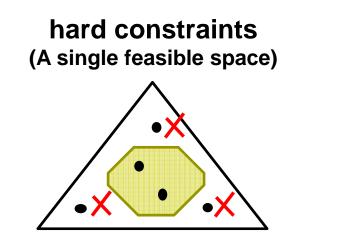
It is desirable to further regularize the posterior distribution

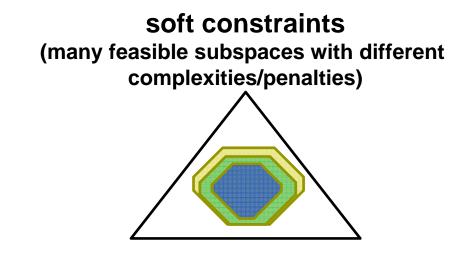
- An extra freedom to perform Bayesian inference
- Arguably more direct to control the behavior of models
- Can be easier and more natural in some examples

Can we further control the posterior distributions?

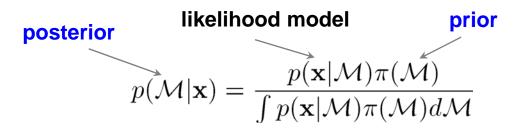


- Directly control the posterior distributions?
 - Not obvious how ...





A reformulation of Bayesian inference



• Bayes' rule is equivalent to:

$$\begin{array}{ll} \min_{p(\mathcal{M})} & \mathrm{KL}(p(\mathcal{M}) \| \pi(\mathcal{M})) - \mathbb{E}_{p(\mathcal{M})}[\log p(\mathbf{x}|\mathcal{M})] \\ \mathrm{s.t.}: & p(\mathcal{M}) \in \mathcal{P}_{\mathrm{prob}}, \\ & \swarrow \end{array}$$
A direct but trivial constraint on the posterior distribution

E.T. Jaynes (1988): "this fresh interpretation of Bayes' theorem could make the use of Bayesian methods more attractive and widespread, and stimulate new developments in the general theory of inference"

[Zellner, Am. Stat. 1988]

Regularized Bayesian Inference

$$\inf_{\substack{q(\mathbf{M}), \boldsymbol{\xi} \\ \text{s.t.} : q(\mathbf{M}) \in \mathcal{P}_{\text{post}}(\boldsymbol{\xi}),}} \operatorname{KL}(q(\mathbf{M}) \| \pi(\mathbf{M})) - \int_{\mathcal{M}} \log p(\mathcal{D} | \mathbf{M}) q(\mathbf{M}) d\mathbf{M} + U(\boldsymbol{\xi})$$

where, **e.x.**,

$$\mathcal{P}_{\text{post}}(\boldsymbol{\xi}) \stackrel{\text{def}}{=} \Big\{ q(\mathbf{M}) | \ \forall t = 1, \cdots, T, \ h\big(Eq(\psi_t; \mathcal{D}) \big) \leq \xi_t \Big\},\$$

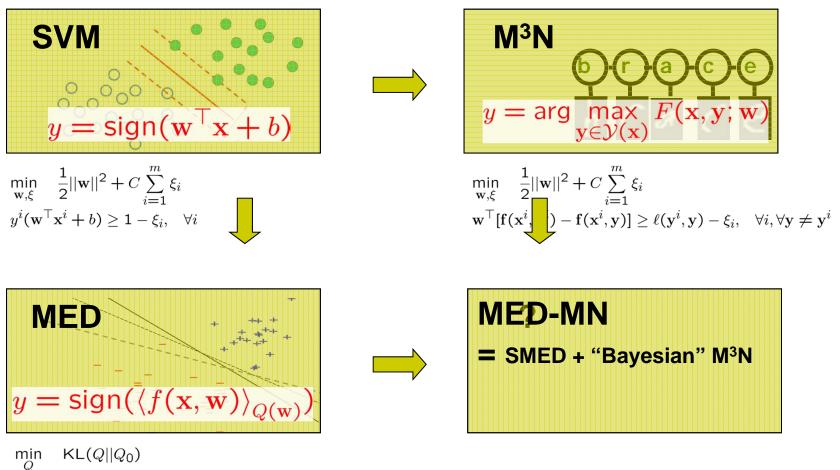
and

$$U(\boldsymbol{\xi}) = \sum_{t=1}^{T} \mathbb{I}(\xi_t = \gamma_t) = \mathbb{I}(\boldsymbol{\xi} = \gamma)$$

Solving such constrained optimization problem needs convex duality theory

So, where does the constraints come from?

Recall our evolution of the Max-Margin Learning Paradigms



Maximum Entropy Discrimination Markov Networks

• Structured MaxEnt Discrimination (SMED):

P1:
$$\min_{p(\mathbf{w}),\xi} KL(p(\mathbf{w})||p_0(\mathbf{w})) + U(\xi)$$

s.t. $p(\mathbf{w}) \in \mathcal{F}_1, \ \xi_i \ge 0, \forall i.$

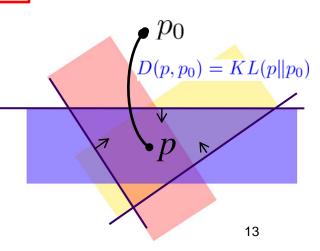
generalized maximum entropy or regularized KL-divergence

• Feasible subspace of weight distribution:

 $\mathcal{F}_1 = \{ p(\mathbf{w}) : \int p(\mathbf{w}) [\Delta F_i(\mathbf{y}; \mathbf{w}) - \Delta \ell_i(\mathbf{y})] \, \mathrm{d}\mathbf{w} \ge -\xi_i, \, \forall i, \forall \mathbf{y} \neq \mathbf{y}^i \},\$

expected margin constraints.

• Average from distribution of M³Ns $h_1(\mathbf{x}; p(\mathbf{w})) = \arg \max_{\mathbf{v} \in \mathcal{V}(\mathbf{x})} \int p(\mathbf{w}) F(\mathbf{x}, \mathbf{y}; \mathbf{w}) d\mathbf{w}$



Can we use this scheme to learn models other than MN?

Recall the 3 advantages of MEDN

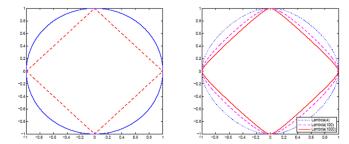
• An averaging Model: PAC-Bayesian prediction error guarantee (Theorem 3)

 $\Pr_Q(M(h, \mathbf{x}, \mathbf{y}) \le 0) \le \Pr_\mathcal{D}(M(h, \mathbf{x}, \mathbf{y}) \le \gamma) + O\left(\sqrt{\frac{\gamma^{-2} K L(p||p_0) \ln(N|\mathcal{Y}|) + \ln N + \ln \delta^{-1}}{N}}\right)$

- Entropy regularization: Introducing useful biases
 - Standard Normal prior => reduction to standard M³N (we've seen it)
 - Laplace prior => Posterior shrinkage effects (sparse M³N)

$$\min_{\mu,\xi} \sqrt{\lambda} \sum_{k=1}^{K} \left(\sqrt{\mu_k^2 + \frac{1}{\lambda}} - \frac{1}{\sqrt{\lambda}} \log \frac{\sqrt{\lambda \mu_k^2 + 1} + 1}{2} \right) + C \sum_{i=1}^{N} \xi_i$$

s.t. $\mu^{\mathsf{T}} \Delta \mathbf{f}_i(\mathbf{y}) \ge \Delta \ell_i(\mathbf{y}) - \xi_i; \ \xi_i \ge 0, \ \forall i, \ \forall \mathbf{y} \neq \mathbf{y}^i.$

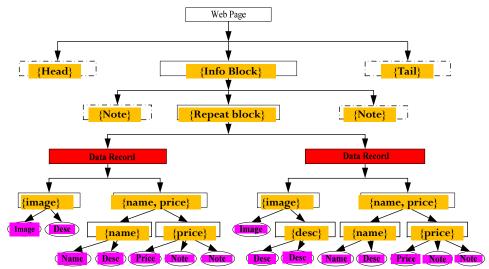


- Integrating Generative and Discriminative principles (next class)
 - Incorporate latent variables and structures (PoMEN)
 - Semisupervised learning (with partially labeled data)

Latent Hierarchical MaxEnDNet

- Web data extraction
 - Goal: Name, Image, Price, Description, etc.

- Hierarchical labeling
- Advantages:
 - Computational efficiency
 - Long-range dependency
 - Joint extraction



© Eric Xing @ CMU, 2005-2014

Partially Observed MaxEnDNet (PoMEN) (Zhu et al, NIPS 2008)

- Now we are given partially labeled data:
 - PoMEN: learning $p(\mathbf{w}, \mathbf{z})$

P2(PoMEN): $\min_{\substack{p(\mathbf{w}, \{\mathbf{z}\}), \xi}} KL(p(\mathbf{w}, \{\mathbf{z}\}) || p_0(\mathbf{w}, \{\mathbf{z}\})) + U(\xi)$ s.t. $p(\mathbf{w}, \{\mathbf{z}\}) \in \mathcal{F}_2, \ \xi_i \ge 0, \forall i.$

$$\mathcal{F}_{2} = \left\{ p(\mathbf{w}, \{\mathbf{z}\}) : \sum_{\mathbf{z}} \int p(\mathbf{w}, \mathbf{z}) [\Delta F_{i}(\mathbf{y}, \mathbf{z}; \mathbf{w}) - \Delta \ell_{i}(\mathbf{y})] \, \mathrm{d}\mathbf{w} \geq -\xi_{i}, \, \forall i, \forall \mathbf{y} \neq \mathbf{y}^{i} \right\},\$$

• Prediction:
$$h_2(\mathbf{x}) = \arg \max_{\mathbf{y} \in \mathcal{Y}(\mathbf{x})} \sum_{\mathbf{z}} \int p(\mathbf{w}, \mathbf{z}) F(\mathbf{x}, \mathbf{y}, \mathbf{z}; \mathbf{w}) \, \mathrm{d}\mathbf{w}$$

 $\mathcal{D} = \{\langle \mathbf{x}^i, \mathbf{y}^i, \mathbf{z}^i \rangle\}_{i=1}^N$

Alternating Minimization Alg.

• Factorization assumption:

$$p_0(\mathbf{w}, \{\mathbf{z}\}) = p_0(\mathbf{w}) \prod_{i=1}^N p_0(\mathbf{z}_i)$$

$$p(\mathbf{w}, \{\mathbf{z}\}) = p(\mathbf{w}) \prod_{i=1}^{n} p(\mathbf{z}_i)$$

 $p(\mathbf{w})$

N

- Alternating minimization:
 - Step 1: keep $p(\mathbf{z})$ fixed, optimize over $\min_{p(\mathbf{w}),\xi} KL(p(\mathbf{w})||p_0(\mathbf{w})) + C\sum_i \xi_i$ s.t. $p(\mathbf{w}) \in \mathcal{F}'_1, \ \xi_i \ge 0, \forall i.$

$$\mathcal{F}_{1}' = \{p(\mathbf{w}): \int p(\mathbf{w}) E_{p(\mathbf{z})}[\Delta F_{i}(\mathbf{y}, \mathbf{z}; \mathbf{w}) - \Delta \ell_{i}(\mathbf{y})] \, \mathrm{d}\mathbf{w} \geq -\xi_{i}, \ \forall i, \ \forall \mathbf{y}\}$$

• Step 2: keep $p(\mathbf{w})$ fixed, optimize over $p(\mathbf{z})$

$$\min_{\substack{p(\mathbf{w}),\xi}} KL(p(\mathbf{z})||p_0(\mathbf{z})) + C\xi_i$$

s.t. $p(\mathbf{z}) \in \mathcal{F}_1^{\star}, \ \xi_i \ge 0.$

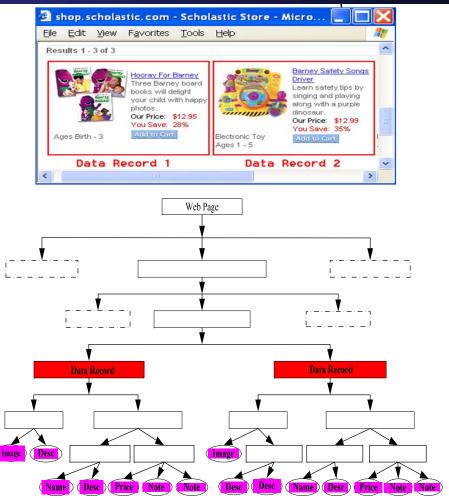
$$\mathcal{F}_{1}^{\star} = \{ p(\mathbf{z}) : \sum_{\mathbf{z}} p(\mathbf{z}) \int p(\mathbf{w}) [\Delta F_{i}(\mathbf{y}, \mathbf{z}; \mathbf{w}) - \Delta \ell_{i}(\mathbf{y})] \, \mathrm{d}\mathbf{w} \geq -\xi_{i}, \ \forall i, \ \forall \mathbf{y} \}$$

Normal prior
M³N problem (QP)
Laplace prior
Laplace M³N problem (VB)

Equivalently reduced to an LP with a polynomial number of constraints

Experimental Results

- Web data extraction:
 - Name, Image, Price, Description
 - Methods:
 - Hierarchical CRFs, Hierarchical M^3N
 - PoMEN, Partially observed HCRFs
 - Pages from 37 templates
 - Training: 185 (5/per template) pages, or 1585 data records
 - Testing: 370 (10/per template) pages, or 3391 data records
 - Record-level Evaluation
 - Leaf nodes are labeled
 - Page-level Evaluation
 - Supervision Level 1:
 - Leaf nodes and data record nodes are labeled
 - Supervision Level 2:
 - Level 1 + the nodes above data
 record nodes



Record-Level Evaluations

- Avg F1:
 - avg F1 over all attributes
- Block instance accuracy:
 - % of records whose Name, Image, and Price are correct
- Attribute performance:

0.9

0.85

0.8

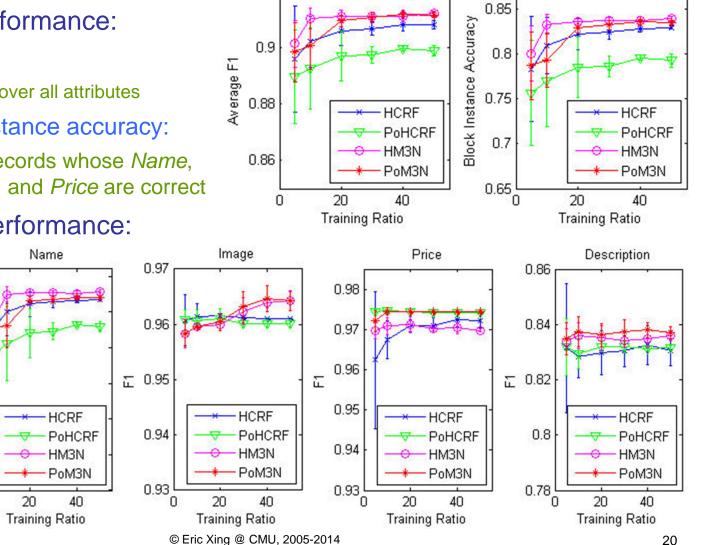
0.7

0.65

0.6

n

L 0.75

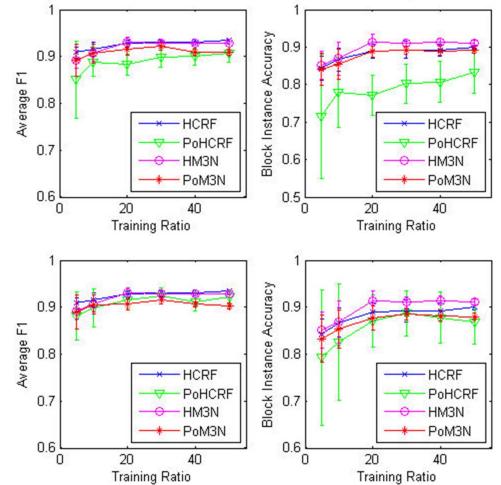


0.92

Page-Level Evaluations

- Supervision Level 1:
 - Leaf nodes and data record nodes are labeled

- Supervision Level 2:
 - Level 1 + the nodes above data record nodes



4/29/2014

Key message from PoMEN

- Structured MaxEnt Discrimination (SMED):
 - P1: $\min_{p(\mathbf{w},\mathbf{z}),\xi} KL(p(\mathbf{w},\mathbf{z})||p_0(\mathbf{w},\mathbf{z})) + U(\xi)$
 - s.t. $p(\mathbf{w}, \mathbf{z}) \in \mathcal{F}_1, \ \xi_i \ge 0, \forall i.$

generalized maximum entropy or regularized KL-divergence

• Feasible subspace of weight distribution:

 $\mathcal{F} = \{ p(\mathbf{w}, \mathbf{z}) : \iint p(\mathbf{w}, \mathbf{z}) [\Delta F_i(\mathbf{y}; \mathbf{w}, \mathbf{z}) - \Delta \ell_i(\mathbf{y})] \, \mathrm{d}\mathbf{w} \mathrm{d}\mathbf{z} \ge -\xi_i, \, \forall i, \forall \mathbf{y} \neq \mathbf{y}^i \},$

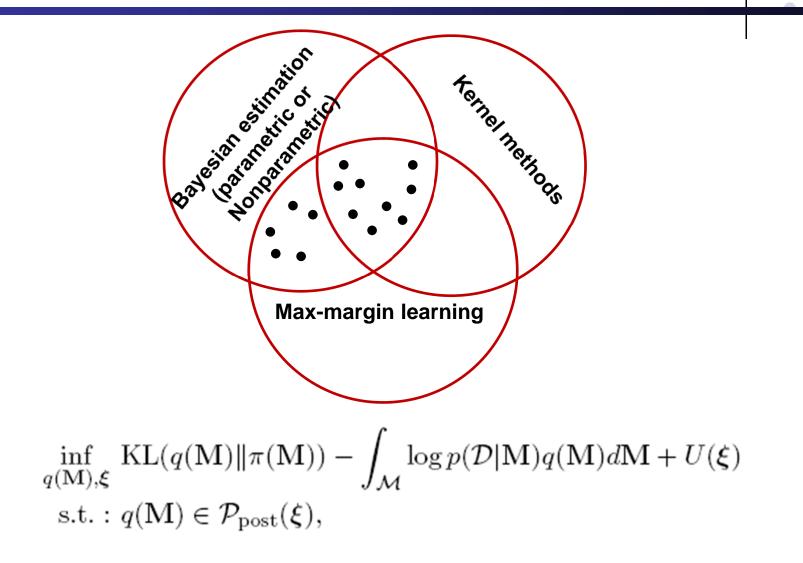
expected margin constraints.

- Average from distribution of PoMENs $h(\mathbf{x}) = \arg \max_{\mathbf{y} \in \mathcal{Y}(\mathbf{x})} \int \int p(\mathbf{w}, \mathbf{z}) F(\mathbf{x}, \mathbf{y}, \mathbf{z}; \mathbf{w}) \, \mathrm{d}\mathbf{w} \mathrm{d}\mathbf{z}$
- We can use this for any p and p_0 !

 $D(p, p_0) = KL(p||p_0)$

 p_0

An all inclusive paradigm for learning general GM --- RegBayes



Predictive Latent Subspace Learning via a large-margin approach

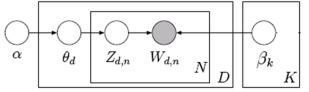
... where M is any subspace model and p is a parametric Bayesian prior

Unsupervised Latent Subspace Discovery

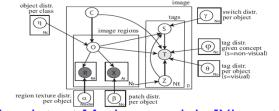
- Finding latent subspace representations (an old topic)
 - Mapping a high-dimensional representation into a latent low-dimensional representation, where each dimension can have some interpretable meaning, e.g., a semantic topic

• Examples:

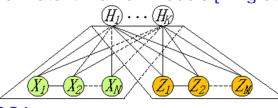
• Topic models (aka LDA) [Blei et al 2003]



• Total scene latent space models [Li et al 2009]

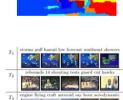


Multi-view latent Markov models [Xing et al 2005]



Athlete Horse Grass Trees

Sky Saddle \Rightarrow



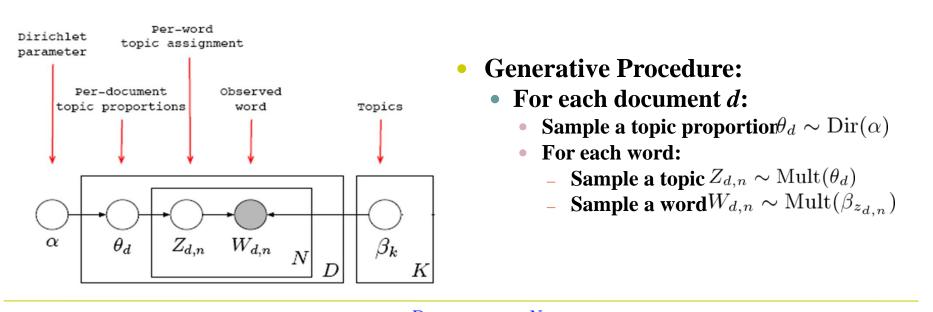
• PCA, CCA, ...

Predictive Subspace Learning with Supervision

- Unsupervised latent subspace representations are generic but can be suboptimal for predictions
- Many datasets are available with supervised side information

- Flickr (<u>http://www.flickr.com/</u>)
- Can be noisy, but not random noise (Ames & Naaman, 2007)
 - labels & rating scores are usually assigned based on some intrinsic property of the data
 - helpful to suppress noise and capture the most useful aspects of the data
- Goals:
 - Discover latent subspace representations that are both *predictive* and *interpretable* by exploring weak supervision information

© Eric Xing @ CMU, 2005-2014



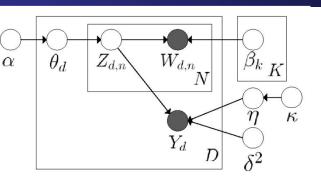
- Joint Distribution: $p(\theta, \mathbf{z}, \mathbf{W} | \alpha, \beta) = \prod_{d=1}^{D} p(\theta_d | \alpha) (\prod_{n=1}^{N} p(z_{dn} | \theta_d) p(w_{dn} | z_{dn}, \beta))$ exact inference intractable!
- Variational Inference with $q(\mathbf{z}, \theta) \sim p(\mathbf{z}, \theta | \mathbf{W}, \alpha, \beta)$

$$\mathcal{L}(q) \triangleq -E_q[\log p(\theta, \mathbf{z}, \mathbf{W} | \alpha, \beta)] - \mathcal{H}(q(\mathbf{z}, \theta)) \ge -\log p(\mathbf{W} | \alpha, \beta)$$

• Minimize the variational bound to estimate parameters and infer the posterior distribution

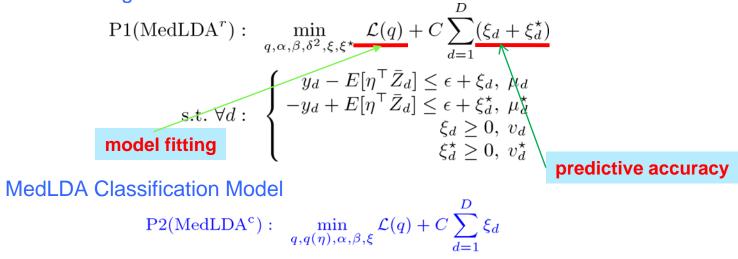
Maximum Entropy Discrimination LDA (MedLDA) (Zhu et al, ICML 2009)

• Bayesian sLDA:



• MED Estimation:

MedLDA Regression Model

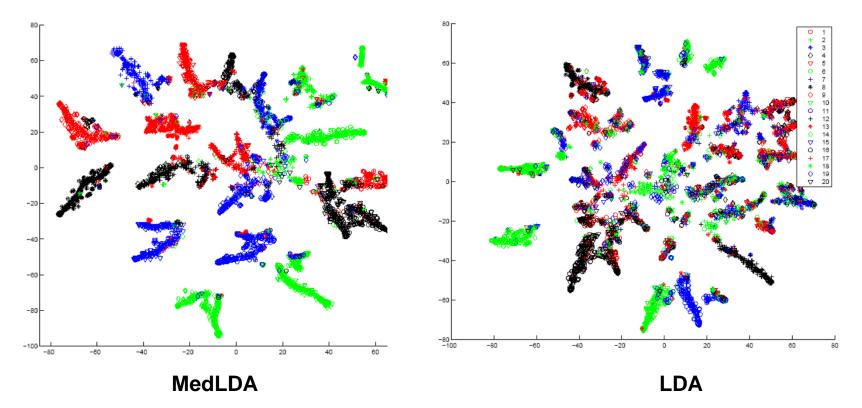


s.t. $\forall d, y \neq y_d$: $E[\eta^{\top} \Delta \mathbf{f}_d(y)] \ge 1 - \xi_d; \xi_d \ge 0.$

© Eric Xing @ CMU, 2005-2014

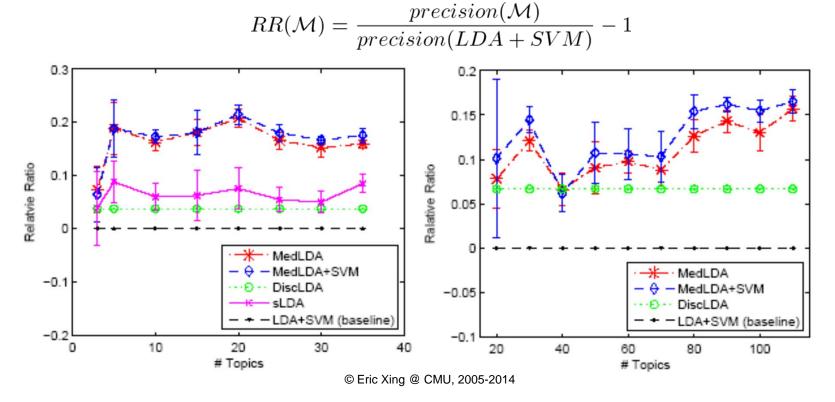
Document Modeling

- Data Set: 20 Newsgroups
- 110 topics + 2D embedding with t-SNE (var der Maaten & Hinton. 2008)



Classification

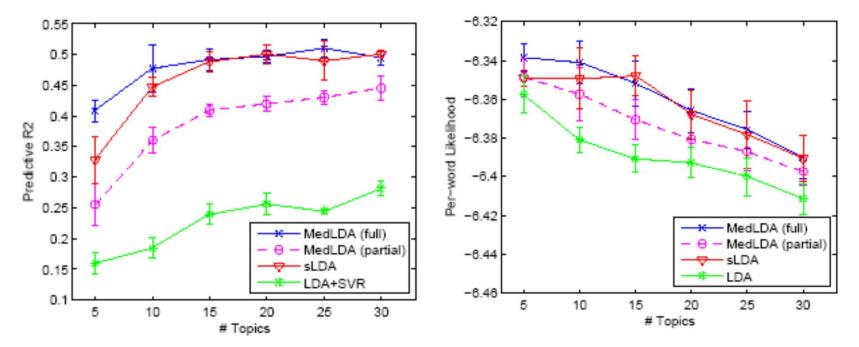
- Binary classification: "alt.atheism" and "talk.religion.misc" (Simon et al., 2008)
 Multiclass Classification: all the 20 categories
- **Models**: DiscLDA, sLDA (Binary ONLY! Classification sLDA (Wang et al., 2009)), LDA+SVM (baseline), MedLDA, MedLDA+SVM
- Measure: Relative Improvement Ratio



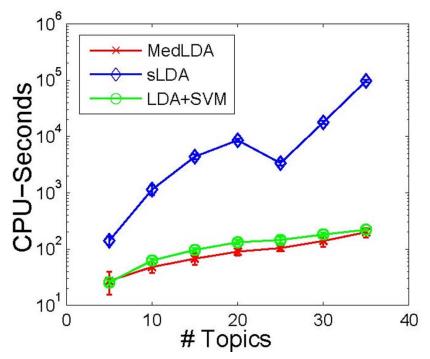
Regression

- Data Set: Movie Review (Blei & McAuliffe, 2007)
- **Models**: MedLDA(*partial*), MedLDA(*full*), sLDA, LDA+SVR
- **Measure**: predictive R² and per-word log-likelihood

$$pR^{2} = 1 - \frac{\sum_{d} (y_{d} - \hat{y}_{d})^{2}}{\sum_{d} (y_{d} - \bar{y}_{d})^{2}}$$



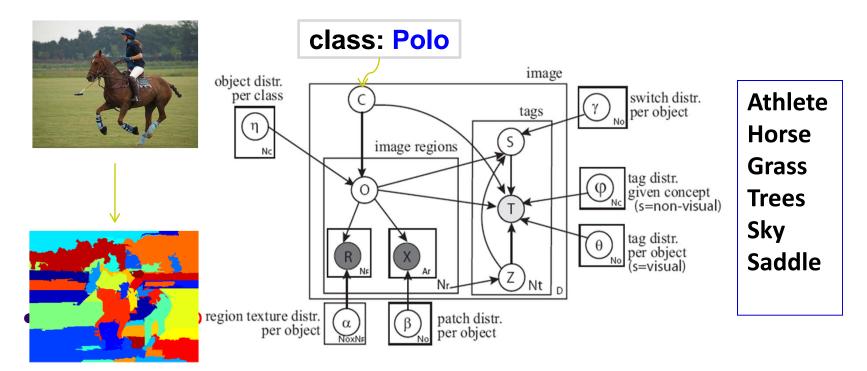
Time Efficiency



- Multiclass:
 - MedLDA is comparable with LDA+SVM
- Regression:
 - MedLDA is comparable with sLDA

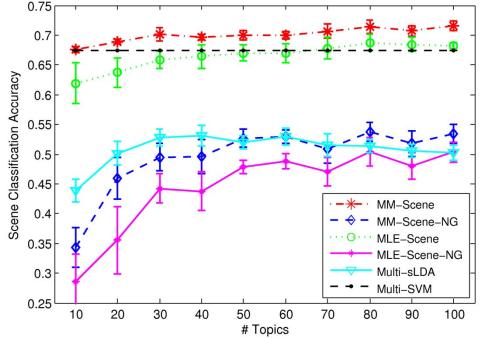
II. Upstream Scene Understanding Models

• The "Total Scene Understanding" Model (Li et al, CVPR 2009)



Scene Classification

• 8-category sports data set (Li & Fei-Fei, 2007):



- Fei-Fei's theme model: 0.65 (different image representation)
- SVM: 0.673

•1574 images (50/50 split)
•Pre-segment each image into regions
•Region features:

•color, texture, and location
•patches with SIFT features

•Global features:

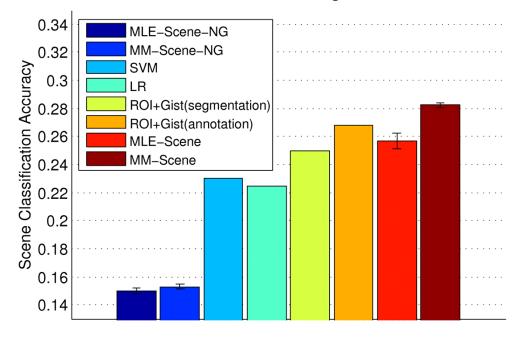
•Gist (Oliva & Torralba, 2001)
•Sparse SIFT codes (Yang et al, 2009)

MIT Indoor Scene

• Classification results:

- 67-category MIT indoor scene (Quattoni & Torralba, 2009):
 - ~80 per-category for training; ~20 per-category for testing
 Same feature representation as above

 - Gist global features

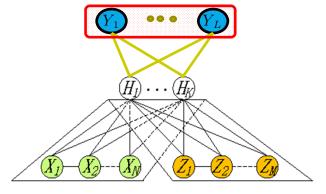


^sROI+Gist(annotation) used *human annotated* interest regions.

III. Supervised Multi-view RBMs

A probabilistic method with an additional view of response variables
 Y

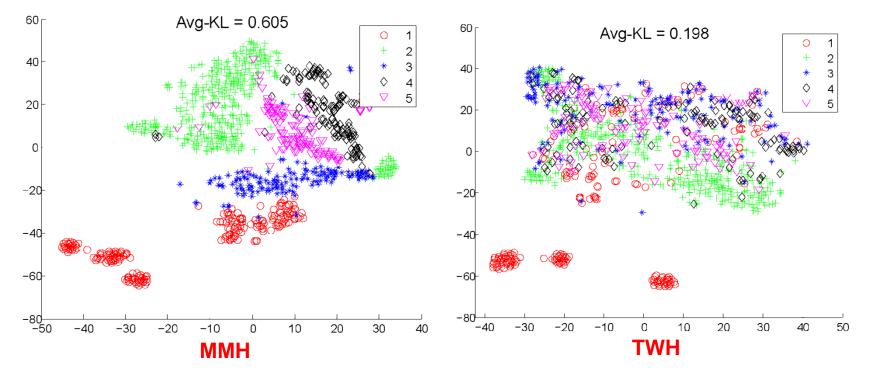
$$p(y|\mathbf{h}) = \frac{\exp\{\mathbf{V}^{\top}\mathbf{f}(\mathbf{h}, y)\}}{Z(V, \mathbf{h})}$$
normalization factor



- Parameters can be learned with maximum likelihood estimation, e.g., special supervised Harmonium (Yang et al., 2007)
 - contrastive divergence is the commonly used approximation method in learning undirected latent variable models (Welling et al., 2004; Salakhutdinov & Murray, 2008).

Predictive Latent Representation

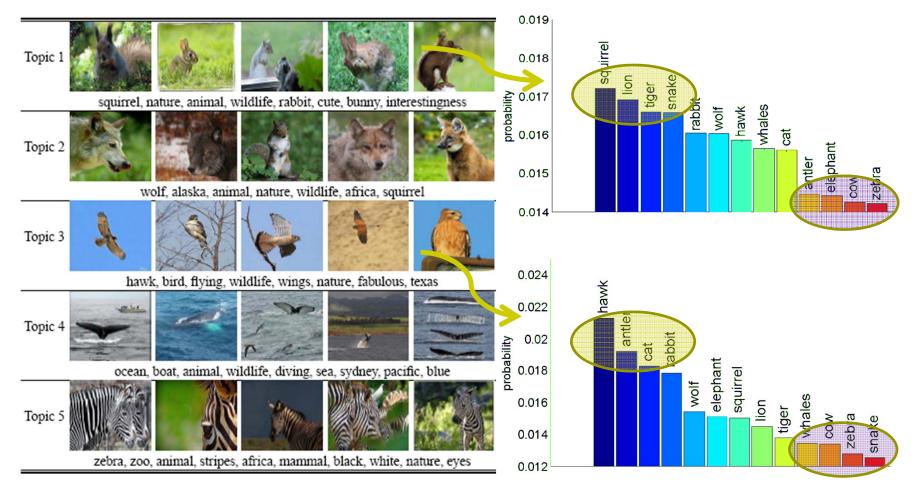
• t-SNE (van der Maaten & Hinton, 2008) 2D embedding of the discovered latent space representation on the TRECVID 2003 data



• Avg-KL: average pair-wise divergence

Predictive Latent Representation

• Example latent topics discovered by a 60-topic MMH on Flickr Animal Data

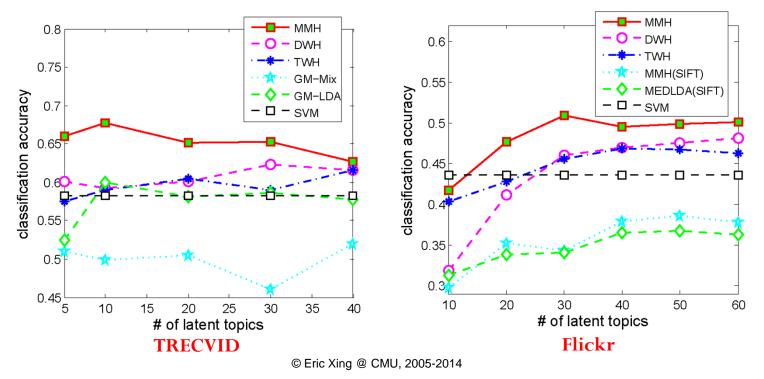


© Eric Xing @ CMU, 2005-2014

Classification Results

• Data Sets:

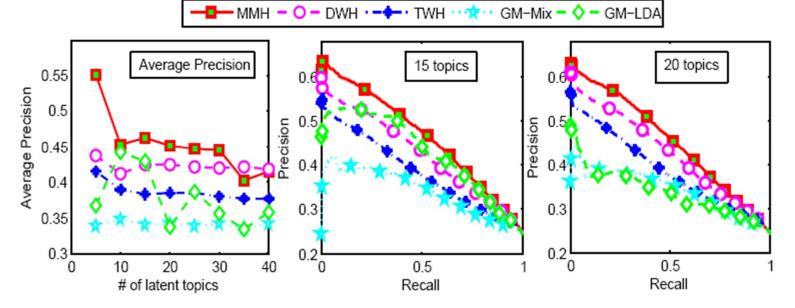
- (Left) TRECVID 2003: (text + image features)
- (Right) Flickr 13 Animal: (sift + image features)
- Models:
 - baseline(SVM),DWH+SVM, GM-Mixture+SVM, GM-LDA+SVM, TWH, MedLDA(sift only), MMH



Retrieval Results

• Data Set: TRECVID 2003

- Each test sample is treated as a query, training samples are ranked based on the cosine similarity between a training sample and the given query
- Similarity is computed based on the discovered latent topic representations
- Models: DWH, GM-Mixture, GM-LDA, TWH, MMH
- Measure: (Left) average precision on different topics and (Right) precisionrecall curve



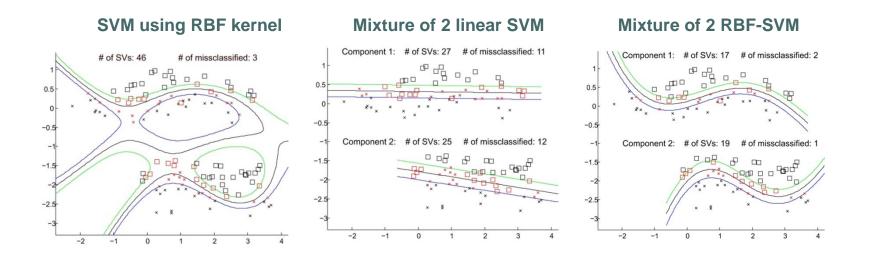
Infinite SVM and infinite latent SVM:

-- where SVMs meet NB for classification and feature selection

... where M is any combinations of classifiers and p is a nonparametric Bayesian prior

Mixture of SVMs

- Dirichlet process mixture of large-margin kernel machines
- Learn flexible non-linear local classifiers; potentially lead to a better control on model complexity, e.g., few unnecessary components



• The first attempt to integrate Bayesian nonparametrics, large-margin learning, and kernel methods

Infinite SVM

• RegBayes framework:

$$\min_{\substack{p(\mathcal{M}),\xi \\ \text{s.t.}: p(\mathcal{M}) \in \mathcal{P}_{\text{post}}(\xi), \\ } \text{KL}(p(\mathcal{M}) \| \pi(\mathcal{M})) - \sum_{n=1}^{N} \int \log p(\mathbf{x}_{n} | \mathcal{M}) p(\mathcal{M}) d\mathcal{M} + U(\xi)$$

$$\text{s.t.}: p(\mathcal{M}) \in \mathcal{P}_{\text{post}}(\xi), \\ \text{convex function} \\ \text{direct and rich constraints on posterior distribution}$$

- Model latent class model
- Prior Dirichlet process
- Likelihood Gaussian likelihood
- Posterior constraints max-margin constraints

draw V_i | α ~ Beta(1, α), i ∈ {1, 2, · · ·}. draw η_i | G₀ ~ G₀, i ∈ {1, 2, · · ·}. for the dth data point:

Infinite SVM

(a) draw
$$Z_d | \{ v_1, v_2, \cdots \} \sim \operatorname{Mult}(\pi(\mathbf{v}))$$

process of determining which classifier to use:

• Given a component classifier:

$$F(y, \mathbf{x}; z, \boldsymbol{\eta}) = \boldsymbol{\eta}_z^{\top} \mathbf{f}(y, \mathbf{x}) = \sum_{i=1}^{\infty} \delta_{z,i} \boldsymbol{\eta}_i^{\top} \mathbf{f}(y, \mathbf{x})$$

• Overall discriminant function:

$$F(y, \mathbf{x}) = \mathbb{E}_{q(z, \eta)}[F(y, \mathbf{x}; z, \eta)] = \sum_{i=1}^{\infty} q(z = i) \mathbb{E}_{q}[\eta_{i}]^{\top} \mathbf{f}(y, \mathbf{x})$$

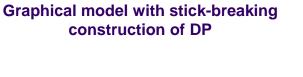
• Prediction rule: $y^* = \arg \max_y F(y, \mathbf{x})$

• DP mixture of large-margin classifiers

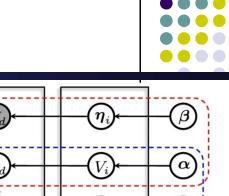
• Learning problem:
$$\min_{q(\mathbf{z}, \boldsymbol{\eta})} \operatorname{KL}(q(\mathbf{z}, \boldsymbol{\eta}) \| p_0(\mathbf{z}, \boldsymbol{\eta})) + C_1 \mathcal{R}(q(\mathbf{z}, \boldsymbol{\eta})),$$

$$\mathcal{R}(q(\mathbf{z}, \boldsymbol{\eta})) = \sum_{d} \max_{y} (\ell_{d}^{\Delta}(y) + F(y, \mathbf{x}_{d}) - F(y_{d}, \mathbf{x}_{d}))$$

© Eric Xing @ CMU, 2005-2014



D



 ∞

44

Infinite SVM

- Assumption and relaxation
 - Truncated variational distribution

$$q(\mathbf{z}, \boldsymbol{\eta}, \boldsymbol{\gamma}, \mathbf{v}) = \prod_{d=1}^{D} q(z_d) \prod_{t=1}^{T} q(\eta_t) \prod_{t=1}^{T} q(\gamma_t) \prod_{t=1}^{T-1} q(v_t)$$

• Upper bound the KL-regularizer

Graphical model with stick-breaking construction of DP

- Opt. with coordinate descent
 - For $q(\boldsymbol{\eta})$, we solve an SVM learning problem
 - For $q(\mathbf{z})$, we get the closed update rule

 $q(z_d = t) \propto \exp\left\{ (\mathbb{E}[\log v_t] + \sum_{i=1}^{t-1} \mathbb{E}[\log(1-v_i)]) + \rho(\mathbb{E}[\gamma_t]^\top \mathbf{x}_d - \mathbb{E}[A(\gamma_t)]) + (1-\rho) \sum_y \omega_d^y \mu_t^\top \mathbf{f}_d^\Delta(y) \right\}$

- The last term regularizes the mixing proportions to favor prediction
- For $q(\boldsymbol{\gamma}), q(\mathbf{v})$, the same update rules as in (Blei & Jordan, 2006)

Experiments on high-dim real data

• Classification results and test time:

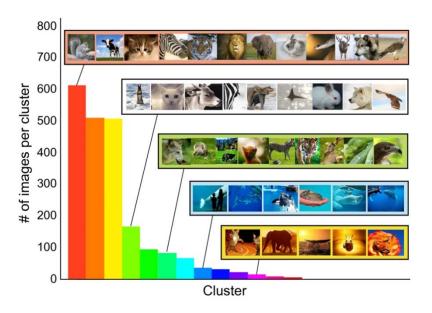
Table 4. Classification accuracy (%), F1 score (%), and test time (sec) for different models on the Flickr image dataset. All methods except dpMNL are implemented in C.

	ACCURACY	F1 score	Test time
MNL MMH RBF-SVM DPMNL-EFH70 DPMNL-PCA50 LINEAR-ISVM RBF-ISVM	$51.7 \pm 0.0 \\ 52.2 \pm 0.0 \\ 51.2 \pm 0.9 \\ 51.9 \pm 0.7 \\ 53.2 \pm 0.4$	$50.1 \pm 0.0 \\ 48.4 \pm 0.0 \\ 49.9 \pm 0.8 \\ 49.9 \pm 0.8 \\ 51.3 \pm 0.4$	42.1 ± 7.39 27.4 ± 2.08

• Clusters:

- simiar backgroud images group
- a cluster has fewer categories

For training, linear-iSVM is very efficient (~200s); RBF-iSVM is much slower, but can be significantly improved using efficient kernel methods (Rahimi & Recht, 2007; Fine & Scheinberg, 2001)



Learning Latent Features

- Infinite SVM is a Bayesian nonparametric latent class model
 - discover clustering structures
 - each data point is assigned to a single cluster/class
- Infinite Latent SVM is a Bayesian nonparametric latent feature/factor model
 - discover latent factors
 - each data point is mapped to a set (can be infinite) of latent factors
 - Latent factor analysis is a key technique in many fields; Popular models are FA, PCA, ICA, NMF, LSI, etc.

Infinite Latent SVM

• RegBayes framework:

$$\min_{\substack{p(\mathcal{M}),\xi \\ \text{s.t.}: \ p(\mathcal{M}) \in \mathcal{P}_{\text{post}}(\xi),}} \text{KL}(p(\mathcal{M}) \| \pi(\mathcal{M})) - \sum_{n=1}^{N} \int \log p(\mathbf{x}_{n} | \mathcal{M}) p(\mathcal{M}) d\mathcal{M} + U(\xi)$$

$$\text{s.t.}: \ p(\mathcal{M}) \in \mathcal{P}_{\text{post}}(\xi), \quad \text{convex function}$$

$$\text{direct and rich constraints on posterior distribution}$$

- Model latent feature model
- Prior Indian Buffet process
- Likelihood Gaussian likelihood
- Posterior constraints max-margin constraints

Beta-Bernoulli Latent Feature Model

1

• A random finite binary latent feature models

Κ $\pi_k | \alpha \sim \text{Beta}(\frac{\alpha}{K}, 1)$ 0 . . . Z_1 0 0 0 0 Ζ, $z_{ik}|\pi_k \sim \text{Bernoulli}(\pi_k)$. . . 1 0 1 Ζ.,

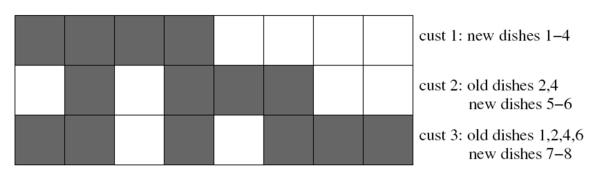
• π_k is the relative probability of each feature being on, e.g.,

• z_i are binary vectors, giving the latent structure that's used to generate the data, e.g.,

$$\mathbf{x}_i \sim \mathcal{N}(\eta^{\top} z_{i.}, \delta^2)$$

Indian Buffet Process

- A stochastic process on infinite binary feature matrices
- Generative procedure:
 - Customer 1 chooses the first K_1 dishes: $K_1 \sim \text{Poisson}(\alpha)$
 - Customer *i* chooses:
 - Each of the existing dishes with probability $\frac{m_k}{i}$
 - K_i additional dishes, where $K_i \sim \text{Poisson}(\frac{\alpha}{i})$



 $Z_{i.} \sim \mathcal{IBP}(\alpha)$

© Eric Xing @ CMU, 2005-2014

Posterior Constraints – classification

• Suppose latent features **z** are given, we define *latent discriminant function*:

$$f(y, \mathbf{x}, \mathbf{z}; \boldsymbol{\eta}) = \boldsymbol{\eta}^{\top} \mathbf{g}(y, \mathbf{x}, \mathbf{z})$$

Define *effective discriminant function* (reduce uncertainty):

 $f(y, \mathbf{x}; p(\mathbf{Z}, \boldsymbol{\eta})) = \mathbb{E}_{p(\mathbf{Z}, \boldsymbol{\eta})}[f(y, \mathbf{x}, \mathbf{z}; \boldsymbol{\eta})] = \mathbb{E}_{p(\mathbf{Z}, \boldsymbol{\eta})}[\boldsymbol{\eta}^{\top} \mathbf{g}(y, \mathbf{x}, \mathbf{z})]$

• Posterior constraints with max-margin principle

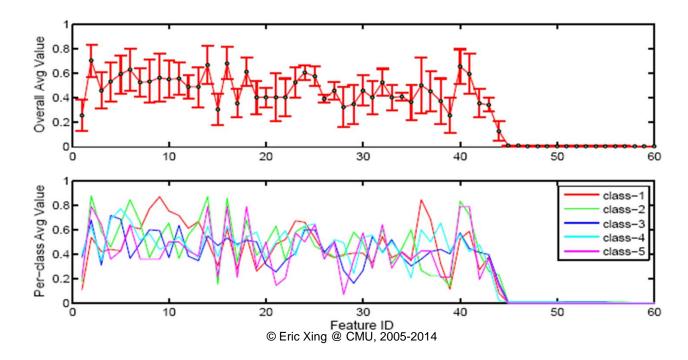
 $\forall n \in \mathcal{I}_{\mathrm{tr}}, \forall y : f(y_n, \mathbf{x}_n; p(\mathbf{Z}, \boldsymbol{\eta})) - f(y, \mathbf{x}_n; p(\mathbf{Z}, \boldsymbol{\eta})) \ge \ell(y, y_n) - \xi_n$

Experimental Results

• Classification

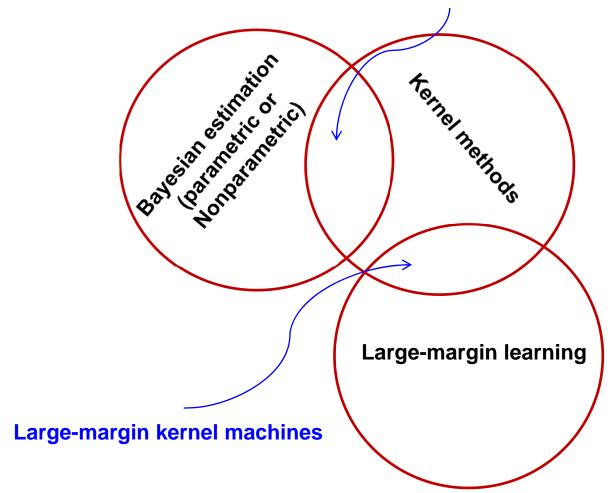
• Accuracy and F1 scores on TRECVID2003 and Flickr image datasets

ſ		TRECVID2003		Flickr	
	Model	Accuracy	F1 score	Accuracy	F1 score
	EFH+SVM	0.565 ± 0.0	0.427 ± 0.0	0.476 ± 0.0	0.461 ± 0.0
	MMH	0.566 ± 0.0	0.430 ± 0.0	0.538 ± 0.0	0.512 ± 0.0
Ì				0.500 ± 0.004	
	iLSVM	0.563 ± 0.010	$\textbf{0.448} \pm 0.011$	0.533 ± 0.005	0.510 ± 0.010

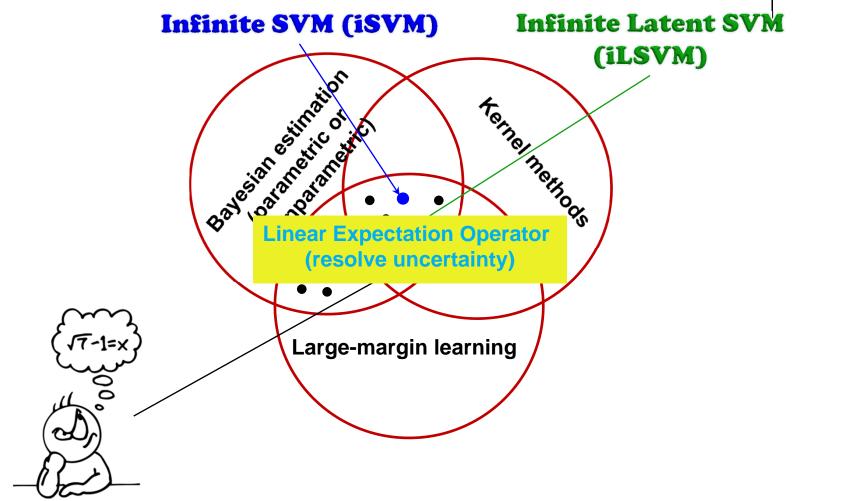


Summary

Bayesian kernel machines; Infinite GPs



Summary



Summary

• A general framework of MaxEnDNet for learning structured input/output models

- Subsumes the standard M³Ns
- Model averaging: PAC-Bayes theoretical error bound
- Entropic regularization: sparse M³Ns
- Generative + discriminative: latent variables, semi-supervised learning on partially labeled data, fast inference
- PoMEN
 - Provides an elegant approach to incorporate latent variables and structures under maxmargin framework
 - Enable Learning arbitrary graphical models discriminatively
- Predictive Latent Subspace Learning
 - MedLDA for text topic learning
 - Med total scene model for image understanding
 - Med latent MNs for multi-view inference
- Bayesian nonparametrics meets max-margin learning
- Experimental results show the advantages of max-margin learning over likelihood methods in **EVERY** case.

Remember: Elements of Learning

- Here are some important elements to consider before you start:
 - Task:
 - Embedding? Classification? Clustering? Topic extraction? ...
 - Data and other info:
 - Input and output (e.g., continuous, binary, counts, ...)
 - Supervised or unsupervised, of a blend of everything?
 - Prior knowledge? Bias?
 - Models and paradigms:
 - BN? MRF? Regression? SVM?
 - Bayesian/Frequents ? Parametric/Nonparametric?
 - Objective/Loss function:
 - MLE? MCLE? Max margin?
 - Log loss, hinge loss, square loss? ...
 - Tractability and exactness trade off:
 - Exact inference? MCMC? Variational? Gradient? Greedy search?
 - Online? Batch? Distributed?
 - Evaluation:
 - Visualization? Human interpretability? Perperlexity? Predictive accuracy?
- It is better to consider one element at a time!